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496. INEQUALITIES INVOLVING ELEMENTS OF TRIANGLES,
QUADRILATERALS OR TETRAHEDRA*

A. Oppenheim

Inequalities for pair of triangles and quadrilaterals

Theorem 1. Suppose that A;B;C, (i=1, 2) are two triangles of sides a;, b;, c;,
areas F;, circumradii R;. Construct a third triangle by taking

ay=(a,>+a>)'"% by=(>+ b, cy=(c 2+,
Then we have
(1) R2<R?2+R)
Equality in (1) occurs if either the two given triangles are similar or if the
two triangles are right-angled at corresponding vertices.
Proof. 1 give a proof of (1) by considering the stationary values of
E=R?>+R,2—R;?
subject to variation in a,, b;, ¢,, the second triangle being fixed. Elementary
calculation gives
OR? _ 2a;blc?  alblc)
oa, T, T2
where T, =16 F,%. Thus

T2 OR?
i c)g1 =b’ clz{z a’b?+c*—a?)-2a> (b +c?- a12)}
1 1

da,(b’+c’—a?)

=b¢? (¢’ +a’-b?)(a’+b7~c?).
Since a,0a,/da, =a,, the condition JE/da, =0 becomes
T,7%bc2(c2+a?—bH(@?+b2*-¢?)
. bsz 032 (c32 a- a32 _ b32) (032 + b32 _ 032) T,~ 2,
two like equations arise by cyclic permutation of the letters.
* Presented July 10, 1974 by R. R. JANIC
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258 A. Oppenheim

If the angle C; is a right angle then either C, is a right angle (and then
also C,) or else B, is a right angle. But in the last case the second equation
shows that 4, is also a right angle which cannot occur for non-degenerate
triangles.

If C, = C, = =/2, all three equations are satisfied and indeed R,2+ R,2— R,2=0,
no other condition on the sides being required.
Right-angled triangles being excluded, the three equations show that

sin24, sin2B,_ sin2C, 1

sin24, sin2B, sin2C, k

where k£0. Denote the sines of these angles by u, v, w, u’, v/, w' respectively. Then
Sut=22viwt+ 4wt w2=0,

DUt -2 VIW 2L 42y w2 =0,
so that also

K[> ut—2 2 v wr+4k2utv?wi]=0.

Hence (k*—1)u?v>w?=0 so that since uvw=£0 (right angled triangles have
been excluded) we have k= + 1.

It is now easy to see that only one possibility remains,
A =A4,, B =B, C =0C,,
i.e. triangles are similar.
(If k=1, we have
24,=2A4; or t1—24,, 2B =2B; or n—-2B,,2C,=2C, or n—2C,.

A combination such as

24 =m—-24,, 2B, =2B,, 2C,=2C,
yields by addition

2n=n+2n—-24, A,=n/4; A, ==/4, B =B,, C =C,.
The combination 24, =n—24;, 2B, ==—2B,, 2C,=2C, yields
2n=27-27n+4C;; Cy==/2=C,.

The case k= —1 is equally easy to settle).

Since E does take positive values and for these points E=0 (and no other
stationary points arise) we must have E=0.

ReMARK 1. The inequality R+ R,2=R,> gives rise to a curious unsymmetric inequality between
two triangles:

® 1602 b2c? Fi'+2a2 b2 ¢ F2 Y a2 (b2 +c2—a)—16 F2 F2 > bl a=0.
Equality occurs if the two triangles are similar or if
A,=A4,=7/2 or if B,=B,=x/2 or if C,=C,=m/2

and in no other case.
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It will be recalled that
©) > alt (b +e—a)z16 F,F,  (PeDOE, [1] 10.8)

equality only for similar triangles.

If we replace the left term of (3) by 16 F, F, in (2) we obtain an inequality going
the other way:

@ 16a2b2c,2 Fr+32a2b2c?F FP—16 F2F? 2 b2 e a2 <0,
zero if and only if the two triangles are similar.

Sugposew that__ ABC is a triangle, with sides a, b, ¢ and area F.
Then \/a, \/b, \/c are also the sides of a triangle with area H such that

(5) 4H*=F+\/3

with equality if and only if ABC is equilateral.

(FinsLEr — HADWIGER, 1937/38: see the book Geometric Inequalities, [1],
10.3 and references therein.)

It is reasonable to ask whether a corresponding inequality holds with
exponent 1/2 replaced by 1/p where p>1. We prove in fact:

Theorem 2. If ABC is a triangle of sides a, b, ¢ and area F, there exists a
triangle of sides a'», b'le, c'?, (p>1) and area F, such that

(6) (4F,/\/3)Pz4F /3.
Eqguality holds only if a=b=c.

In other words (4 Fp/\/g)p is an increasing function of p (bounded of course
by (abc)¥3).

The corresponding circumradii satisfy the inequality
N (R,\/3¥<R+/3.

(Rp \/3) is a decreasing function of p, bounded below by 1.

It is known also that if f(x) is a non-negative, non-decrzasing sub-additive
function on x>0 then » triangle with sides a, b, ¢ will yield a triangle with
sides f(a), f(b), f(c), ({1}, 13.3). It is natural to conjecture an inequality for
the corresponding areas.

Conjecture. Let G(a, b, ¢) =(4 F(a, b, c)/\/ 3)”2. Then
(8) G(f@), f®), f(©)=f(G(a, b, c)).

Equality holds in general only when a=b=c.
(I say in general since f may be a constant function.)

I have not been able to prove (8) but if (8) holds for two particular such
Junctions then (8) will hold for their sum.

The last statement derives from the case p=1 of the following

{7+
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Theorem 3. ([2] Theorem 6). Suppose that A;B;C; are two triangles (i=1, 2).
Define for any p>1, a=(a,?+a,P)'?, ... Then a, b, c are the sides of a triangle.
The three areas are connected by the inequality (if p=1 or 2 or 4)

Fri2> Flp/2 + sz/l;

equality if and only if the triangles are similar.

As shown in [2] the inequality does not hold for p>4. It is not known
whether it holds for 1<p<4 (other than 1, 2, 4).

Proof of Theorem 2. To ease the writing suppose that ABC has sides a?, b?, c?
so that the second triangle has sides a, b, c. It is then a queston of proving that

9 E=Ur—3r-1(23 b2 cr -3 a*)

where U=2 > b?¢?— > a* has minimum 0, attained for a=b=c.

Since E is homogeneous it is enough to determine stationary values subject
to abc=const. Partial differentiation and EULER’s theorem on homogeneous
functions yield the conditions

OE _,0E_0E_4 p
da ob oc 3
whence
(10) 3a2(B2 4 —a?)Ur—1 - 3ra?r (b% + ¢ —a*?)=E

and two like equations (11), (12) by cyclic permutation of a, b, c.

One solution of these three equations is plainly a=>5=c for which £=0.
If a different solution exists we may suppose by symmetry that

a>czb or azc>b.
From (10) and (11) by subtraction,
(13) (a2 =% (a® + b*>— A Ur—1 = 37=1 (a% — b?P) (a?F + b?P - 7).
Eliminate UP—! between (12) and (13), we find that
(a*—b%) E =37 cP (a?? + b% — c*?) {a? (4?72 — 2~ 2) -+ b2 (¢2P—2 — b?P—2)}

which shows that E>0.
Thus theorem 2 follows: equality holds only for equilateral triangles.

Inequality for pair of quadrilaterals

Theorem 2 does not extend to convex cyclic quadrilaterals but Theo-
rem 3 does.

Theorem 4. Suppose that A, B, C, D,, A,B,C,D, are two convex cyclic qua-

drilaterals of sides a,, ..., d, and a,, ..., d,. Define a, ..., by
a=(a?+ azp)llp (p>1).
Then there is a convex cyclic quadrilateral of sides a, ...; the areas satisfy

(for p=1, 2, 4) the inequality
Fplnglp/2+F2p/2,

equality if and only if the given polygons are similar.
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As in the case of Theorem 3 [2] the proofs for p=1, 2, 4 are different.
Proof for p=1. The area of a convex cyclic quadrilateral of edges a, b, ¢, d
is given by 16 F?=uwwt where u= —a+b-+c+d, v=a—b+c+d, ...
Thus
2 F'2 = (uvwe)ti*
where
u=u +u, V=v+Vv,, ...

A well-known inequality gives
(vwt)4 = (i, v, w V44 (uy vy w, £)1V4
(strict unless w, :v,iw it =u,:v,:w,:1,). Hence

2 1/2 1/2
as requlred.

Proof for p=4. Here we use the formula

16 F2=2 > a2b2— Y a*+ 8 abed.
Hence
16 F2— 16 F 2~ 16 Fy? =2 2, (a,*+ a;)' (b,* + 5,4 - 3 (a,* + a,%)

-2201”’12—2 Za22b22+zal4+ 2‘124
+8]] (a,*+a,H* -8 (IT1 a, + [[a,)
=22 {(@+ a2 (b + 5,92 (a,2b,2 +a,2 b}

+8 (11‘114Jr 024)1/4“ 8 (H a, + H az)
which is positive or zero by standard inequalities.

Proof for p—=2. We use the result of Theorem 3 for the triangle in the
follow'ng way. From 4,B,C,D, we get two triangles 4,B,C, with sides a, = 4,B,,
b,=B/,C, and x,=CAd,; A/ CD, with sides x,=A4,C,, ¢,=C,D,, d =D 4,.
Like-w.se from A4,B,C,D, two triangles.

Using triangles A,B,C,, A,B,C, we derive a triangle ABC; areas satisfy

F(a, b, xy=F(a,, b, x))+ F(a,, b,, x,);
so from triangles 4,C,D,, A,C,D, we derive a triangle ACD: areas satisfy
F(x,c, dy=F(x, ¢;, d))+ F(x,, ¢,, d,).

The triangles 4, C, D,, A, B, C, fit together to give convex cyclic quadri-
lateral A,B,C,D,; area F,. So A,C,D,, A,B,C, give A,B,C,D, of area F,.
Thus F(a, b, x)+ F(x, c, d)=F,+ F,. ‘

Now the sides a, b, ¢, d (from the two triangles 4ABC, ACD) yield a convex
cyclic quadrilateral of area = F(a, b, x) + F(x, ¢, d). Thus F=F, + F,; equality
holds if the original quadrilaterals are similar.

The proof of Theorem 4 is complete.

REMARK 2. That Theorem 4 can be extended when p-—2 to convex cyclic n-gons seems clear.
Whether Theorem 4 has such an extension for p=1, p=4 is doubtful.
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Inequalities for Tetrahedra

The equalities and inequalities obtained below for tetrahedra are interesting:
so far as I can ascertain they are new.

Suppose that ABCD is a tetrahedron of volume V, circumradius R; a, b, ¢
edges of the face ABC; p, g, r the opposite edges 4D, BD, CD. Then

(14) : 6 RV = F (ap, by, cr)
where F(u, v, w) denotes the area of the triangle of sides u, v, w;
(15) 64 R = (@*+ D2+ ) (P2 + 42+ 1)

with equality if and only if p=a, g=05, r=c, i.e. the tetrahedron has congruent
faces (necessarily acute-angled).
From (14) follows the inequality

6 R,V < F(ap, bq, cr)
where R, is the circumradius of the triangle ABC; equality if and only if 4ABC
is a great circle of the circumscribing sphere. If in this inequality we take ABC
to be equilateral, then
12V2<a? F(p, q, 1),
an inequality due to BOTTEMA (sce[1], 12.4).
From (14) and (15) we obtain

Zap
Vig_ =™ .
(16) 72 = Zaz)llz(zpz)llzn(bq+cr ap)

and so by the CAUCHY-SCHWARZ inequality
an 72 V2% < (bg + cr — ap) (cr + ap — bq) (ap + bg — cr);

equality in (16) or (17) only for tetrahedra with congruent faces.

The equality (14) may be regarded as the analogue of the familiar triangle
identity 4 R, F{(a, b, c)=abc while the inequality (15) is an analogue of the
inequality 9R2?=a?+ b+ % equality only for the equilateral triangle.

Proof that 6 RV =F (ap, bq, cr).

The simplest proof comes by inverting with respect to D the relation

3V=hF(ab,c)
where £ is the altitude from D to the face ABC.

For, if accented letters refer to the inverses of ABC and if B'C'=da', DA’ =p'
and so on, then

pp'=k* d'ja=kqgr, QRYK =Kk* V'[V=p'q'ripgr.
Hence 3V'=h"F(d', b, ¢’) becomes

v .2 2 kﬁ
312--1V=~A—~F(k a s v .)= ——— F(ap, bq, cr)
pqr 2R qr 2 Rp%q*r?

or
6 RV = F (ap, bg, cr)

which is (14). (The proof shows incidentally that ap, bg, cr are the sides of a triangle.)
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Proof that 64 R*z=(a®+b*+c?) (p?+4q*+r?) with equality if and only

if a=p, b=g, c=r.

Take O, centre of sphere, as the origin of vectors; take R=1 so that

if 04, OB, OC, OD are the unit vectors «, 8, v, 8 we have
PP=20—-)2=6-23(a+p+7).
Thus, for given «, B, vy, 2, p? is maximised when
= —t(a+B+y), >0
(DOG are collinear, G centroid of ABC; O between D and G). Note that

1=181<t>21al=31

Also
2a=2B-v?=6-228-7,
~8-2a=t(3a)=t(3+228-v),
1=2Caf'=2(3+238-7).
Hence

2.a* 2 pr=(9-1/t?) (6+2/t) < 64
for 1 <3¢ attained when 1=1. But when =1
Stoa=—~B~7y, 2+8.-0=2+B.v,
P=@-ay=@-17-a
Thus . a® 2 p?< 64, equality if and only if opposite edges are equal.
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