## 495. THE GENERALIZATION OF AN INEQUALITY FOR A FUNCTION AND ITS DERIVATIVES

Gradimir V. Milovanović and Miomir S. Stanković

In monograph [1, p. 362] the following result is given:
Let function $f$ be defined in an interval $(a, b)$. Let us assume that there exists $f^{\prime \prime \prime}$ and that it is an increasing function in the interval $(a, b)$. Then, if $x \in(a+1, b-1)$, we have

$$
\begin{equation*}
f^{\prime \prime}(x)<f(x+1)-2 f(x)+f(x-1) . \tag{1}
\end{equation*}
$$

Let us introduce an operator $\Delta$ by means of

$$
\Delta^{n} f(x)=\Delta^{n-1} f(x+1)-\Delta^{n-1} f(x), \quad \Delta^{0} f(x)=f(x) \quad(n \in N)
$$

It may be shown that

$$
\begin{equation*}
\Delta^{n} f(x)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} f(x+n-i) \tag{2}
\end{equation*}
$$

In this paper we shall use the following denotation

$$
\begin{equation*}
\lambda_{n}=\Delta^{n} f(x-k)-f^{(n)}(x) \quad(n \in N), \tag{3}
\end{equation*}
$$

where $k=\left[\frac{n}{2}\right]$, by which the inequality (1) has the form

$$
0<\lambda_{2} .
$$

Lemma 1. If $0 \leqq m \leqq n$, then

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(x+n-i)^{m}= \begin{cases}0 & (0 \leqq m<n) \\ n! & (m=n) .\end{cases}
$$

Proof. Let $x \mapsto x^{m}(0 \leqq m \leqq n)$. Then, using (2),

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(x+n-i)^{m}=\Delta^{n}\left(x^{m}\right)
$$

Since

$$
\Delta^{n}\left(x^{m}\right)= \begin{cases}0 & (0 \leqq m<n) \\ n! & (m=n)\end{cases}
$$

(see [2]), the proof is completed.

* Presented July 25, 1974 by Gh. Tudor.

Let the function $f$ be defined and be ( $n+1$ )-times differentiable in ( $a, b$ ). Let us introduce the operators $T$ and $R$ by means of

$$
T(n, l ; f)=\sum_{m=0}^{n} \frac{f^{(m)}(x)}{m!} l^{m} \text { and } R(n, l ; f)=\frac{l^{n+1}}{(n+1)!} f^{(n+1)}\left(x+l \theta_{l}\right)
$$

where $0 \leqq \theta_{l} \leqq 1$. Then the development of the function $f$ into the Taylor expansion in the neighbourhood of point $x \in(a, b)$, is given by

$$
f(x+l)=T(n, l ; f)+R(n, l ; f) \quad(x+l \in(a, b))
$$

## Lemma 2. Equality

 is valid.
## Proof. Since

$$
f(x+(n-k-i))=T(n, n-k-i ; f)+R(n, n-k-i ; f),
$$

using (2), we have

$$
\Delta^{n} f(x-k)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} T(n, n-k-i ; f)+\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} R(n, n-k-i ; f) .
$$

Since

$$
\begin{aligned}
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} T(n, n-k-i ; f) & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} \sum_{m=0}^{n} \frac{f^{(m)}(x)}{m!}(n-k-i)^{m} \\
& =\sum_{m=0}^{n} \frac{f^{(m)}(x)}{m!} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-k-i)^{m}
\end{aligned}
$$

using Lemma 1 , it follows

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} T(n, n-k-i ; f)=f^{(n)}(x) . \tag{5}
\end{equation*}
$$

According to (5), the equality (3) becomes

$$
\begin{equation*}
\lambda_{n}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} R(n, n-k-i ; f) . \tag{6}
\end{equation*}
$$

Placing in (6) $i=n-j$, we obtain (4), and thus the proof is completed.
For a sequence of functions $F=\left(F_{1}, F_{2}, \ldots, F_{k}\right)$, let us define the terms $D(F)$ and $G(F)$ as follows:

$$
D(F)=\sum_{i=1}^{\left[\frac{k}{2}\right]} F_{k-2 i+1}, \quad G(F)=\sum_{i=0}^{\left[\frac{k-1}{2}\right]} F_{k-2 i} .
$$

In further discussion we shall define the upper and the lower limit for $\lambda_{n}$, under condition that $f^{(n+1)}$ is a nondecreasing function.

We shall distinguish the cases when $n$ is even and when $n$ is odd.

1. Case $n=2 k$. Let sequence $F$ be defined by
$F_{m}=F_{m}(k, x ; f)=\binom{2 k}{k-m} m^{2 k+1}\left[f^{(2 k+1)}(x+m)-f^{(2 k+1)}(x-m)\right](m=1,2, \ldots, k)$.
Theorem 1. If $f^{(2 k+1)}$ is a nondecreasing function in $(a, b)(b-a>2 k)$, then

$$
\begin{equation*}
-\frac{D(F)}{(2 k+1)!} \leqq \lambda_{2 k} \leqq \frac{G(F)}{(2 k+1)!} \quad(a+k<x<b-k ; k \in N) . \tag{7}
\end{equation*}
$$

Proof. Since $R(2 k, 0 ; f)=0$, we have

$$
\begin{aligned}
\lambda_{2 k}= & \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j} R(2 k, j-k ; f) \\
= & \frac{1}{(2 k+1)!} \sum_{j=0}^{k-1}(-1)^{j}\binom{2 k}{j}(k-j)^{2 k+1}\left[f^{(2 k+1)}\left(x+\theta_{k-j}(k-j)\right)\right. \\
& \left.\quad-f^{(2 k+1)}\left(x-\theta_{k-j}(k-j)\right)\right],
\end{aligned}
$$

i.e.

$$
\lambda_{2 k}=\frac{1}{(2 k+1)!} \sum_{m=1}^{k}(-1)^{k-m} s_{m}
$$

where

$$
s_{m}=\binom{2 k}{k-m} m^{2 k+1}\left[f^{(2 k+1)}\left(x+\theta_{m} m\right)-f^{(2 k+1)}\left(x-\theta_{-m} m\right)\right] .
$$

Since $f^{(2 k+1)}$ is a nondecreasing function in $(a, b), 0 \leqq \theta_{m} \leqq 1$ and $0 \leqq \theta_{-m} \leqq 1$, we deduce that $s_{m} \in\left[0, F_{m}\right]$ when $x \in(a+m, b-m)$.

Upon summing up the intervals (see [3]), we obtain

$$
\lambda_{2 k} \in I \quad \forall x \in(a+k, b-k)
$$

where the interval $I$ is given by

$$
\begin{aligned}
I & =\frac{1}{(2 k+1)!} \sum_{m=1}^{k}(-1)^{k-m}\left[0, F_{m}\right] \\
& =\frac{1}{(2 k+1)!}\left[-\left(F_{k-1}+F_{k-3}+\cdots\right), F_{k}+F_{k-2}+\cdots\right] \\
& =\left[-\frac{D(F)}{(2 k+1)!}, \frac{G(F)}{(2 k+1)!}\right] .
\end{aligned}
$$

Thus, Theorem 1 is proved.
Example 1. If $f^{\prime \prime \prime}$ is a nondecreasing function in $(a, b)$, (7) is reduced to

$$
0 \leqq \lambda_{2} \leqq \frac{1}{3!} F_{1} \quad \forall x \in(a+1, b-1),
$$

i.e.

$$
\begin{equation*}
f^{\prime \prime}(x) \leqq f(x+1)-2 f(x)+f(x-1) \leqq f^{\prime \prime}(x)+\frac{1}{6}\left(f^{\prime \prime \prime}(x+1)-f^{\prime \prime \prime}(x-1)\right) \tag{8}
\end{equation*}
$$

The first inequality in (8) includes inequality (1).
Similarly, for $k=2$ and $k=3$, (7) is reduced respectively to

$$
-\frac{1}{30}\left(f^{(5)}(x+1)-f^{(5)}(x-1)\right) \leqq \lambda_{4} \leqq \frac{4}{15}\left(f^{(5)}(x+2)-f^{(5)}(x-2)\right)
$$

and

$$
\begin{aligned}
-\frac{16}{105}\left(f^{(7)}(x+2)-f^{(7)}(x-2)\right) \leqq & \lambda_{6} \leqq \frac{243}{560}\left(f^{(7)}(x+3)-f^{(7)}(x-3)\right) \\
& +\frac{1}{336}\left(f^{(7)}(x+1)-f^{(7)}(x-1)\right)
\end{aligned}
$$

2. Case $n=2 k+1$. Let us define sequences $P=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ and $Q=\left(Q_{1}, Q_{2}, \ldots, Q_{k}\right)$ by

$$
\begin{aligned}
& P_{m}=P_{m}(k, x ; f)=m^{2 k+2}\left[\binom{2 k+1}{k-m+1} f^{(2 k+2)}(x)+\binom{2 k+1}{k-m} f^{(2 k+2)}(x-m)\right] \\
& Q_{m}=Q_{m}(k, x ; f)=P_{m}(k, x+m ; f) \quad(m=1,2, \ldots, k)
\end{aligned}
$$

Theorem 2. If $f^{(2 k+2)}$ is a nondecreasing function in $(a, b)(b-a>2 k+1)$, then

$$
\begin{align*}
& \frac{(k+1)^{2 k+2} f^{(2 k+2)}(x)+D(P)-G(Q)}{(2 k+2)!} \leqq \lambda_{2 k+1}  \tag{9}\\
& \leqq \frac{(k+1)^{2 k+2} f^{(2 k+2)}(x+k+1)+D(Q)-G(P)}{(2 k+2)!} \\
&(a+k<x<b-k-1 ; k \in N)
\end{align*}
$$

and

$$
\frac{1}{2} f^{\prime \prime}(x) \leqq \lambda_{1} \leqq f^{\prime \prime}(x+1) \quad(a<x<b-1)
$$

The proof of Theorem 2 is similar to that of Theorem 1.
Example. If $f^{\prime \prime}$ is nondecreasing function in $(a, b)$, then

$$
f^{\prime}(x)+\frac{1}{2} f^{\prime \prime}(x) \leqq f(x+1)-f(x) \leqq f^{\prime}(x)+\frac{1}{2} f^{\prime \prime}(x+1) \quad \forall x \in(a, b-1)
$$

Note that similar inequality is given in [1]. Namely, if $f$ is an increasing function, the inequality
is proved.

$$
f^{\prime}(x)<f(x+1)-f(x)<f^{\prime}(x+1)
$$

For $k=1$ and $k=2$, (9) is reduced to

$$
\frac{5}{8} f^{(4)}(x)-\frac{1}{8} f^{(4)}(x+1) \leqq \lambda_{3} \leqq \frac{2}{3} f^{(4)}(x+1)-\frac{1}{8} f^{(4)}(x)-\frac{1}{24} f^{(4)}(x-1)
$$

and
$\frac{1}{144} f^{(6)}(x-1)+\frac{15}{16} f^{(6)}(x)-\frac{4}{9} f^{(6)}(x+2) \leqq \lambda_{5}$

$$
\leqq \frac{81}{80} f^{(6)}(x+3)+\frac{1}{72} f^{(6)}(x)-\frac{4}{45} f^{(6)}(x-1)
$$

## REFERENCES

1. D. S. Mitrinović: Analytic Inequalities. Berlin-Heidelberg-New York, 1970.
2. А. О. Гельфонд: Исчисление конечних разностей. Москва, 1967.
3. R. E. Moore: Interval Analysis. New Jersey, 1966.
