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537. EXTENDED CONTINUOUS LOGIC AND THE THEORY
OF COMPLEX CRITERIA *

Jozo J. Dujmovic

Proposed in this paper is extended continuous logic (ECL), a generaliza-
tion of continuous logic based on the introduction of variable degree of conjun-
ction and disjunction in complex conjunctive and disjunctive statements. The
properties of ECL, as an algebraic structure, are analysed and various ECL
functions are defined and classified.

The apparatus of sentential algebra in ECL is defined with the objective
to develop a theory of complex criteria as a separate branch of continuous
logic. The basic concept was that the central problem of criteria theory is the
simulation and formalisation of the human reasoning process in the intuitive
synthesis of complex criteria.

Possible applications of criteria theory are numerous, but of special
interest is the solution to the problem of evaluation and comparison of various
complex systems. For this purpose an algorithm for synthesizing effectiveness
criteria of complex systems is proposed. The algorithm represents a general
theoretical model of arbitrary complex criterion.

1. GENERAL MODEL OF COMPLEX CRITERIA AND THE SYSTEM
EVALUATION PROCESS

Let S be a given system which performs an arbitrary mapping of the set
of inputs into the set of outputs. Furthermore, let

i = I, ..., n

be a given sequence of real numbers which represent system performance
indicators and reflect the ability of a system to attain some desired objectives.
We shall call the quantities Xl' ..., Xn "components for evaluation".

Definition 1. The elementary effectiveness criteria for the system S are the map-
pings gi:Ri--'i>-I, i=l, .." n, I: =[0, I]. The quantity Ei=gi(Xi) is called the
i-th elementary effectiveness of the system S and represents the degree of truth
in the statement "the value of the component for evaluation Xi completely fulfils
the requirements of the i-th elementary criterion". We shall call the interval I the
effectiveness interval.

Definition 2. The global effectiveness criterion of the system S is the mapping
g: Rl x R2 X . , . x Rn--'i>-I, where the quantity E = g (xi' ..., xn) is called the
global system effectiveness and it represents the degree of truth in the statement
"system S completely fulfils all given requirements".

Definition 3. Under the "evaluation of a system S" we shall consider the three-
-stage process where elementary criteria gl' ..., gn are defined in the first stage,

. Presented June 8, 1975 by V. DEvIDE.

197



198 J. J. Dujmovic

complex criterion g is synthe!Jized in the second stage and the global effectiveness E
of the given system, on the basis of particular values of the components for
evaluation x, is calculated in the stage three.

When constructing the mapping g the most natural approach is to adopt
for g to be a formal model which best describes the human reasoning process
during the evaluation of a system on the basis of intuitively formed complex
criteria. For this purpose the following dominant compenents in the mental
processes of synthesis of complex criteria and evaluation can be singled out:

- complex criteria decompose into a sequence of independent elementary
criteria

- elementary criteria are evaluated individually, i. e. the elementary
effectivenesses are individually determined

- the global system effectiveness is determined by appropriate operations
performed over the calculated elementary effectivenesses

the global effectiveness of the system is not greater then the largest nor
lesser than the smallest of the elementary effectivenesses.

The general formal model of a complex criterion based on the simulation
of the described mental process is shown in Fig. 1.
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Fig. ]

The mapping L: In --+ I plays a fundamental part in this model, which due
to its nature must be realized through sentential algebra. However, the apparatus
of sentential algebra in continuous logic is inadequate for determining in a
suitable manner the global effectiveness E = L (E1, ..., En) starting from ele-
mentary effectivenesses. The necessary extensions of sentential algebra in conti-
nuous logic are described in the following text.

2. A GENERALIZATION OF SENTENTIAL ALGEBRA FOR SYNTHESIZING
COMPLEX CRITERIA

In the process of synthesizing complex criteria it is necessary to extend
the apparatus of sentential algebra in continuous logic with two new degrees
of freedom. These are:

- continuously variable degrees of conjunctivity and disjunctivity in
complex conjunctive and disjunctive statements, and

- a continuously variable degree of relative significance of each elementary
statement with respect to a complex statement formed from given elementary
statements.

The need for these generalizations is evident in practically all problems
concerning the synthesis of complex criteria. For example, consider the sImplest
case, a complex criterion consisting of two elementary criteria which results in
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the sentential relationship E=L(Ep E2). Let us assume that E1<E2 and that
complex criterion is fulfilled when both elementary criteria are simultaneously
fulfilled. If the only functions available for a formal description of the complex
criterion are min, max and x 1-+1- x, then according to the requirements of
the complex criterion it follows that E = min (E1, E2) = E1. This leads to a
situation in which the global system effectiveness is insensitive to the elementary

effectiveness E2, i. e.
oE

=0, as long as E1<E2, which in turn implies that the
oE2

cases Emin= E1= Ez and Emin= E1<Ez (0 ~ Emin< 1) are mutually equivalent.
However, the quantity Ez shows to what extent one of the criteria (perhaps
even the dominant one) is fulfilled and in majority of real situations it is not
quite irrelevant whether that part is fulfilled to a greater or lesser degree.
Generally, an increase in the degree of fulfilment of one part of a complex
criterion automatically means an increase in the degree of fulfilment of the
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situations E1 = Ez and E1<Ez should not be equivalent. Problems of this type
require that the degree of coincidence in fulfiling elementary criteria should
be realized as a continuously adjustable quantity.

Let us consider the same complex criterion in a situation when Ep EzE
E {Emin, Emax}, 0 ~ E;':in< Emax~ 1. If once again we restrict ourselves only to
the functions min, max and x t--+ 1 - x, it follows that the cases E1= Emin,
Ez = Emax and E1 = Emax, Ez = Emin are mutually equivalent. However, generally E1
and Ez can be associated (according to their significance) with dUnensionally
very diverse components of a complex criterion, so that despite the urge to
fulfil both elementary criteria simultaneously it is relevant whether the greater
or lesser part of the complex criterion is fulfilled to a greater extent. Therefore,
the cases E1 = Em;n, E2 = Emax and E1 = Emax, E2 = Emin cannot generally be
equivalent. This leads to the need to include appropriately into sentential algebra
the possibility that within the confines of every complex statement elementary
statements can be discriminated according to the degree of relative significance.

This continuous logic, within which sentential algebra has such properties,
we shal call "extended continuous logic" (ECL). ECL represents a generalization
of continuous logic obtained by appropriately replacing conjunctions and disju-
nctions in sentential algebra with quasi-conjunctions and quasi-disjunctions
described in the sequil.

3. QUASI-CONJUNCTIONAND QUASI-DISJUNCTION

Let t = (tl' ..., tn) be a sequence of degrees of truth of a statements in
continuous logic (tiEl, i = 1, ..., n). Starting from power means and weighted
power means [1]

(1) (
In )

IIS
M~](t): =lim - L t/

's-'?r n i=1

(
n

)
I/S

M~] (t; W): = lim L Wi t;' ,
s-+r ;=1

O<Wj< 1, i= 1, ..., n,
n

L Wi=l,
i~1

rER.,
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in reference [2] the weighted conjunctive and disjunctive means are defined by

L~c](t; W): =M}C;;'(C)] (t; W)(2)

N~d](t; W): =M}D;;'(d)](t; W),

respective]y, where functions C;;\ D;;I : I -+Roo are Inverse to the functions

(3)
n-(n+ l)Mlr]

Cn(r): =
n

n-l

J J
-[r]

Jd J
[r]

dM n : = t1 ... M n (t) tn, n> 1.

o 0

The functions df--'?-D;;l (d) for n = 2, 3, 4, 5 are shown in Fig. 2.

Quantities c = Cn(r) and d = Dn(r) are caHed the conjunction and the disjunction
degree respective]y. From [3] and (3) it [oHows that

(4)
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conjunction and disjunction degrees

c, dE A, A: = {O, 0.0625, 0.125, ..., 1}

seventeen basic logic operations are defined as shown in Table].

For the

Table 1.

BASH LUGI( OPERPIQNS P. EXTU.~tD C(J,~j jNI.JOUS luGIC

~
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - --- - --- ---------------------- ------------ - ------------------------------------------------------------------

I I J I I I! PARAMUEi~ OF THE i,o;[IGHTtL) I
J I SY."',BOLOF II COI\JUNCTICNI DISJuNCTION II POy.,'ERMEAN (~J I
I NAME OF OPERATION 1 OPERATIC:~ I I DEGREE I DEGREE I

j I

I I I I I ! ! :i
"'2.

t;
= 3 1\:4! ~~

'"
5 I

I===========:==="======='='==-==j="'======="'-Jl:"==:=========1===-- -11= ==:=========:==================[
I CO;\JUNCTION I C II 1.0000 I 0.0000 11 ,'J:!\,U51t,FPdTY I
I I !I I !I I l ! 1
1 ST~ONG QUASI-COtl.JUNCTION(+)I C++ II O.937~ ! 0.00.25 II -9.0000 I -7.0393 J -!".71CQ ! -o.nd 1
I I 1: I ! I I ! 1 1
I STRO,'I;G QUASI-CONJU,\CTLO,".J I C-+ II 0.8750 : 0.1250 II -3.5100 I -3.1131 I -2.8232 1 -2.6404 I
1--- I I I I ! 1 I I 1 1
I SnONG QiJASI-CONJiJ,'.JCTW.'\(-) I C+- ., C.8125 ~.la75 II -1.6~48 ! -1.5493 ! -1.4')J.9 ! -103627 I
1 1 I 1 1 I I I 1 I I
I ~"EDIu,'.', QUASI-CONJWNCTION I CA... 11 0.7500 I 0.2500 11 -0.7203 I -C.7314 r -0.7145 I -0.6697 r
I I --- ! J I I I I I i

II '"EAK:;;UASI-CONJUNCTIc:n+) I C--+ I! 0.6875 I C.3125 II -0.1475 I -()..2065 I -0.2.248 I -0.2025 I
1--- I I I I I ! r ! 1 I
I '",'EAK

QUASI-CQ,"jJUI,CTIC,", I C- II 0.6.250 I C03750 II 0.2612 I u.1953 I 0.1078 I O.17tH I

1--- -- I -- I I I I I ! ! 1 I
I ko.'EAKQUASI-CQNJUNCTIOI,!-j i C-- II 0.5625 I 0.4375 II 0.6194 I Q.5730 I 0.5473 1 Q.5423 I
J --- ~'-- : - -- 1I I 1I I I 1 I
J COI\Jur~CTIVE-DJSJU:,CTI'..'E I II I J'I: I!
I u,'.DETERidNATIC:'~ J A !IJ.5001.::' 1 ;].5iJUO II 1.0~(JO I 1.0LJUO! 1.J0UO! 1.00UJ I
I I I I 1 I I I J ! I
! i>,'EAKCUASI-CISJurKTIoN!-) I ~-- II 0.4375 I c.5025 II 1.4..90 J 1.519C i 1.56:;9 I 1.~83o I
t - --- I I I I 11 I- I ! !j

",,'[AK QUASI-DISJl.iNCTIC,,; I D- II 0.3750 I 0.6250 II 2.010:;' 1 2.1b73 1 20301':1! 2.3624
j

1--- 1 I 1--- : I I 1 J ! I I
I i>,'EAKJUASI-DISJUNCTICI';!+) I 0-+ II 0.3125 I 0.6875 II 2.HI' J 3.1011! 303181 1 3.4427 I
I I 1 I I --- I 1 : : I I
I '.',EDIUM QUASI-OISJUNCTION I DA II 0..2500 I 0.7500 11 3.92')3! ...4;01 1 4.:;j,,:.Q 1 :>.0'...2 1
I .- --- I I : I I I 1 I I !
I STRONC, QUASI-CISJUI'.CT1Ci\Ol-) I D+- 11 ::).1875 I :J.!Jl25 II 5.8:.123! 6.6749 I 7.:;171 1 7.7294 1
i --- : - -- I I I 1 I I I ! I
! STRONGC;;UASI-OIS..Iut,CTIcr., ; ::+ II 0.1.250 J 0.8750 II 9.5281! 1l.O'i48 I 12.2766 I 13.0062 I
1- I I 1--- .- : I ! I J I !
1 STF;ONGQUASI-DISJ~I\,CTloro;(+) I ~H ... 0.0625 J 0.9375 :J .:C.~303 I 24.3177 I .27.U46 1 .2.9.J810 !
l I -- I J--- --- -- I--- ! ! --- - - --- - r ! I !
I DISJU.\CTICr, : D Ii 8.0000 I 1. COCO 11 PL:...S !\FI'dTY 1

Operations L~] (t; W), N~d] (t; W) and M~] (t; W) for ]/2<c<], O<d< ]/2
(c, dE A) and r< 1 are called quasi-conjunctions (QC), and for O<c< ]/2,
1/2<d<] (c, dE A) and r>] quusi-disjunctions (QD). According to Table 1
various intensities of quasi-conjunction will be denoted by C--, C-, C-+, CA
C+ -, C+ and C+ +, and various quasi-disjunction intensities by D- -, D-, D- +,

DA, D+ -, D+ and D+ +. The parameter r used in the weighted power means
which correspond to quasi-conjunctions and quasi-disjunctions is determined on
the basis of the desired conjunction (disjunction) degree. From Table] it fol-
lows that for a constant conjunction degree the value of r depends on the
number of variables n, so that is suitable to indicate this with an appropriate
subscript:

Furthermore, for every rn E Roo (n> ]) the inverse

rnERoo is defined:

parameter of power means

(5)

and from (3), (4) and (5) it is easily shown that

(6)
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It is useful to introduce the following notation for the operations of
quasi-conjunction, quasi-disjunction and negation:

(7) W1t1~CWztz~C... ~CWntn: =L~C](t; W)=N~](t; W)=M~](t; W)

(c>1/2, d=l-c, r=C;;-1(c)),

W t VdW t Vd...VdW t. =L[c](t. W ) =N[d] ( t. W ) =M[r] (t. W )
1 1 2 2 n n" n, n, n,

t;':=l-ti' tiEl, i=l,...,n.

Notation (7) represents the convention that the symbol ~c is reserved for QC
and the symbol Vd for QD. However, whenever it is necessary, it is possible
to revoke this convention since ~a= V1-a, aEI. In cases where it is obvious
from the context, quantities c and d can be left out in the symbols ~c and V.I.
In addition, when both ~ and V are used in the same expression, it is assumed
that ~ = ~a, V = Va, aE I, i. e. if the weighted power mean parameter rn is
used for ~, than rn is used for V.

4. BASIC LAWS OF EXTENDED CONTINUOUS LOGIC

ECL is an algebraic system consisting of the set of real numbers I, the
binary operations ~c and Vd and the unary operation'. Since from (7) and [2]
the following holds

W1t1~1... ~lWntn=t1;\ ... ;\ tn: =min(t1' ..., tn),

W1 t1V1 . . . V1Wn tn = t1V ... V tn: = max (t1' ..., tn)

(~l=VO==;\, V1==~o==V),

ECL is, in case of extreme values of the conjunction and disjun-.::tion degrees,
reduced to classical continuous logic [4,5]. If O<c, d < 1, the laws of ECL
differ from the laws 0f classical contimlous logic. In this section we shall analyse
the manner in which the basic ECL operations quasi-conjunction, quasi-disjunction
and negation fulfil the basic laws in algebraic systems [6, 7].

1. Associativity. For degrees of truth t1' tz, t3EI and weights a1' az, h1' hzE
E I (a1+ h1= az + hz = 1) the following associations hold:

(8)

Proof. From (7) and (1) and by developing the left-hand side of the first
relationship in (8) it follows that

(9)
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By developing the light-hand side the same expression is derived. The prOl f of
the other relation in (8) is analogous, QED.

The law of associativity (8) can be generalized to the case of associative
structures which can be represented as "m-ary trees" in which the same number
of branches flow into every vertex (the branches represent the weights and the
vertices identical operators, Ll or V). In a similar way as in relationship (9),
each m-ary tree with operations Llc yields the expression

where

represents the product of weights along the path from the root of the tree to
the i-th peripheral vertex. Therefore, the generalized law of associativity can be
formulated as follows: two arbitrary m-ary associative structures with the same
number of peripheral vertices are equal if for all peripheral vertices they have
equal weight products along paths leading from the root of the tree to the
corresponding peripheral vertices.

EXAMPLE. The two binary associative structures of types ,,2 + 2" and ,,2 + 1 + 1" shown in
Fig. 3 are equal. Indeed, from (8) and (9) it follows that

Fig. 3

Starting from (9) the associative law can be written in the following form

WrtrLlC3 WztzLlC3 W3t3=WrtrLlCz (WZ+W3) (~tzLlCZ ~t3 )Wz+ w3 Wz+ w3
(10)

c;:r (cz) = C31 (C3)'

which means that in the general case CzoFC3even though the difference ICz- c31
is small according to Fig. 2. Therefore, the associative law (9) and (10) is only
approximately valid within the bounds of the same degree of conjunction
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(disjunction), so that it is of interest to define, according to (10), as a measure
of this proximity, the following errors:

1 1 1

EASz+1(e): = J dtl J dtz J{(~ t1fl
~

tzfl
~ t3)-[~

t]fl
~ (~

tzfl
~ t3)]}dt3,

000

1 1 1 1

EASH1 (e): = J dt] J dtz J dt3 I{(: tl fl} tzfl
:

t3fl
: t4)

o 0 0 0

1 1 1 1

EASz+z(e): = J dt] J dtz I dt3 J {G
t]fl

: tzfl: t3fl
: t4)

000 0

-[ ~ C t1fl
~

tz)fl
~ (~

t3fl
~ t4)]}dt4'

Figure 4 depicts the errors in the associative law as a function of the conjunction
degree. The average absolute errors of the associative law are

0.025 EAS
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Fig. 4

1

EASz+] : = f [EASz+] (e) [de = 0.00516,
o

1

EAS3+1: = I IEAS3+1 (e) Ide = 0.00612,
o

1

EAS2+2: = JIEAS2+2 (e) ide=0.01006-
o

The values obtained are indeed small. In addition, it can be shown that the
values of the errors remain nearly constant even when the weight values are
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changed. Therefore, in practically all applications, errors in the associative law
can be tolerated. Consequently, in all expressions with the same operation
(1:1or V') the parantheses can be left out, providing that the weight factors
within the parantheses are multiplied by the weight factor in front of them

(for example, al(az(a3/1 V'Q31)V'bz/3)V'bI/4~alaZa3/Ivalazb3/zV'albz/3V'bI/4)'
Two associative structures represented by different arbitrary trees with the same
number of peripheral vertices are nearly equivalent, if they have equal weight
products along paths leading from a particular vertex to the root of the tree,
for all corresponding peripheral vertices.

2. Dislribulivity. For degrees of truth Ii' Iz, 13E / and weights ap bp Oz, bzE
E/(ol +bl =az+bz= 1) the law of distribution is valid in the following fcrm

al/lAbl(az/z V'bz/3)=aZ(aI/IAbl/z}V'bz(aI/IAbI/3)+Edis(ai' az, Ii' Iz, 13, e)

al tl V'bl (az Iz A bz (3)= az (al II V'bl Iz) A bz (al II V'bl (3)+ Edis(ai' az, (1' (z' 13' 1- d).

On the basis of (1) it is easily verified that for eE{O, 1/2, I}, Edis=O. The
error in the law of distribution in case of equal weights

I I I

ED/S(e): =Id/l Id/z
I EdiS(~' ~, Ii' Iz, 13'e)d/3

000

is shown in Fig. 5. The average apsolute error of the law of distribution is

0.05 EDIS

0.04

0.03

0.00

0.01

-0.02

-0.03

-0.t'S

Fig. 5

I

ED/S: = JIEDIS(e)lde=0.OI439
o

and it remains nearly constant even in case of different weights.

3. Idempoleney. For the degree of truth s and weights WI, ..., Wn on the
basis of (1) and (2) it follows that

WI S V' . . .
V' W"

S = S, n>1.
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4. Commutation. Due to reasons explained earlier in the text the motive for
introducing unequal weights was to make the commutative law invalid. Consequen-
tly, the commutative law holds only in case of equal weights, so that for
tl + t2:f=0 and tl :f=t2 the following equivalence is valid

(WI tl A W2 t2= WI t2A W2 tl' WI tl 'VW2 t2= WI t2'V W2 tl) {:=}WI = W2 = 1/2.

5. De Morgan's laws. These laws in ECL have the following form

(11) (WltIA.. .AW"t,,)'=Wlt/'V.. .'VW"t,,'+CDM(WI' ..., W,,; tl' ..., t,,; c)

(WI tl 'V. . . 'VW" t,,)' = WI t/ A. . . A W" t,,' + cDM(WI, ..., Wn; tl, ..., tn; 1 - d)

where, for cE {O, 1/2, I}, cDM= O. In addition, the average value of the error cDM
in case of equal weights is zero.

Proof. In classical continuous logic, for c = 0 and c = 1, cDM= O. For c = 1/2

" "it follows that cDM=O from 1- 2: W;ti= 2: Wi(l-tJ From (6) and (11) the
i~l i~l

average value of the error is obtained as
1 1

~DM(C): = jdtl'" j(I-M~"](tl' ..., tn))dt"
o 0

1 1-

- j dtl ." j M~"](l-tl' ..., I--t,,)dtn
o 0

QED.

The average absolute error of DE MORGAN'S laws III case of equal weights is
given by

1 I

EDM,,(c): =I dtl
'" IICDMC' ..., ~; tl' ..., tn; c)ldtn

o 0
satisfies the condition

EDMn(~ -a)=EDMn(~ +a), O~a~ ~,

and is shown in Fig. 6 for n = 2, 3, 4. The average error of DE MORGAN'S
laws in ECL is
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I

EDMn: = JEDMn(c)dc=0.02211 (n=2)
o

= 0.03145 (n = 3)

= 0.03719 (n = 4)

and it remains nearly constant even in case of unequal weights.

6. The identity and zero element. The adjustable degree of conjunction (disjunction)
was introduced into ECL with the objective to eliminate the identity and zero
elements for the operations d and V. The resulting properties of the operations d
and V are shown in Figs. 7 and 8. In Fig. 7, the left-hand family of curves
is determined from

':J
1.00
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0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
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Fig. 7

I 1 1 1
y=-pdc-O=-pVI-c_-O, p=O, 0.1, ...,1

2 2 2 2

right-hand family of curves is determined from

1 1 1 I
y=-pdc-l=-pVI-c-l, p=O,O.I, ...,1.

2 2 2 2

Fig. 8 depicts the family of curves

while the

y=~x dc_Lx' = ~x \71-c~x'
2 2 2 2'

which illustrate the essential properties of the operations d and \7 and can be
used for computing quasi-conjunctions and qua~i-disjunctions of more than one
variable [8].

CEA,

7. Absorption. For degrees of truth t, tzEI and weights al' b1' az, bzE
E I (al + bl = a2+ bz = 1) the law of absorption has the following form

(12) alt1db1(aztl \7bztz)=tl+Eabs(al' az, tl' tz, c)

a1 tl \7 b1 (az t1 d b2 (z) = t1 + Eabs(al' az, t1' tz, 1- d)
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where, for eE{O, I}, Eabs=O. Due to the previously described properties of
quasi-conjunctions and quasi-disjunctions it follows that the law of absorbtion
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error is essentially dependent upon the values of the weights al and a2. The
average absolute error for the law of apsorption

1 1

EABS (ap a2, c): = Jdtl JIEabs(ap a2, tl' t2, c) [dt2'
o 0

whose maximum can be closely approximated with

EABs(ap a2, ~)=bl b2/3 =(1-al) (1-a2)/3,

Fig. 9 for al = 0.5, a2= 0.25,0.5, 0.75.is shown in
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The average error of the law of abs0rption is
1

EABS(ap a2): = JEABS(ap a2, c) de
o
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0.75 0.0144 0.0304 0.0497

0.5 0.0258 0.0524 0.0831

0.25 0.0405 0.0781 0.1195
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and is shown in Table 2.

Table 2 EARS (Gp G2)

Starting from a parabolic approximation

4
EABS (ap az, C)R::i3 (1- a\) (1-- az) c (1- c)

it follows that

1 1

EABS: = I da\ JEABS (a\, az) dazR::i~ = 0.0505.

o 0

Discussion. The basic laws of ECL described in the text are applied to expertly
estimated degrees of truth of corresponding statements, which are therefore
known only to a limited degree of exactness. On the basis of results of experimental
psychology (for example, [9, 10]) and experience gained through practical ap-
plication of ECL, 'it follows that the absolute value of the error for an expert
estimation of the degree of truth can be expected on the interval I to within 15 %
and in exceptional cases even more. From this fact it can be concluded that
the absolute errors of the laws of associativity, distribution and idempotency,
which are on the average lesser than 2 % can be neglected so that, from the
practical point of view, these laws are completely valid. A similar conclusion
can be extended to De Morgan's laws, even though the average absolute errors
are somewhat greater (2 % to 4 %). As far as the law of absorption is concerned,
the error can be made arbitrarily. small according to need (on the average 5 %).
However, as will be shown further on, the law of absorption has a dominant
application in ECL in the region of large errors, that is, it is used for the
controlled partial absorption of a given degree of truth.

5. FUNCTIONS IN EXTENDED CONTINUOUS LOGIC

In this section only those ECL functions which are used most often in the
synthesis of complex criteria are considered. These are functions obtained by
superposition of quasi-conjunctions, quasi-disjunctions and negations. More spe-
cifically, the only functions of interest are some selected functions of one or
two variables, and of two-variable functions, only those which are equal to zero
at the point (0, 0) and unit at (1, 1). Since the law of associativity holds,
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functions with a greater number of variables can be realized by superposition
of one-variable and two-variable fLlI:ctions and with quasi-conj".lllctions and
quasi-disjunctions of variables.

It is suitable for the realization of complex criteria to adopt the following
classification of ECL functions. Functions for which all independent variables
take on values from a finite set we shall call "discrete fur:ctions", while functions
for which the values of all independent variables belong to the whole interval I
we shal call "continuous functions". Functions fur which some independent
variables take on values from finite sets and some from the whole interval I
we shall call "hybrid functions". In the following text we shall demonstrate the
realization of the most significant representatives of these three classes of ECL
fLlnctic,ns, stressing the fact that the problem of realization of these functions
is equivalent to the problem of finding Icgic forrr:ulas from an arbitrarily given
function, and this problem has alread) been solved in classical continuous
logic [5].

5.1. Class of discrete functions

In the class of discrete functions the use of functions with binary independent
variables is dominant; this group of functions consists of five two-variable
functions shown in Table 3.

Table 3

In addition to the realization of these fLlnctions by superposing conjunctions,
disjunctions and negations in the form

Zl=X;\Y,

( 13)

Z2= x;\ [yV (b;\ y')],

Z3= (a;\x' ;\y) V (b;\ x ;\y') V (x ;\y),

z4=(a;\x' ;\y)Vx,

Zs= x V y

(O<a< 1, O<b< 1),

other analytical forms of these functions are possible in ECL which, from a
practical viewpoint, are more adequate since they are based on the use of a
lesser number of elementary operations. This problem, to be considered presently,
is in essence equivalent to the switching function minimization problem.
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Function ZI (x, y) represents a conjunction and in ECL it can be equivalently
realized with any function IE {C- +, CA, C+ -, C+, C++, C} even when using
arbitrary weights, because in that case weighted power means are used with the
parameter r < 0, where a mean is equal to zero if any of the quantities being
averaged is equal to zero.

We shall call function Z2(x, y) the "discrete function of conditioned value"
since x plays the part of a condition which if not fulfilled (x = 0) results in a

zero value for the function, while in the case when it is fulfilled (x = 1) the

value of the function depends on y. The minimal form of this function is

(14)

Function z} (x, y), depending on the values for G and b, covers the quasi-
-disjunction region and a part of the quasi-conjunction region. Its minimal form is

( 15) z} = WI X \ld W2Y

where
r>O,

and the disjunction degree is determined from

( 16)

For every G, bE(O, 1) equatiJn (16) can be solved for d. However, instead of
solving it numerically, in practice it is easier to solve it approximately with the
objective to select the approximate solution from the set A. The algorithm for
the aPPlOximate solution is shown in Fig. lOin which both families of curves
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from top to bottom are determined for the value of the parameter r which is
used in the operations D+ +, D+, D+ -, DA, D- +, D-, D- -, A, C- -, C- (Table
1, n = 2). The desired pair Go' bo is approximated by the nearest pair a, b

14*
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which lies on one of the curves of the family ar + br = 1 (which determines d),
and the corresponding values WI and W2 = 1 - WI are found then using the
family b = WII/r (for example, for a = 0.82 and b = 0.575 from Fig. 10 it follows
that the operation is D- and that WI = 0.325, W2 = 0.675).

Function Z4(x, y) represents an asymmetrical quasi-disjunction whose mi-
nimal form is

(17)

Function zs(x, y) is a
tative forms.

The analytical forms of the functions (14), (15) and (17) are simpler than
the initial analytical forms in (13). The proof that (14), (15) and (17) are
minimal forms is evident: they are realized with only one, and if not possible,
then with two operators.

Z4=xV [(1- a) x
VI/2 ayl

disjunction and in ECL it has no alternative represen-

5.2. Class of continuous functions

In the class of continuous functions we shall first describe tha basic functions
of one variable. In addition to negation x 1-+1 - x, the attenuation function

(18) YI =ax=axVI/2(I-a)0

is of interest, as well as the function

(19) Y2=(1-a)x~Cax'

whose prc perties can be adjusted with the parameters c and a. For c = 1/2
function (19) enables a wide choice of linear transformations of the degree of
tlUth x as well as the generation of a constant (fJr a = c = 1/2 it follows that
Y2 = 1/2), while in the cases c -+ 0 and c -3> 1 this function displays filtering proper
ties, emphasizing tr'uth degrees from a certain interval of values (compare Fig. 8)

In the group of functions of two variables, in addition to the basic logic
functions of quasi-conjunction and quasi-disjunction, an often-used function in
practice is what will be called "partial absorption" defined by

(20) Z6= W2 X ~c (1- W2) [WI xVI/2 (1- WI) y].

A comparison of (20) and (12) shows that (20) represents a modification of
the absorption function (12) derived by introducing the arithmetic mean VI/2.

The partial absorption function performs, to a variable degree determined by a
suitable choice of values for parmreters WI' W2 and c, the partial absorption
of variable y by vaIiable x. This function is used when it is necessary to express
an unequal relatioship between the variables x and y; for example, by using
conjunction degrees for which C21(C)<0, for x=O it follows that Z6=0, and
for y=O it follows that WIX~Z6<X.

If c = 0 is inserted into (20) the often-used continuous form of the asym-
metric quasi-disjur:ction (17) is ~btained:

Z6=xV [WI
XVI/2 (1- WI)y] =x

= WI x+(1- WI)y

(x ~y),

(x ~ y).
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5.3. Class of hybrid functions

For hybrid functions of two variables one variable is discretely adjustable,
while the other is continuously adjustable. The most important representative
of this class is the "hybrid function of conditioned value"

Z7=y (x= 1)

=ay (x=O), O<a< 1,

where, similar to the discrete function of conditioned value, x represents a
binary condition which determines the degree of influence that variable y has
on the value of the function Z7' The exprssion for this function in ECL is

(21) Z7=(x I\y) V {x' 1\ [ayVl/2 (1- a) x]} .

Since for xE{O, I} we have

x' l\[ayV(1-a)x] =x' l\[ayV(I-a)O]

from (18) and (21) it follows that

Z7= (x 1\y) V (x' 1\ay).
During the synthesis of complex criteria it is practical to

diagra'TI reprsentation of ECL functions, with which some of
mentiohed functions are shown in Fig. 11.
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6. LOGIC POLARIZATION OF COMPLEX CRITERIA

Let there be given k elementary criteria which comprise a complex
unique criterion and let the elementary effectivenesses E1, ..., Ek (k ~ 2) be
known. The mapping L: Ik -+ I, with which the resulting global effectiveness
E = L (El' ..., Ek) is determined, is realized by taking into acconnt the logic
relationships among the elementary effectivenesses. In the following text we shall
consider the main components in the process of selecting logic dependences
in ECL.

Definition 4. Logic polarization of a complex criterion is the set of conditions
with which the type and intensity of logic dependences between elementary ef-
fectivenesses are defined in ECL.
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Definition 5. A simple logic polarization of a given complex criterion is a pola-
rization which can be expressed in terms of one of the basic ECL operations:
conjunction, quasi-conjunction, conjunctive-disjunctive undetermination, quasi-disjunction
or disjunction.

Definition 6. A complex logic polarization of a given criterion is every logic
polarization which is expressed by a superposition of basic ECL operations.

Therefore, there are three possibilities of simple logic polarization of
complex criteria:

- the criterion is polarized conjunctively, i. e. a certain degree of coinci-
dence is required in the fulfilment of all elementary criteria

- the criterion is polarized disjunctively, i. e. at least one of the elementary
criteria should be fulfilled to a sufficient degree

- the complex criterion is neither conjunctively nor disjunctively polarized.
The algorithm for choosing the type and intensity of polarization for simple

logic polarizations of complex criteria is shown in Fig. 12. This algorithm is
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widely used in ECL since complex logic polarization is reali2.ed by superposition
of basic logic operations, and this means that some form of simple logic
polarization is used in parts of the complex criterion. For this reason the choice
of type and intensity of complex logic polarizations reduces to choosing an
adequate combination of simple logic polarizations, i. e. multiple applications
of the algorithm in Fig. 12.

7. SYNTHESIS OF EFFECTIVENESSCRITERIA FOR COMPLEX SYSTEMS

The process of synthesizing a global effectiveness criterion with which the
global effectiveness E = g (Xl' ..., xn) is calculated for a given system S, from
the known values of components for evaluation Xl' ..., Xn, is proposed in the
form of an algorithm consisting of the following stages:
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Definition of the set of components for evaluation x = (XI' ..., xn).
Formulation of the elementary effectiveness criteria gi: Ri -)- I, Ri C R,
i = I, ..., n through which the elementary effectivenesses Ei = gi (Xi)'
i = I, ..., n are calculated from known values XI' ..., xn'

III Application of sentential algebra in ECL for realization of the mapping
L : In- I with which the resultant global system effectiveness E =
= L (E[, ..., En) can be calculated on the basis of known elementary
effectivenesses EI, ..., En.

IV Formulation of the global effectiveness critrion g: RI x . . . x Rn - I in
compact form E=g(xp ..., xn): =L(gl (XI)' ..., gn(xn»)'
The initial stage in the synthesis of a global effectiveness criterion consists

of defining the set of con;ponents for evaluation. It is essential that all system
performance indicators which influence the ability of a system to attain the
desired goals are expressed through such components for evaluation. At the
same time, components for evaluation must not be redundant quantities, that
is, quantities which express the same properties of a system in different ways
which unintentionally and uncontrollably increases the degree of this proper-
ties' influence on the global system effectiveness.

In the next stag~, the elementary eff~ctiveness criteria are synthesized.
For each component for evaluation, on the basis of its specific properties and
the requirements of the given system, a sequence of characteristic values
XiI' Xi2' ..., Xiki(Xi! <Xi2 < . . . <Xiki' ki ~ 2, i = I, . . . , n) is defined and CJrres-
ponding effectivenesses eil' ei2' ..., eiki(ei/cI, j= I, ..., ki), i= I, ..., 11are
associated to each value. In this way, elementary effectiveness criteria are realized
as polygonal approximations:

I
II

=eij+(Xi-Xij) (ei(j+j)-eij)/(xi(j+I)-Xij) (Xij~Xi~Xi(j+lh j= I, ..., ki-I)

=eiki (Xi~Xik;), i= I, ..., n.

In practice it is often necessary to define the characteristic values xi!' ..., Xiki as
a sequence of integers 0, I, ..., ki - I which code the different q'uality levels
for those components for evaluation which are of the qualitative type.

The mapping L: In -I, realized in the third stage, represents a sentential
formula for computing the truth value of a corresponding complex statement
consisting of n elementary statements of known truth values. In practice n ranges
from ten to several hundred. A cOITplex statement consisting of such a large
number of elerr.entary statements is best realized in stages, by applying a
corresponding aggregation prccedure. To this end it is first necessary to decoITpcse
system S into ~ubsystems which, for the needs of complex criteria synthesis,
are specifically defined in the following rr.anner.

Definition 7. A subsystem of a system S (in the sense of effectiveness criterion
decomposition) is every subset of components for evaluation which are mutally
related to a greater degree, so that they can be considered as a whole, independently
of the values of other components for evaluation. A subsystem effectiveness can be
associated to it as the truth value of the statement "the subsystem completely
meets all given requirements".
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The main consequence of this definition is the possibility to form a new
complex subsystem by aggregating a number of simpler subsystems. Certainly,
subsystems in the sense of effectiveness criterion decomposition can, though not
necessarily, coincide with subsystems obtained through various procedures of
structural or functional decomposition of a given system.

In a multilevel subsystem aggregation process the components for evaluation
form the initial (first) level with n1= n elementary effectivenesses. On the second
level, subsystems are formed as partition of the set of components for evaluation,
i. e. as a family of n2 subsets X~2), ..., x~~(n2< n1) which fulfils the conditions

X=X~2)UX~2)U' . . UX~~, x~2)nx)2)= 0 (ii=j).

With the system objectives in mind, the objectives of every subsystem and the
subsystem effectiveness criteria can be formed. Since the elementary effectiveness
criteria and the elementary effectivenesses do not change by the formation of
subsystems, for realizing the subsystem effectiveness criteria is is necessary only
to form the mappings L~2): 1m; ~ I, i = 1, ..., n2, with which on the basis of
elementary effectivenesses of each subsystem the subsystem effectivenesses
E~2), i = 1, ..., n2 can be computed. The number of elementary effectivenesses m;
within a particular subsystem is chosen to be sufficiently small number (most
often 2 ~ m; ~ 5), so that there is no difficulty in determining the logic polarization
of the subsystem criterion and the corresponding sentential formula in ECL.

On the third level, the subsystems are aggregated, so that the subsystem
effectivenesses E~2), i = 1, ..., n2 have the same function which the elementary
effectivenesses had on the second level. By including related second-level subsystems
into more complex third-level subsystems, n3 new subsystems are obtained
(n3< n2)' Realization of subsystem effectiveness criteria leads, as in the previous
case, to an analysis and the adoption of a logic polarization for the observed
criteria, and then to the formulation of a sequence of mappings L~3), i = 1, ..., n3
and the computation of all third-level subsystem eftectivenesses E~3), i = 1, ..., n3'
This process is then repeated on higher levels, during which the number of
generated subsystems decreases, while their complexity increases. On the final
highest aggregation level a global effectiveness of a complete system is generated,
which completes the synthesis of a complex criterion.
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