Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. Fiz. № 498-№ 541 (1975), 41-44.
504.

GRAPH EQUATION $\boldsymbol{L}^{\boldsymbol{n}}(\boldsymbol{G})=\boldsymbol{G}$ *

Slobodan K. Simić

In this paper we shall consider only finite, undirected graphs without loops or multiple edges, or shortly, according to Harary [1], only graphs. For all definitions and notation the reader is referred to [1]. Here, we shall mention only the following definitions.

The complement \bar{G} of a graph G is the graph having the same set of vertices as G and in which two (different) vertices are adjacent, if and only if they are not adjacent in G.

The line graph $L(G)$ of a graph G is the graph whose vertex zet coincides with the edge set of G and in which two (different) vertices are adjacent, if the corresponding edges are adjacent in G.
$L^{n}(G)$ is defined in a natural way; $L^{0}(G)=G$ and $L^{n}(G)=L\left(L^{n-1}(G)\right)$. Throughout this paper symbol $=$ will stand for an isomorphism between two graphs.

In literature there are many results which can be stated in the form of ,graph equations". This notion was introduced in [2] by the following authors D. Cvetković, I. Lacković and S. Simić. In the same paper they have given the list of some examples. Here we shall mention only a few of them.

In [3], V. V. Menon has solved the graph equation $L(G)=G$. He has found that G is a solution to the above equation, if and only if G is a regular graph of degree two. Later, the same author in [4] has proved that the equation $L^{n}(G)==G$ has the same solutions for any n

The following short and elegant result is due to M. Aigner. In [5], he has proved that only the following two graphs from Fig. ${ }^{1)} 1$ satisfy the equation $L(G)=\bar{G}$.

In the present paper we shall generalize the result of M. Aigner. Namely, we shall solve the equation $L^{n}(G)=\bar{G}$.

In order to solve the equation

C5

$K_{3} \circ K_{4}$

Fig. 1 $L^{n}(G)=\bar{G}$ we shall consider two cases. Case 1: G is a connected graph.

Let $\Delta(G)$ be the maximal vertex degree of G. Now we shall develop our further discussion according to $\Delta(G)$.

[^0]Suppose, first that $\Delta(G) \leqq 2$.
Now since G is a connected graph and since $\Delta(G) \leqq 2, G$ must be a path or a cycle.

If G is a path P_{m} (m being the number of vertices in P_{m}) then $L^{n}(G)$ is the path P_{m-n} for $m>n$ or an empty graph ${ }^{1)}$ for $m \leqq n$. Since the complement of the path is neither a path nor the empty (except in the case when for $m=4$, $\bar{P}_{4}=P_{4}$ holds), it follows immediately that G could not be a path for any n.

Assume that G is a cycle. Then $L^{n}(G)=G$ for each n. So we have to find all self-complementary cycles. Through a straightforward observations we notice that cycle at the length five is the sole self-complementary cycle. Indeed, the cycle C_{5} is the solution to the equation $L^{n}(G)=\bar{G}$ for every n.

Suppose now that $\Delta(G) \geqq 3$.
Let us assume that G is a (p_{0}, q_{0})-graph and also, that $L^{k}(G)$ is $\left(p_{k}, q_{k}\right)$ graph ($1 \leqq k \leqq n$). It is clear that $p_{k}=q_{k-1}(1 \leqq k \leqq n)$ holds. Also, $q_{k} \geqq p_{k}(1 \leqq k \leqq n)$, since $L^{k}(G)$ is, of course, connected and has at least one cycle (the latter ensues from the fact that $\Delta(G) \geqq 3$). So we have that $p_{k} \geqq p_{k-1}$ for $1 \leqq k \leqq n$. Since $p_{0}=p_{n}$ (because of $\left.L^{n}(G)=\bar{G}\right)$, it follows that $p_{0} \geqq p_{1}=q_{0}$ must be satisfied. So, G is now a tree or a unicyclic graph (different from a cycle).

Suppose that G is a unicyclic graph different from a cycle. Then $q_{1}>p_{1}$ holds ($L(G)$ has at least two cycles) so that it follows immediately that in this case n may be equal only to one. Since the equation $L(G)=G$ has been already solved, we shall not deal with that case.

It remains to consider the case when G is a tree. Then, having in view M. AINGER's result, $n \geqq 2$. Let us put that $L^{n-1}(G)=H$ and let us further consider the equation $\bar{L}(H)=G$ where G is a tree.

According to the results of D. Cvetković and S. Simić (see [7], Theorem 3) and having in view that $\Delta(G) \geqq 3$, it is not difficult to deduce that G could be any of the following graphs from Fig. 2.

Fig. 2
It is easy to see (by a direct verification) that the first graph from Fig. 2 is a solution to the equation $L^{2}(G)=\bar{G}$. (Clearly, for $n>2$ it cannot be a solution to the equation $L^{n}(G)=\bar{G}$.)

The remaining graphs from Fig. 2 are not the solutions to the equation $L^{n}(G)=\bar{G}$ for any n. Namely, graphs T_{1}, T_{2}, T_{3} from Fig. 2 are not the solutions to the equation $L^{n}(G)=\bar{G}$ because the pairs of graphs $L^{n}\left(T_{i}\right), \bar{T}_{i}(i=1$,

[^1]2,$3 ; n \geqq 2$) do not have the same number of vertices (it can easily be seen) except in the case of T_{3} and $n=3$, when it is not difficult to notice that $L^{3}\left(T_{3}\right) \neq \bar{T}_{3}$. It is evident that graph $K_{1, m}(m \geqq 3)$ is not a solution, since its complement is a disconnected graph.
Case 2: G is a disconnected graph.
Let us put again that $L^{n-1}(G)=H$. Then we have that $\overline{L(H)}=G, G$ being a disconnected graph. Now, according to [7], it can be proved (the proof will be given in the Appendix) that G is one of the following graphs: $l K_{1}(l \geqq 2), 3 K_{2}, 2 K_{2},\left(K_{n_{1}, n_{2}}-p K_{2}\right) \cup K_{1}{ }^{1)}\left(p=\min \left(n_{1}, n_{2}\right) ; p \geqq 0, n_{1}, n_{2} \geqq 1\right)$; the last graph is given on Fig. 3(a).

Now it is only a routine to see that none of graphs $l K_{1}(l \geqq 2), 3 K_{2}, 2 K_{2}$ can be the solution to the equation $L^{n}(G)=\bar{G}$ for any n. In the case when we have $G=\left(K_{n_{1}, n_{2}}-p K_{2}\right) \cup K_{1}$, the situation is slightly complicated. Namely, since $H\left(=L^{n-1}(G)\right)$ is also equal to $L^{-1}(\bar{G})$, it can easily be found that if G is a graph from Fig. 3 (a) then H is a graph from Fig. 3(b) where q is an arbitrary nonnegative integer.

Fig. 3
We shall, of course, consider the case when $n \geqq 2$. Clearly, the graph H from Fig. 3 must be a line graph. But then, because of L. Beineke's forbidden induced subgraph $K_{1,3}$ for a graph H, it follows that $n_{1} \leqq 2, n_{2} \leqq 2$. Now, it can be easily verified that the rest of graphs ($K_{n_{1}, n_{2}}-p K_{2}$) $\cup K_{1}$ do not satisfy the equation $L^{n}(G)=\bar{G}$ for any n.

So we have proved the following theorem.
Theorem. The equation $L^{n}(G)=\bar{G}$ has only the following solutions:
(i) for $n=1, G=C_{5}$ or $G=K_{3} \circ K_{1} \quad$ (result of M. Aigner),
(ii) for $n=2, G=C_{5}$ or $G=K_{2} \circ \overline{K_{2}}$,
(iii) for $n \geqq 3, G=C_{5}$.

Appendix

Now, we shall give the proof of the fact already used in the text; namely, we shall prove the following theorem.

[^2]Theorem. If G is a disconnected graph such that $G=\overline{L(H)}$ for some graph H, then G is one of the following graphs:
(i) $l K_{1} \quad(l \geqq 2)$,
(ii) $3 K_{2}$,
(iii) $2 K_{2}$,
(iv) $\left(K_{n_{1}, n_{2}}-p K_{2}\right) \cup K_{1}\left(p \leqq \min \left(n_{1}, n_{2}\right) ; \quad p \geqq 0 ; \quad n_{1}, n_{2} \geqq 1\right)$.

Proof. In order to avoid trivial cases we shall assume that G has at least one edge. In that case it is easy to prove that G is bichromatic graph. Namely, if G is a disconnected graph having at least one odd cycle, then according to Lemma 2 (see [7]) that cycle must be C_{3} or C_{5}. But then, having in view that G is a disconnected graph, one of the graphs $C_{3} \cup K_{1}$ or $C_{5} \cup K_{1}$ (both are the complements of L. Beineks's forbidden induced subgraphs for the line graphs) would appear in G, so it immediately follows that G is bichromatic. Now according to Lemma 1 (see [7]) G can have 2 or 3 components. Since bichromatic graphs G with the property that $G=\overline{L(H)}$ for some graph H are completely described in [7], we immediately get the conclusions of the theorem.

The author wants to thank D. Cvetković who read the paper in manuscript an gave some useful suggestions.

REFERENCES

1. F. Harary: Graph Theory. Reading 1969.
2. D. Cvetković, I. Lacković, S. Simić: Graph equations and inequations. To appear.
3. V. V. Menon: The isomorphism between graphs and their adjoint graphs. Canad. Math. Bull. 8 (1965), № 1, 7-15.
4. V. V. Menon: On repeated interchange graphs. Amer. Math. Monthly 13 (1966), 986-989.
5. M. Aigner: Graph whose complement and line graph are isomorphic. J. Comb. Theory 7 (1969), 273-275.
6. F. Harary, R. Read: Is the null-graph a pointless concept? Graphs and combinatorics. (Ed. P. Bari and F. Haraiy) Berlin-Heidelberg-New York 1974, 37-44.
7. D. Cvetković, S. Simić: Some remarks on the complement of a line graph. Publ. Inst. Math. (Beograd) 17 (31) (1974), 37-44.

[^0]: * Presented March 24, 1975 by D. M. Cvetković.

 1) The sign ,"" on Fig. 1 denotes a corona of two graphs.
[^1]: ${ }^{1)}$ The empty graph is a graph without vertices and of course without edges. On the advantages of introducing the notion of the empty graph, in general, see [6]. In this paper we shall treat the empty graph as an auxiliary instrument.

[^2]: 1) The graph $K_{n_{1}}, n_{2}-p K$ is described in [7]. It is obtained from $K_{n_{1}, n_{2}}$ by deleting p independent edges.
