PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA — SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 461 — № 497 (1974)

496. INEQUALITIES INVOLVING ELEMENTS OF TRIANGLES, QUADRILATERALS OR TETRAHEDRA*

A. Oppenheim

Inequalities for pair of triangles and quadrilaterals

Theorem 1. Suppose that $A_i B_i C_i$ (i = 1, 2) are two triangles of sides a_i , b_i , c_i , areas F_i , circumradii R_i . Construct a third triangle by taking

$$a_3 = (a_1^2 + a_2^2)^{1/2}, \quad b_3 = (b_1^2 + b_2^2)^{1/2}, \quad c_3 = (c_1^2 + c_2^2)^{1/2}.$$

Then we have

$$R_3^2 \le R_1^2 + R_2^2.$$

Equality in (1) occurs if either the two given triangles are similar or if the two triangles are right-angled at corresponding vertices.

Proof. I give a proof of (1) by considering the stationary values of

$$E = R_1^2 + R_2^2 - R_3^2$$

subject to variation in a_1 , b_1 , c_1 , the second triangle being fixed. Elementary calculation gives

$$\frac{\partial R_1^2}{\partial a_1} = \frac{2 a_1 b_1^2 c_1^2}{T_1} - \frac{a_1^2 b_1^2 c_1^2}{T_1^2} 4 a_1 (b_1^2 + c_1^2 - a_1^2)$$

where $T_1 = 16 F_1^2$. Thus

$$\frac{T_1^2}{2a_1} \frac{\partial R_1^2}{\partial a_1} = b_1^2 c_1^2 \left\{ \sum_{i=1}^2 a_1^2 (b_1^2 + c_1^2 - a_1^2) - 2 a_1^2 (b_1^2 + c_1^2 - a_1^2) \right\}
= b_1^2 c_1^2 (c_1^2 + a_1^2 - b_1^2) (a_1^2 + b_1^2 - c_1^2).$$

Since $a_3 \partial a_3 / \partial a_1 = a_1$, the condition $\partial E / \partial a_1 = 0$ becomes

$$T_1^{-2}b_1^2c_1^2(c_1^2+a_1^2-b_1^2)(a_1^2+b_1^2-c_1^2)$$

= $b_3^2c_3^2(c_3^2+a_3^2-b_3^2)(a_3^2+b_3^2-c_3^2)T_3^{-2};$

two like equations arise by cyclic permutation of the letters.

^{*} Presented July 10, 1974 by R. R. Janić

If the angle C_1 is a right angle then either C_3 is a right angle (and then also C_2) or else B_3 is a right angle. But in the last case the second equation shows that A_3 is also a right angle which cannot occur for non-degenerate triangles.

If $C_1 = C_3 = \pi/2$, all three equations are satisfied and indeed $R_1^2 + R_2^2 - R_3^2 = 0$, no other condition on the sides being required.

Right-angled triangles being excluded, the three equations show that

$$\frac{\sin 2 A_1}{\sin 2 A_3} = \frac{\sin 2 B_1}{\sin 2 B_3} = \frac{\sin 2 C_1}{\sin 2 C_3} = \frac{1}{k}$$

where $k \neq 0$. Denote the sines of these angles by u, v, w, u', v', w' respectively. Then

$$\sum u^4 - 2 \sum v^2 w^2 + 4 u^2 v^2 w^2 = 0,$$

$$\sum u'^4 - 2 \sum v'^2 w'^2 + 4 u'^2 v'^2 w'^2 = 0,$$

so that also

$$k^4 \left[\sum u^4 - 2 \sum v^2 w^2 + 4 k^2 u^2 v^2 w^2 \right] = 0.$$

Hence $(k^2-1)u^2v^2w^2=0$ so that since $uvw\neq 0$ (right angled triangles have been excluded) we have $k=\pm 1$.

It is now easy to see that only one possibility remains,

$$A_1 = A_3, \quad B_1 = B_3, \quad C_1 = C_3,$$

i.e. triangles are similar.

(If k=1, we have

$$2A_1 = 2A_3$$
 or $\pi - 2A_3$, $2B_1 = 2B_3$ or $\pi - 2B_3$, $2C_1 = 2C_3$ or $\pi - 2C_3$.

A combination such as

$$2A_1 = \pi - 2A_3$$
, $2B_1 = 2B_3$, $2C_1 = 2C_3$

yields by addition

$$2\pi = \pi + 2\pi - 2A_3$$
; $A_3 = \pi/4$; $A_1 = \pi/4$, $B_1 = B_3$, $C_1 = C_3$.

The combination $2A_1 = \pi - 2A_3$, $2B_1 = \pi - 2B_3$, $2C_1 = 2C_3$ yields

$$2\pi = 2\pi - 2\pi + 4C_3$$
; $C_3 = \pi/2 = C_1$.

The case k = -1 is equally easy to settle).

Since E does take positive values and for these points E=0 (and no other stationary points arise) we must have $E \ge 0$.

REMARK 1. The inequality $R_1^2 + R_2^2 \ge R_3^2$ gives rise to a curious unsymmetric inequality between two triangles:

(2)
$$16 a_2^2 b_2^2 c_2^2 F_1^4 + 2 a_1^2 b_1^2 c_1^2 F_2^2 \sum_{\alpha_1^2} a_1^2 (b_2^2 + c_2^2 - a_2^2) - 16 F_1^2 F_2^2 \sum_{\alpha_2^2} b_1^2 c_1^2 a_2^2 \ge 0.$$

Equality occurs if the two triangles are similar or if

$$A_1 = A_2 = \pi/2$$
 or if $B_1 = B_2 = \pi/2$ or if $C_1 = C_2 = \pi/2$

and in no other case.

It will be recalled that

(3)
$$\sum a_1^2 (b_2^2 + c_2^2 - a_2^2) \ge 16 F_1 F_2 \qquad \text{(Pedoe, [1] 10.8)}$$

equality only for similar triangles.

If we replace the left term of (3) by $16 F_1 F_2$ in (2) we obtain an inequality going the other way:

(4)
$$16 a_2^2 b_2^2 c_2^2 F_1^4 + 32 a_1^2 b_1^2 c_1^2 F_1 F_2^3 - 16 F_1^2 F_2^2 \sum_{j=1}^{\infty} b_1^2 c_1^2 a_2^2 \le 0,$$

zero if and only if the two triangles are similar.

Suppose that ABC is a triangle, with sides a, b, c and area F. Then \sqrt{a} , \sqrt{b} , \sqrt{c} are also the sides of a triangle with area H such that

$$4H^2 \ge F\sqrt{3}$$

with equality if and only if ABC is equilateral.

(FINSLER — HADWIGER, 1937/38: see the book Geometric Inequalities, [1], 10.3 and references therein.)

It is reasonable to ask whether a corresponding inequality holds with exponent 1/2 replaced by 1/p where p>1. We prove in fact:

Theorem 2. If ABC is a triangle of sides a, b, c and area F, there exists a triangle of sides $a^{1/p}$, $b^{1/p}$, $c^{1/p}$, (p>1) and area F_p such that

$$(4 F_p / \sqrt{3})^p \ge 4 F / \sqrt{3}.$$

Equality holds only if a = b = c.

In other words $(4 F_p/\sqrt{3})^p$ is an increasing function of p (bounded of course by $(abc)^{2/3}$).

The corresponding circumradii satisfy the inequality

(7)
$$(R_p \sqrt{3})^p \leq R \sqrt{3}.$$

 $(R_p \sqrt{3})^p$ is a decreasing function of p, bounded below by 1.

It is known also that if f(x) is a non-negative, non-decreasing sub-additive function on x>0 then a triangle with sides a, b, c will yield a triangle with sides f(a), f(b), f(c), ([1], 13.3). It is natural to conjecture an inequality for the corresponding areas.

Conjecture. Let $G(a, b, c) = (4F(a, b, c)/\sqrt{3})^{1/2}$. Then

(8)
$$G(f(a), f(b), f(c)) \ge f(G(a, b, c)).$$

Equality holds in general only when a = b = c.

(I say in general since f may be a constant function.)

I have not been able to prove (8) but if (8) holds for two particular such functions then (8) will hold for their sum.

The last statement derives from the case p=1 of the following

Theorem 3. ([2] Theorem 6). Suppose that $A_i B_i C_i$ are two triangles (i = 1, 2). Define for any p > 1, $a = (a_1^p + a_2^p)^{1/p}$, ... Then a, b, c are the sides of a triangle. The three areas are connected by the inequality (if p = 1 or 2 or 4)

$$F^{p/2} \ge F_1^{p/2} + F_2^{p/2}$$
;

equality if and only if the triangles are similar.

As shown in [2] the inequality does not hold for p>4. It is not known whether it holds for $1 \le p \le 4$ (other than 1, 2, 4).

Proof of Theorem 2. To ease the writing suppose that ABC has sides a^p , b^p , c^p so that the second triangle has sides a, b, c. It is then a question of proving that

(9)
$$E = U^p - 3^{p-1} \left(2 \sum b^{2p} c^{2p} - \sum a^{4p} \right)$$

where $U=2\sum b^2 c^2 - \sum a^4$ has minimum 0, attained for a=b=c.

Since E is homogeneous it is enough to determine stationary values subject to $abc = \mathrm{const.}$ Partial differentiation and EULER's theorem on homogeneous functions yield the conditions

$$a \frac{\partial E}{\partial a} = b \frac{\partial E}{\partial b} = c \frac{\partial E}{\partial c} = \frac{4}{3} p E$$

whence

(10)
$$3a^{2}(b^{2}+c^{2}-a^{2})U^{p-1}-3^{p}a^{2p}(b^{2p}+c^{2p}-a^{2p})=E$$

and two like equations (11), (12) by cyclic permutation of a, b, c.

One solution of these three equations is plainly a = b = c for which E = 0. If a different solution exists we may suppose by symmetry that

$$a>c \ge b$$
 or $a \ge c>b$.

From (10) and (11) by subtraction,

$$(13) (a^2-b^2)(a^2+b^2-c^2)U^{p-1}=3^{p-1}(a^{2p}-b^{2p})(a^{2p}+b^{2p}-c^{2p}).$$

Eliminate U^{p-1} between (12) and (13), we find that

$$(a^2-b^2) E = 3^p c^p (a^{2p} + b^{2p} - c^{2p}) \{a^2 (a^{2p-2} - c^{2p-2}) + b^2 (c^{2p-2} - b^{2p-2})\}$$

which shows that E > 0.

Thus theorem 2 follows: equality holds only for equilateral triangles.

Inequality for pair of quadrilaterals

Theorem 2 does not extend to convex cyclic quadrilaterals but Theorem 3 does.

Theorem 4. Suppose that $A_1 B_1 C_1 D_1$, $A_2 B_2 C_2 D_2$ are two convex cyclic quadrilaterals of sides a_1, \ldots, d_1 and a_2, \ldots, d_2 . Define a, \ldots, by

$$a = (a_1^p + a_2^p)^{1/p}$$
 $(p > 1).$

Then there is a convex cyclic quadrilateral of sides a, \ldots ; the areas satisfy (for p = 1, 2, 4) the inequality

 $F^{p/2} \ge F_1^{p/2} + F_2^{p/2},$

equality if and only if the given polygons are similar.

As in the case of Theorem 3 [2] the proofs for p = 1, 2, 4 are different.

Proof for p = 1. The area of a convex cyclic quadrilateral of edges a, b, c, d is given by $16 F^2 = uvwt$ where u = -a + b + c + d, v = a - b + c + d, ...

Thus

$$2 F^{1/2} = (uvwt)^{1/4}$$

where

$$u = u_1 + u_2, \quad v = v_1 + v_2, \dots$$

A well-known inequality gives

$$(uvwt)^{1/4} \ge (u_1 v_1 w_1 t_1)^{1/4} + (u_2 v_2 w_2 t_2)^{1/4}$$

(strict unless $u_1: v_1: w_1: t_1 = u_2: v_2: w_2: t_2$). Hence

$$F^{1/2} \ge F_1^{1/2} + F_2^{1/2}$$

as required.

Proof for p = 4. Here we use the formula

$$16 F^2 = 2 \sum a^2 b^2 - \sum a^4 + 8 abcd.$$

Hence

$$16 F^{2} - 16 F_{1}^{2} - 16 F_{2}^{2} = 2 \sum (a_{1}^{4} + a_{2}^{4})^{1/2} (b_{1}^{4} + b_{2}^{4})^{1/2} - \sum (a_{1}^{4} + a_{2}^{4})$$

$$-2 \sum a_{1}^{2} b_{1}^{2} - 2 \sum a_{2}^{2} b_{2}^{2} + \sum a_{1}^{4} + \sum a_{2}^{4}$$

$$+8 \prod (a_{1}^{4} + a_{2}^{4})^{1/4} - 8 (\prod a_{1} + \prod a_{2})$$

$$= 2 \sum \{(a_{1}^{4} + a_{2}^{4})^{1/2} (b_{1}^{4} + b_{2}^{4})^{1/2} - (a_{1}^{2} b_{1}^{2} + a_{2}^{2} b_{2}^{2})\}$$

$$+8 (\prod a_{1}^{4} + a_{2}^{4})^{1/4} - 8 (\prod a_{1} + \prod a_{2})$$

which is positive or zero by standard inequalities.

Proof for p=2. We use the result of Theorem 3 for the triangle in the following way. From $A_1B_1C_1D_1$ we get two triangles $A_1B_1C_1$ with sides $a_1=A_1B_1$, $b_1=B_1C_1$ and $x_1=C_1A_1$; $A_1C_1D_1$ with sides $x_1=A_1C_1$, $c_1=C_1D_1$, $d_1=D_1A_1$. Like-wise from $A_2B_2C_2D_2$ two triangles.

Using triangles $A_1B_1C_1$, $A_2B_2C_2$ we derive a triangle ABC; areas satisfy

$$F(a, b, x) \ge F(a_1, b_1, x_1) + F(a_2, b_2, x_2);$$

so from triangles $A_1C_1D_1$, $A_2C_2D_2$ we derive a triangle ACD: areas satisfy

$$F(x, c, d) \ge F(x_1, c_1, d_1) + F(x_2, c_2, d_2).$$

The triangles $A_1C_1D_1$, $A_1B_1C_1$ fit together to give convex cyclic quadrilateral $A_1B_1C_1D_1$; area F_1 . So $A_2C_2D_2$, $A_2B_2C_2$ give $A_2B_2C_2D_2$ of area F_2 . Thus $F(a, b, x) + F(x, c, d) \ge F_1 + F_2$.

Now the sides a, b, c, d (from the two triangles ABC, ACD) yield a convex cyclic quadrilateral of area $\ge F(a, b, x) + F(x, c, d)$. Thus $F \ge F_1 + F_2$; equality holds if the original quadrilaterals are similar.

The proof of Theorem 4 is complete.

REMARK 2. That Theorem 4 can be extended when p=2 to convex cyclic *n*-gons seems clear. Whether Theorem 4 has such an extension for p=1, p=4 is doubtful.

Inequalities for Tetrahedra

The equalities and inequalities obtained below for tetrahedra are interesting: so far as I can ascertain they are new.

Suppose that ABCD is a tetrahedron of volume V, circumradius R; a, b, c edges of the face ABC; p, q, r the opposite edges AD, BD, CD. Then

$$6 RV = F(ap, bq, cr)$$

where F(u, v, w) denotes the area of the triangle of sides u, v, w;

(15)
$$64 R^4 \ge (a^2 + b^2 + c^2) (p^2 + q^2 + r^2)$$

with equality if and only if p = a, q = b, r = c, i.e. the tetrahedron has congruent faces (necessarily acute-angled).

From (14) follows the inequality

$$6 R_0 V \leq F(ap, bq, cr)$$

where R_0 is the circumradius of the triangle ABC; equality if and only if ABC is a great circle of the circumscribing sphere. If in this inequality we take ABC to be equilateral, then

$$12V^2 \leq a^2 F(p, q, r),$$

an inequality due to BOTTEMA (see [1], 12.4).

From (14) and (15) we obtain

(16)
$$72 V^{2} \leq \frac{\sum ap}{(\sum a^{2})^{1/2} (\sum p^{2})^{1/2}} \prod (bq + cr - ap)$$

and so by the CAUCHY-SCHWARZ inequality

(17)
$$72 V^2 \leq (bq + cr - ap) (cr + ap - bq) (ap + bq - cr);$$

equality in (16) or (17) only for tetrahedra with congruent faces.

The equality (14) may be regarded as the analogue of the familiar triangle identity $4R_0F(a, b, c) = abc$ while the inequality (15) is an analogue of the inequality $9R_0^2 \ge a^2 + b^2 + c^2$, equality only for the equilateral triangle.

Proof that 6 RV = F(ap, bq, cr).

The simplest proof comes by inverting with respect to D the relation

$$3V = hF(a, b, c)$$

where h is the altitude from D to the face ABC.

For, if accented letters refer to the inverses of ABC and if B'C' = a', DA' = p' and so on, then

$$pp' = k^2$$
, $a'/a = k^2/qr$, $(2 R) h' = k^2$, $V'/V = p'q'r'/pqr$.

Hence 3V' = h' F(a', b', c') becomes

$$3\frac{p'q'r'}{pqr}V = \frac{k^2}{2R}F\left(\frac{k^2a}{qr}, \ldots\right) = \frac{k^6}{2Rp^2q^2r^2}F(ap, bq, cr)$$

or

$$6 RV = F(ap, bq, cr)$$

which is (14). (The proof shows incidentally that ap, bq, cr are the sides of a triangle.)

Proof that $64 R^4 \ge (a^2 + b^2 + c^2) (p^2 + q^2 + r^2)$ with equality if and only if a = p, b = q, c = r.

Take O, centre of sphere, as the origin of vectors; take R=1 so that if OA, OB, OC, OD are the unit vectors α , β , γ , δ we have

$$p^2 = \sum (\delta - \alpha)^2 = 6 - 2 \delta \cdot (\alpha + \beta + \gamma).$$

Thus, for given α , β , γ , $\sum p^2$ is maximised when

$$\delta = -t(\alpha + \beta + \gamma), \quad t > 0.$$

(DOG are collinear, G centroid of ABC; O between D and G). Note that

$$1 = 1 \delta 1 \le t \sum 1 \alpha 1 = 3 t.$$

Also

$$\sum a^2 = \sum (\beta - \gamma)^2 = 6 - 2 \sum \beta \cdot \gamma,$$

$$-\delta \cdot \sum \alpha = t \left(\sum \alpha\right)^2 = t \left(3 + 2 \sum \beta \cdot \gamma\right),$$

$$1 = t^2 \left(\sum \alpha\right)^2 = t^2 \left(3 + 2 \sum \beta \cdot \gamma\right).$$

Hence

$$\sum a^2 \sum p^2 = (9 - 1/t^2) (6 + 2/t) \le 64$$

for $1 \le 3t$; attained when t = 1. But when t = 1

$$\delta + \alpha = -\beta - \gamma$$
, $2 + \delta \cdot \alpha = 2 + \beta \cdot \gamma$,
 $p^2 = (\delta - \alpha)^2 = (\beta - \gamma)^2 = a^2$.

Thus $\sum a^2 \sum p^2 \le 64$, equality if and only if opposite edges are equal.

REFERENCES

- O. BOTTEMA, R. Ž. ĐORĐEVIĆ, R. R. JANIĆ, D. S. MITRINOVIĆ, P. M. VASIĆ; Geometric Inequalities. Groningen, 1969.
- A. OPPENHEIM: Some inequalities for triangles. These Publications № 357 № 380 (1971), 21—28.

Department of Mathematics University of Benin

Benin City, Nigeria