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504. GRAPH EQUATION L*(G)=G *
Slobodan K. Simié

In this paper we shall consider only finite, undirected graphs without
loops or multiple edges, or shortly, according to HaRARY [1], only graphs. For
all definitions and notation the reader is referred to [1]. Here, we shall men-
tion only the following definitions.

The complement G of a graph G is the graph having the same set of
vertices as G and in which two (different) vertices are adjacent, if and only if
they are not adjacent in G.

The line graph L (G) of a graph G is the graph whose vertex -et coin-

cides with the edge set of G and in which two (different) vertices are adjacent,
if the corresponding edges are adjacent in G.

I"(G) is defined in a natural way; L°(G)=G and L*(G)=L (L"~1(G)).
Throughout this paper symbol = will stand for an isomorphism between two
graphs.

In literature there are many results which can be stated in the form of
»graph equations. This notion was introduced in [2] by the following authors
D. CvetkovIC, I. Lackovi¢ and S. SiMIC. In the same paper they have given
the list of some examples. Here we shall mention only a few of them.

In [3], V. V. MENON has solved the graph equation L(G)=G. He has
found that G is a solution to the above equation, if and only if G is a regular
graph of degree two. Later, the same author in [4] has proved that the equa-
tion L”(G)=G has the same solutions for any n

The following short and elegant
result is due to M. AIGNER. In [5],
he has proved that only the following
. two graphs from Fig.P 1 satisfy the
equation L (G)=G. .

In the present paper we shall
generalize the result of M. AIGNER.

Namely, we shall solve the equation

L(6)=G. Cs KsoKs
In order to solve the equation Fig. 1

I"(G)=G we shall consider two cases.
Case 1: G is a connected graph.

Let A(G) be the maximal vertex degree of G. Now we shall develop our
further discussion according to A (G).

* Presented March 24, 1975 by D. M. Cverkovic.
1) The sign ,,0% on Fig. 1 denotes a corona of two graphs.
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Suppose, first that A(G)<2.

Now since G is a connected graph and since A(G)=<2, G must be a path
or a cycle.

If G is a path P, (m being the number of vertices in P,) then L"(G) is
the path P,,_, for m>n or an empty graphV for m<n. Since the complement
of the path is neither a path nor the empty (except in the case when for m =4,

f’4=P4 holds), it follows immediately that G could not be a path for any n.

Assume that G is a cycle. Then L"(G)=G for each n. So we have to
find all self-complementary cycles. Through a straightforward observations we
notice that cycle at the length five is the sole self-complementary cycle. Indeed,

the cycle C, is the solution to the equation L» (G)=G for every n.
Suppose now that A (G)=3.

Let us assume that G is a (p,, g,)-graph and also, that L¥(G) is (p,,q;)-
graph (1 =k =<n). It is clear that p, =¢q,—, (1 <k <n) holds. Also, g, 2p, (1 =k <n),
since L*(G) is, of course, connected and has at least one cycle (the latter ensues
from the fact that A(G)=3). So we have that p,=p, , for 1<k<n. Since

Do =D, (because of L*(G)=G), it follows that p,=p, =g, must be satisfied. So,
G is now a tree or a unicyclic graph (different from a cycle).

Suppose that G is a unicyclic graph different from a cycle. Then g,>p,
holds (L(G) has at least two cycles) so that it follows immediately that in this

case n may be equal only to one. Since the equation L (G)= G has been already
solved, we shall not deal with that case.

It remains to consider the case when G is a tree. Then, having in view
M. AINGER’s result, n=2. Let us put that L"~!(G)=H and let us farther

consider the equation L(H)=G where G is a tree.

According to the results of D. Cvetkovi¢ and S. SmMIC (see [7], Theo-
rem 3) and having in view that A(G)=3, it is not difficult to deduce that G
could be any of the following graphs from Fig. 2.

Tt

Fig. 2

It is easy to see (by a direct verification) that the first graph from Fig. 2
is a solution to the equation L?(G)=G. (Clearly, for n>2 it cannot be a
solution to the equation L"(G)=G.)

The remaining graphs from Fig. 2 are not the solutions to the equation
LI"(G)=G for any n. Namely, graphs 7,, T,, T, from Fig. 2 are not the solu-
tions to the equation L"(G)=G because the pairs of graphs L*(T}), T’i(i =1,

1) The empty graph is a graph without vertices and of course without edges. On the
advantages of introducing the notion of the empty graph, in general, see [6]. In thls paper
we shall treat the empty graph as an auxiliary instrument.



Graph Equation L"(G)=G 43

2, 3; n=2) do not have the same number of vertices (it can easily be seen)
except in the case of T, and n=3, when it is not difficult to notice that
L3(T)#T,. It is evident that graph K, ,(m=3) is not a solution, since its
complement is a disconnected graph.

Case 2: G is a disconnected graph.

Let us put again that L"-1(G)= H. Then we have that L (H)=G, G being
a disconnected graph. Now, according to [7), it can be proved (the proof will
be given in the Appendix) that G is one of the following graphs:

IK, (1z2), 3K,,2K,, (Ku,»,—pK,) UKD (p=min(n,n); p=0, n,n,=1);
the last graph is given on Fig. 3(a).

Now it is only a routine to see that none of graphs /K, (/=2), 3K,,2K,
can be the solution to the equation L"(G)=G for any n. In the case when we
have G =(K,, »,—pK,)UK,, the situation 1is slightly complicated. Namely, since
H(=Lr—1(G)) is also equal to L™1(G), it can casily be found that if G is a
graph from Fig. 3(a) then H is a graph from Fig. 3(b) where g is an arbi-
trary nonnegative integer.

Fig. 3

We shall, of course, consider the case when n=2. Clearly, the graph H
from Fig. 3 must be a line graph. But then, because of L. BEINEKE’s forbid-
den induced subgraph K, 6, for a graph H, it follows that n, <2, n,<2. Now,
it can be easily verified that the rest of graphs (K,,,.,—pK,) UK, do not satisfy

the equation L* (G)=G for any n.
So we have proved the following theorem.

Theorem. The equation L"(G)= G has only the following solutions:
(i) for n=1, G=C; or G=K,oK, (result of M. Aigner),
(i) for n=2, G=C, or G=K,oK,,

(iii) for nz3, G=C;.

APPENDIX

Now, we shall give the proof of the fact already used in the text; namely?
we shall prove the following theorem.

1) The graph Kn;,n, —pK is described in {7]. It is obtained from Kn,,», by deleting p
independent edges.
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Theorem. If G is a disconnected graph such that G=L (H) for some graph H,
then G is one of the following graphs:

i IK, (1z2),

iy 3K,,

(i) 2K,

(V) (Kaunm,—pKy)) U K| (p=min(n; n,); p=0; n n,=1).

Proof. In order to avoid trivial cases we shall assume that G has at least
one edge. In that case it is easy to prove that G is bichromatic graph. Namely,
if G is a disconnected graph having at least one odd cycle, then according to

Lemma 2 (See [7]) that cycle must be C, or C,. But then, having in view that G
is a disconnected graph, one of the graphs C, U K, or C; U K, (both are the
complements of L. BeINekS’s forbidden induced subgraphs for the line graphs)
would appear in G, so it immediately follows that G is bichromatic. Now accor-

ding to Lemma 1 (see [7]) G can have 2 or 3 components. Since bichromatic

graphs G with the property that G=L(H) for some graph H are completely
described in [7], we immediately get the conclusions of the theorem.

The author wants to thank D. CVETKoVI¢ who read the paper in manu-
script an gave some useful suggestions.
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