UNIV. BEOGRAD. PUBL. ELEKTROTEHN: FAK. Ser. Mat. Fiz. № 498--№ 541 (1975), 41--44.

504.

GRAPH EQUATION $L^n(G) = \overline{G}^*$

Slobodan K. Simić

In this paper we shall consider only finite, undirected graphs without loops or multiple edges, or shortly, according to HARARY [1], only graphs. For all definitions and notation the reader is referred to [1]. Here, we shall mention only the following definitions.

The complement G of a graph G is the graph having the same set of vertices as G and in which two (different) vertices are adjacent, if and only if they are not adjacent in G.

The line graph L(G) of a graph G is the graph whose vertex cet coincides with the edge set of G and in which two (different) vertices are adjacent, if the corresponding edges are adjacent in G.

 $L^{n}(G)$ is defined in a natural way; $L^{0}(G) = G$ and $L^{n}(G) = L(L^{n-1}(G))$. Throughout this paper symbol = will stand for an isomorphism between two graphs.

In literature there are many results which can be stated in the form of "graph equations". This notion was introduced in [2] by the following authors D. CVETKOVIĆ, I. LACKOVIĆ and S. SIMIĆ. In the same paper they have given the list of some examples. Here we shall mention only a few of them.

In [3], V. V. MENON has solved the graph equation L(G) = G. He has found that G is a solution to the above equation, if and only if G is a regular graph of degree two. Later, the same author in [4] has proved that the equation $L^n(G) = G$ has the same solutions for any n.

The following short and elegant result is due to M. AIGNER. In [5], he has proved that only the following two graphs from $\operatorname{Fig}^{(1)} 1$ satisfy the equation $L(G) = \overline{G}$.

In the present paper we shall generalize the result of M. AIGNER. Namely, we shall solve the equation $L^{n}(G) = \overline{G}$.

In order to solve the equation $L^{n}(G) = \overline{G}$ we shall consider two cases. **Case 1:** G is a connected graph.

Let $\Delta(G)$ be the maximal vertex degree of G. Now we shall develop our further discussion according to $\Delta(G)$.

^{*} Presented March 24, 1975 by D. M. CVETKOVIĆ.

¹⁾ The sign "o" on Fig. 1 denotes a corona of two graphs.

Suppose, first that $\Delta(G) \leq 2$.

Now since G is a connected graph and since $\Delta(G) \leq 2$, G must be a path or a cycle.

If G is a path $P_m(m \text{ being the number of vertices in } P_m)$ then $L^n(G)$ is the path P_{m-n} for m > n or an empty graph¹ for $m \le n$. Since the complement of the path is neither a path nor the empty (except in the case when for m = 4, $\overline{P}_4 = P_4$ holds), it follows immediately that G could not be a path for any n.

Assume that G is a cycle. Then $L^n(G) = G$ for each n. So we have to find all self-complementary cycles. Through a straightforward observations we notice that cycle at the length five is the sole self-complementary cycle. Indeed, the cycle C_5 is the solution to the equation $L^n(G) = \overline{G}$ for every n.

Suppose now that $\Delta(G) \ge 3$.

Let us assume that G is a (p_0, q_0) -graph and also, that $L^k(G)$ is (p_k, q_k) graph $(1 \le k \le n)$. It is clear that $p_k = q_{k-1}$ $(1 \le k \le n)$ holds. Also, $q_k \ge p_k$ $(1 \le k \le n)$,
since $L^k(G)$ is, of course, connected and has at least one cycle (the latter ensues
from the fact that $\Delta(G) \ge 3$). So we have that $p_k \ge p_{k-1}$ for $1 \le k \le n$. Since $p_0 = p_n$ (because of $L^n(G) = \overline{G}$), it follows that $p_0 \ge p_1 = q_0$ must be satisfied. So,
G is now a tree or a unicyclic graph (different from a cycle).

Suppose that G is a unicyclic graph different from a cycle. Then $q_1 > p_1$ holds (L(G)) has at least two cycles) so that it follows immediately that in this case n may be equal only to one. Since the equation $L(G) = \overline{G}$ has been already solved, we shall not deal with that case.

It remains to consider the case when G is a tree. Then, having in view M. AINGER's result, $n \ge 2$. Let us put that $L^{n-1}(G) = H$ and let us further consider the equation $\overline{L(H)} = G$ where G is a tree.

According to the results of D. CVETKOVIĆ and S. SIMIĆ (see [7], Theorem 3) and having in view that $\Delta(G) \ge 3$, it is not difficult to deduce that G could be any of the following graphs from Fig. 2.

It is easy to see (by a direct verification) that the first graph from Fig. 2 is a solution to the equation $L^2(G) = \overline{G}$. (Clearly, for n > 2 it cannot be a solution to the equation $L^n(G) = \overline{G}$.)

The remaining graphs from Fig. 2 are not the solutions to the equation $L^{n}(G) = \overline{G}$ for any *n*. Namely, graphs T_{1} , T_{2} , T_{3} from Fig. 2 are not the solutions to the equation $L^{n}(G) = \overline{G}$ because the pairs of graphs $L^{n}(T_{i})$, $\overline{T}_{i}(i=1, T_{i})$

¹⁾ The empty graph is a graph without vertices and of course without edges. On the advantages of introducing the notion of the empty graph, in general, see [6]. In this paper we shall treat the empty graph as an auxiliary instrument.

2, 3; $n \ge 2$) do not have the same number of vertices (it can easily be seen) except in the case of T_3 and n=3, when it is not difficult to notice that $L^3(T_3) \ne \overline{T}_3$. It is evident that graph $K_{1,m}(m \ge 3)$ is not a solution, since its complement is a disconnected graph.

Case 2: G is a disconnected graph.

Let us put again that $L^{n-1}(G) = H$. Then we have that $L(\overline{H}) = G$, G being a disconnected graph. Now, according to [7], it can be proved (the proof will be given in the Appendix) that G is one of the following graphs: $lK_1(l \ge 2)$, $3K_2$, $2K_2$, $(K_{n_1,n_2} - pK_2) \cup K_1^{(1)}$ $(p = \min(n_1, n_2); p \ge 0, n_1, n_2 \ge 1)$; the last graph is given on Fig. 3(a).

Now it is only a routine to see that none of graphs lK_1 $(l \ge 2)$, $3K_2$, $2K_2$ can be the solution to the equation $L^n(G) = \overline{G}$ for any *n*. In the case when we have $G = (K_{n_1, n_2} - pK_2) \cup K_1$, the situation is slightly complicated. Namely, since $H(=L^{n-1}(G))$ is also equal to $L^{-1}(\overline{G})$, it can easily be found that if G is a graph from Fig. 3 (a) then H is a graph from Fig. 3 (b) where q is an arbitrary nonnegative integer.

We shall, of course, consider the case when $n \ge 2$. Clearly, the graph H from Fig. 3 must be a line graph. But then, because of L. BEINEKE's forbidden induced subgraph $K_{1,3}$ for a graph H, it follows that $n_1 \le 2$, $n_2 \le 2$. Now, it can be easily verified that the rest of graphs $(K_{n_1,n_2}-pK_2) \cup K_1$ do not satisfy the equation $L^n(G) = \overline{G}$ for any n.

So we have proved the following theorem.

Theorem. The equation $L^n(G) = G$ has only the following solutions:

- (i) for n = 1, $G = C_5$ or $G = K_3 \circ K_1$ (result of M. Aigner),
- (ii) for n=2, $G=C_5$ or $G=K_2\circ \overline{K_2}$,

(iii) for $n \ge 3$, $G = C_5$.

APPENDIX

Now, we shall give the proof of the fact already used in the text; namely we shall prove the following theorem.

¹⁾ The graph $K_{n_1,n_2} - pK$ is described in [7]. It is obtained from K_{n_1,n_2} by deleting p independent edges.

S. K. Simić

Theorem. If G is a disconnected graph such that G = L(H) for some graph H, then G is one of the following graphs:

- (i) lK_1 $(l \ge 2)$,
- (ii) $3K_{2}$,
- (iii) $2K_{2}$,
- (iv) $(K_{n_1,n_2}-pK_2) \cup K_1$ $(p \le \min(n_1,n_2); p \ge 0; n_1,n_2 \ge 1).$

Proof. In order to avoid trivial cases we shall assume that G has at least one edge. In that case it is easy to prove that G is bichromatic graph. Namely, if G is a disconnected graph having at least one odd cycle, then according to Lemma 2 (see [7]) that cycle must be C_3 or C_5 . But then, having in view that G is a disconnected graph, one of the graphs $C_3 \cup K_1$ or $C_5 \cup K_1$ (both are the complements of L. BEINEKS's forbidden induced subgraphs for the line graphs) would appear in G, so it immediately follows that G is bichromatic. Now according to Lemma 1 (see [7]) G can have 2 or 3 components. Since bichromatic graphs G with the property that $G = \overline{L(H)}$ for some graph H are completely described in [7], we immediately get the conclusions of the theorem.

The author wants to thank D. CVETKOVIĆ who read the paper in manuscript an gave some useful suggestions.

REFERENCES

- 1. F. HARARY: Graph Theory. Reading 1969.
- 2. D. CVETKOVIĆ, I. LACKOVIĆ, S. SIMIĆ: Graph equations and inequations. To appear.
- 3. V. V. MENON: The isomorphism between graphs and their adjoint graphs. Canad. Math. Bull. 8 (1965), № 1, 7–15.
- 4. V. V. MENON: On repeated interchange graphs. Amer. Math. Monthly 13 (1966), 986-989.
- 5. M. AIGNER: Graph whose complement and line graph are isomorphic. J. Comb. Theory 7 (1969), 273-275.
- 6. F. HARARY, R. READ: Is the null-graph a pointless concept? Graphs and combinatorics. (Ed. P. Bari and F. Harary) Berlin-Heidelberg-New York 1974, 37-44.
- 7. D. CVETKOVIĆ, S. SIMIĆ: Some remarks on the complement of a line graph. Publ. Inst. Math. (Beograd) 17 (31) (1974), 37-44.