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534. A PROBLEM ABOUT TAYLOR’S THEOREM*

M. J. Pelling
1. Let a real valued C* function f be defined in the interval [0, x] so that by
TAYLOR’s theorem for every n=1, 2, ...

n—1

(T) f(x)= kg:of(k) (0) XKkl + £ () x"[n!, 0<t,<x.

When is it possible to choose the sequence {#,} so that lim inf #,=0 (this was
posed as an unsolved problem in the Amer. Math. Monthly 81 (1974), 1121 by
J. A. EIDSwICK). In general this is not possible as the example f(x)=0, x=<1;

J(x)=exp(—(x—1)-2), x>1, with x=2 shows but in two cases of interest it
can be done.

These are when f is a convergent power series and when f and all its deri-
vatives vanish at O but f is not identically zero in any interval [0, a], a>0.

2. Theorem 1. Let f be a power series with radius of convergence (r.c.)= R>x.
Then there is a monotonic increasing function b(x), independent of R, defined on
(0, 1) such that t, can be chosen with

0<1,<Rb(x/R)/(n+1)
Jor infinitely many n.

Proof. If f is a polynomial the theorem is trivial. Otherwise, suppose first
that f(x)= 2, c,x" where ¢, - 0 and 0<x< 1. Substituting in (T)
2
(A) cn+1x+cn+2x2+ s =(n+ l)cn+1tn+(n_; )cn+2tn2+ e
Since ¢, — O there are infinitely many » such that |c,,,|=|c,. x| all k=1,
and assuming this (A) can be written,

gX)=x+dx2+dyx*+ - - -
() =y +dy 72" 2 =F(n dy )

where t,=y/(n+ 1) and dy=c,,/c,,, With |d,|=<1, all k=2.

Lemma. Let F(y)=y+d,y*/2'+d,y3/3!+ - - - where d; are arbitrary but satisfy
|d;|<1 for all i. Then there exist functions & (x)>0 and b, (x)>0 not depending
on the d; such that the equations

F(y)=g(x)+8(x) and F(y)=g(x)—3(x)
have solutions for y in (0, b, ).
* Presented May 29, 1975 by A. OPPENHEIM.
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Proof. The proof depends on g (x) being the LAPLACE transform p f e~P F(t)dt
0

where p=1/x. Forall y=0, 2y+1—-e?=<F(y)<e”—1 so that
0.09~a=2(1/10)+1—-elV0<F(1/10)se/10—-1~0.11
and F(log2)=2log2+1-2~0.39. Also F(0)=0.

Choose B>0 so that F(y)se’— 1<—;—a in [0, B] and set

8 8
J1=fpe—1”%ocdt; J2=fpe“l" 2t+1—e)ds
0 0

where p=1/x.

Put 8(x)=min(% Ji %Jz, 1/20). There are now three cases:

Case 1: 3(x)<g(x)=a«. Then F(y)=g(x)—38(x) has a solution in (0, 1/10) and
F(y)=g(x)+3(x) in (0, log2).

Case 2: g(x)>a. Suppose F(y)<<g(x)+3d(x) in (0, k). Then,

g(x)= fpe‘l” F(t)d:

0
8 k )
= fpe‘l” F)dr+ f pe7 (g (x)+8(x)) dr + fpe‘l" (e — 1) dt
0 B k

20

8 B
éfpe“f" % odt — ]f pe—" (g (x)+8(x))dt + fpe—l” (e - 1)de
P .

0 k

o0 X B
+ f pe=r (g (x)+ 3 (x)) d - f pe—t (g (x)+8(x)——;- oc) dr
0 ’ [\]
B o0
ég(x)+8(x)v—fpe‘1”%ocdt+fpe—l”(e’— 1) dt
V] k

§g(x)—%]1+fpe—i”’(e‘—1)dt
k

which is contradictory if & > k,(x) where k,(x) does not depend on the d;. So
F(»)=g(x)+3(x) must have a soluation in (0, k, (x)) and since g(x)—3(x)>0
so also must F(y)=g(x)—3(x).

Case 3: g(x)=3(x). Suppose that F(y)>g(x)—8(x) in (0, k). Then,

g(x):fpe—f"F(t) ds
0
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B k w
%fpe’ﬁ’ 2t+1-e¢)ds +f pe~? (g (x)— S(X)) dr + fpe*ﬂ’ (2Qt+1-et)ds
0 B k
2J,+ [ pe (g (x) =8 () dt + [ pe=r (21+1— et dr
0 k

gg(x)+%fz+fpe"" 21+ 1-e)ds
k

which is contradictory if K=k, (x) where k, (x) does not depend on the d,. So
F(y)=g(x)—3(x) must have a solution in (0, k, (x)) and evidently so must
F()=gx)+3(x) if g(x)+3(x)=0. Otherwise 0<g(x)+3(x)<28(x)=<1/10 so
this equation has a solution in (0, log2).

Thus it suffices to take 3 (x) as above and b, (x) = max (log 2, ky(x), k,(x))
where b, (x) can obviously be chosen monotonic increasing in (0, 1). This con-
cludes the proof of the lemma.

Next, as n — oo (regarding d; as independent of n), F(n, d;, y) — F(»)
uniformly in any interval {0, b] and uniformly with respect to the d; subject to

|d;|<1. So if F(y)=g(x)+8(x) and F(y,)=g(x)—8(x) where y,, 7,E(0, b, (x))
then for n 2 n,(x) independent of d; F(n, d;, y) = g (x) has a solution y between y, and y,
and 50 in (0, b, (x)). Thus for infinitely many n we may take 0<#,<b, (x)/(n-- 1).

If now r.c.= 1 and 0<x< 1 but not necessarily ¢, — 0 then a change of
scale shows that if A>1, Ax<1 then 0<z,<<A 1b (Ax)/(n+ 1) for infinitely

many n. Taking 2=1+ % (1 = x) and putting b (x)= b, (Ax) implies that if r.c.= 1

Ay between and O<x<1 then 0<t,<b(x)/(n+1) for infinitely many n
where b (x) is monotonic increasing in (0, 1). Another scale change then establishes
the theorem for r.c. 2R and 0<<x<<R.

Theorem 2. Let f(0)=f"(0)= - .- =f®(0)=0 for all k. Then either {t,} can be
chosen so that t,—0 or else f(x)=0 in [0, a] for some a>0.

Proof. Assume f(x)>0 (the cases f(x)=0 and f(x)<<0 can be dealt with
by similar arguments). Then f(x)=f®™(¢,)x"/n! and if for all choices of 7,
limsup t,=2a>0 we have f® (¢f)<n! f(x)x~" for 0 <¢=<a and infinitely many ».
Repeated integration then yields f(¢)<f(x) x—"¢" for infinitely many » so that if
0<i=a<x then f(#)=<0. Similarly one finds f'(t)<<nf(x)x~"¢*~1for infinitely
many n whence in [0, a] f* (¢)=0. Continuing we deduce f® (t)<0 for all k=0
and ¢ in [0, a] so that by BERNSTEIN’s theorem f(x)=0 in [0, a].

3. In conclusion we ask whether there are any other simple classes of functions
for which similar theorems can be proved, and in particular raise the question
of what happens when x is an end point of the interval of convergence of a
power series, suitable conditions for the applicability of TAYLOR’s theorem being
assumed to hold.
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