PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA — SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 461 — № 497 (1974)

493. AN INEQUALITY FOR POLYNOMIALS*

Alexandru Lupas**

The purpose of this paper is to give the best constant $K_n(s, \alpha, \beta)$ in the inequality

$$||f^{(s)}|| \le K_n(s, \alpha, \beta) ||f||_2$$

where f is a polynomial of degree n,

$$||f^{(s)}|| = \max_{x \in [-1, +1]} |f^{(s)}(x)|$$

and

$$||f||_2 = \left\{ \int_{-1}^1 w(x) |f(x)|^2 dx \right\}^{1/2}$$

with

$$w(x) = (1-x)^{\alpha} (1+x)^{\beta}, \quad \alpha > -1, \quad \beta > -1.$$

For $\alpha = 0$, $\beta = 0$ the constant $K_n(s, 0, 0)$ is due to GILBERT LABELLE in [1]. In this paper we use the following notation:

a)
$$A_k^{(\alpha,\beta)} = \left\{ \frac{(2k+\alpha+\beta+1)k! \; \Gamma(k+\alpha+\beta+1)}{2\alpha+\beta+1 \; \Gamma(k+\alpha+1) \; \Gamma(k+\beta+1)} \right\}^{1/2}.$$

b) $J_k(x) = A_k^{(\alpha, \beta)} \cdot P_k^{(\alpha, \beta)}(x), k = 0, 1, \dots$, is the orthonormal system of JACOBI polynomials, (α, β) fixed).

c)
$$C_{k,s}^{(\alpha,\beta)} = \frac{k!(2k+\alpha+\beta+1)\Gamma(k+\alpha+\beta+s+1)}{\Gamma(k+\alpha+1)\Gamma(k+\beta+1)} {k+q \choose k-s}.$$

d)
$$q = \max(\alpha, \beta)$$
.

Theorem. If f is a polynomial of degree n and $q \ge -\frac{1}{2}$, then holds the inequality

(1)
$$||f^{(s)}|| \leq K_n(s, \alpha, \beta) ||f||_2$$

where the best constant is given by

(2) $K_n(s, \alpha, \beta) =$

$$= \left\{ \frac{s!}{2^{2s+\alpha+\beta+1}} \sum_{k=s}^{n} \frac{k! (2k+\alpha+\beta+1) \Gamma(k+\alpha+\beta+s+1)}{\Gamma(k+\alpha+1) \Gamma(k+\beta+1)} {k+\alpha+\beta+s \choose s} {k+q \choose k-s}^{2} \right\}^{1/2}.$$

^{*} Presented January 4, 1974 by R. R. JANIĆ.

^{**} This paper partially supported by the Alexander von Humboldt Foundation.

The equality in (1) holds for the polynomials

(3)
$$f^*(x, \alpha, \beta) = C \cdot \sum_{k=s}^{n} C_{k,s}^{(\alpha,\beta)} \cdot P_k^{(\alpha,\beta)}(x),$$

where C is a constant and $P_k^{(\alpha,\beta)}$, $k=0, 1, \ldots$, are the Jacobi polynomials.

Proof. Taking into account that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left\{P_k^{(\alpha,\beta)}(x)\right\} = \frac{k+\alpha+\beta+1}{2}P_{k-1}^{(\alpha+1,\beta+1)}(x)$$

(see [2]), for k = s, s + 1, ..., n we have

$$\left| J_k^{(s)}(x) \right|^2 = A_{k,s} \left| P_{k-s}^{(\alpha+s,\beta+s)}(x) \right|^2$$

with

$$A_{k,s} = \frac{s! \, k! \, (2k+\alpha+\beta+1) \, \Gamma \left(k+\alpha+\beta+s+1\right)}{2^{2s+\alpha+\beta+1} \, \Gamma \left(k+\alpha+1\right) \, \Gamma \left(k+\beta+1\right)} {k+\alpha+\beta+s \choose s}.$$

Let us suppose that $\max(\alpha, \beta) \ge -\frac{1}{2}$. It is known (see [2], theorem 7.32.1) that

$$\max_{x \in [-1, +1]} \left| P_{k-s}^{(\alpha+s, \beta+s)}(x) \right| = \left| P_{k-s}^{(\alpha+s, \beta+s)}(\bar{x}) \right| = {k+q \choose k-s}$$

where the maximum is attained by $\bar{x} = -1$ $(q = \beta)$ or, in the case $q = \alpha$ by $\bar{x} = +1$. Therefore on [-1, +1] we have

(4)
$$\sum_{k=s}^{n} \left| J_{k}^{(s)}\left(t\right) \right|^{2} \leq \sum_{k=s}^{n} A_{k,s} {k+q \choose k-s}^{2}$$

with equality for

(5)
$$t = -1 \quad (\beta \ge \alpha) \text{ or } t = 1 \quad (\alpha \ge \beta).$$

Now let $f(x) = \sum_{k=0}^{n} a_k x^k$; then

$$f(x) = \sum_{k=0}^{n} f_k \cdot J_k(x)$$

where

$$f_k = \int_{1}^{1} w(x) f(x) J_k(x) dx, \quad k = 0, 1, ..., n,$$

and it is known that

$$||f||_2 = \left\{\sum_{k=0}^n |f_k|^2\right\}^{1/2}.$$

Thus for an arbitrary t holds the inequality

(6)
$$|f^{(s)}(t)| \leq \left\{ \sum_{k=s}^{n} |J_{k}^{(s)}(t)|^{2} \right\}^{1/2} \cdot ||f||_{2}$$

with equality for

(7)
$$f(x) = C \cdot \sum_{k=s}^{n} J_k^{(s)}(t) \cdot J_k(x).$$

In view of (4)-(6), we have

$$||f^{(s)}|| \le K_n(s, \alpha, \beta) ||f||_2$$

where $K_n(s, \alpha, \beta)$ is given by (2).

The conditions (5)-(7) furnish the extremal polynomials

$$f^*(x, \alpha, \beta) = C \cdot \sum_{k=s}^{n} C_{k,s}^{(\alpha,\beta)} \cdot P_k^{(\alpha,\beta)}(x)$$

and this completes the proof of the above theorem.

Corollary. If we denote by $q' = \min(\alpha, \beta)$, then for every polynomial of degree n holds the inequality

$$||f|| \le ||f||_2 \cdot \sqrt{\frac{\Gamma(n+\alpha+\beta+2)}{2^{\alpha+\beta+1}\Gamma(q+1)\Gamma(n+q'+1)} \binom{n+q+1}{n}}.$$

The equality is valid for the polynomials

$$f^*(x) = C \cdot \sum_{k=0}^{n} \frac{(2k+\alpha+\beta+1) \Gamma(k+\alpha+\beta+1)}{\Gamma(k+q'+1)} P_k^{(\alpha,\beta)}(x).$$

Proof. We have

(8)
$$K_n(0, \alpha, \beta) = \left\{ \sum_{k=0}^n |J_k(\vec{x})|^2 \right\}^{1/2}, \quad |\vec{x}| = 1.$$

Moreover

$$J_k(x) = (M_k x + N_k) \cdot J_{k-1}(x) + D_k \cdot J_{k-2}(x), \quad k = 2, 3, \ldots,$$

where N_k , D_k are real numbers and

$$\boldsymbol{M}_{k} = \frac{2 k + \alpha + \beta}{2} \left[\frac{(2 k + \alpha + \beta + 1) (2 k + \alpha + \beta - 1)}{k (k + \alpha + \beta) (k + \alpha) (k + \beta)} \right]^{1/2}.$$

At the same time it is known that (see [2])

(9)
$$\sum_{k=0}^{n} |J_{k}(t)|^{2} = \frac{1}{M_{n+1}} [J'_{n+1}(t)J_{n}(t) - J'_{n}(t)J_{n+1}(t)].$$

Because

$$J_{n+1}'(\bar{x}) = \sqrt{A_{n+1,1}} {n+q+1 \choose n}, \qquad J_n(\bar{x}) = A_n^{(\alpha,\beta)} {n+q \choose n}$$

the equalities (8) and (9), with $t=\bar{x}$, give us the form of the best constant.

REFERENCES

- 1. GILBERT LABELLE: Concerning polynomials on the unit interval. Proc. Amer. Math. Soc. 20 (1969), 321—326.
- 2. G. Szegő: Orthogonal polynomials. New York 1959.

Institutul de calcul-Cluj al Academiei R. S. România and Mathematisches Institut A der Universität-Stuttgart.