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506. EVALUATION OF A CLASS OF DEFINITE INTEGRALS*
M. L. Glasser

Let @ (x) be a polynomial, trigonometric or exponential function of x.
In this paper we examine the class of integrals
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where hyp; denotes the hyperbolic sine or cosine, the n; are any N integers and
the a; are any N constants (which may be complex). Integrals of this form
with N=2 arise in transport theory and isolated examples have been evaluated
by a variety of techniques [1]. In this note we shall illustrate by an example
how a general member of the class may be expressed in finite terms and explore

some consequences (For the case N=1 see [2]).
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The integrand has simple poles at x = 5 T o wi—a, %m —b with residues

fe~im/2 csch a csch b, ie~ ™2 ¢%a csch a csch (a—b), ie~i™/2 exb csch b csch (b —a)
respectively. Let ¢ denote their sum. By integrating around the contour extending
. from — oo to + oo along the real axis and + o0 to — oo along the line Im x =77,
since hyp (u+iw)= —hyp u, we see that (1 +e ™% I=2mnic. Hence
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This result, which is valid for real values of the parameter, can be extended
by analytic continuation. By operating on both sides of (1) with @ (D,) (D,=d/dx)
and taking the limt o — 0, we replace e=** by @ (x); by taking « to be ima-
ginary and equating real and imaginary parts, we obtain the trigonometric case.

From the inversion theorem for the two sided LAPLACE transform we find
from (1)
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In this way a number of inverse MELLIN transforms may be evaluated.
For example, in just the way (2) was obtained, we find

c+ico
ds T

(3) - sech x sech (x +1t)=csch¢ - —
2ni sin(mws/2)

exs (est—1).

c—ioo

And from (3) we have
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which is the basic formula used in [3]. Some other interesting consequences
of (3) are
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where ¢ (x) = di log I' (x), and
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