PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'électrotechnique de l'universite a belgrade

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE
№ 461 - № 497 (1974)
468.

A PRESENTATION OF $\operatorname{PSL}_{2}\left(F_{7}\right)^{*}$

Dragomir Ž. Djoković

The simple group $G=P S L_{2}\left(F_{7}\right)$ has order 168. It is isomorphic to the group $P S L_{3}\left(F_{2}\right)=S L_{3}\left(F_{2}\right)=G L_{3}\left(F_{2}\right)$.

A presentation of all the groups $P S L_{2}\left(F_{p}\right)$, where p is a prime, is well--known (e.g. [1]). In the case when $p=7$ we find in [1], Table 6, p. 138 the following presentation:

$$
R^{3}=S^{3}=(R S)^{4}=\left(R^{-1} S\right)^{4}=E,
$$

where

$$
R=\left(\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right), \quad S=\left(\begin{array}{rr}
2 & 0 \\
1 & -3
\end{array}\right) .
$$

We shall give another presentation of this group which uses involutions as generators and possesses an obvious cyclic symmetry. It is well-known that the group of outer automorphisms $\operatorname{Aut}(G) / \operatorname{Inn}(G)$ is cyclic of order 2. One can exhibit an outer automorphism of G by cyclically shifting our generators.

Two involutions in a group generate always a dihedral group. Thus we need at least 3 involutions to generate G. In fact, G can be generated by 3 involutions but we shall start with 6 involutions.

Theorem 1. Let the group H be generated by $a_{i}(1 \leqq i \leqq 6)$ with defining relations

$$
\begin{array}{ll}
a_{i}^{2}=1 & (1 \leqq i \leqq 6), \\
a_{i}=\left(a_{i-1} a_{i+1}\right)^{2} & (1 \leqq i \leqq 6), \\
\left(a_{i} a_{i+3}\right)^{3}=1 & (1 \leqq i \leqq 3), \tag{3}
\end{array}
$$

where $a_{i}=a_{i+6}$. Then H is isomorphic to $G=\operatorname{PSL}_{2}\left(F_{7}\right)$ with

$$
\begin{array}{lll}
a_{1} \rightarrow\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), & a_{2} \rightarrow\left(\begin{array}{rr}
3 & -2 \\
-2 & -3
\end{array}\right), & a_{3} \rightarrow\left(\begin{array}{ll}
3 & -1 \\
3 & -3
\end{array}\right), \\
a_{4} \rightarrow\left(\begin{array}{rr}
0 & 3 \\
2 & 0
\end{array}\right) & a_{5} \rightarrow\left(\begin{array}{rr}
3 & 1 \\
-3 & -3
\end{array}\right), & a_{6} \rightarrow\left(\begin{array}{lr}
3 & 2 \\
2 & -3
\end{array}\right) .
\end{array}
$$

Proof. The elements of G can be represented by matrices with determinant 1 over the Galois field F_{7}. We recall that two such matrices represent the same element of G if they differ in sign. It is easy to see that there exists a homomorphism $f: H \rightarrow G$ such that the generators $a_{i}(1 \leqq i \leqq 6)$ are

[^0]mapped as indicated in the theorem. We leave to the reader to verify that f is onto.

Let K be the subgroup of H generated by a_{1}, a_{2}, a_{3} and a_{6}. A tedious but routine computation using the systematic method of coset enumeration ([1], Ch. 2) shows that $(H: K) \leqq 7$.

From (1) and (2) we obtain $\left(a_{i} a_{i+1}\right)^{2}=\left(a_{i-1} a_{i+1}\right)^{2} a_{i+1}\left(a_{i-1} a_{i+1}\right)^{2} a_{i+1}=1$, i. e.,

$$
\begin{equation*}
a_{i} a_{i+1}=a_{i+1} a_{i} \quad(1 \leqq i \leqq 6) . \tag{4}
\end{equation*}
$$

Every word w in a_{1}, a_{2}, a_{3} and a_{6} can be written in the form $w=w_{1} w_{2}$ where w_{1} is a word in a_{3}, a_{6} and w_{2} is a word in a_{1}, a_{2}. One can obtain such form by using the relations

$$
a_{1} a_{6}=a_{6} a_{1}, \quad a_{2} a_{6}=a_{6} a_{2} a_{1}, \quad a_{2} a_{3}=a_{3} a_{2}, \quad a_{1} a_{3}=a_{3} a_{1} a_{2},
$$

which follow from (1), (2) and (4). Since $\left(a_{3} a_{6}\right)^{3}=1, a_{3}{ }^{2}=a_{6}{ }^{2}=1$ there are at most 6 different words w_{1}. Since $a_{1} a_{2}=a_{2} a_{1}, a_{1}{ }^{2}=a_{2}{ }^{2}=1$ there are at most 4 different words w_{2}. It follows that $|K| \leqq 24,|H| \leqq 7 \cdot 24=168$. Since $f: H \rightarrow G$ is an epimorphism we have $|H| \geqq|G|=168$. We infer that $|H|=168$ and that f is an isomorphism.

The theorem is proved.
Now, it is easy to remove three involutions.
Theorem 2. The simple group $\operatorname{PSL}_{2}\left(F_{7}\right)$ is isomorphic to the group generated by three elements a, b, c with defining relations

$$
a^{2}=b^{2}=c^{2}=(a b c b c)^{3}=(c a b a b)^{3}=(b c a c a)^{3}=1,
$$

$$
\begin{equation*}
(a b a c b c)^{2}=b,(b c b a c a)^{2}=c,(c a c b a b)^{2}=a . \tag{5}
\end{equation*}
$$

Proof. Put $a_{1}=a, a_{3}=b, a_{5}=c$ in (1), (2), (3). The relations (2) for $i=2,4,6$ express a_{2}, a_{4}, a_{6} in terms of a, b, c. Substituting these expressions for a_{2}, a_{4}, a_{6} in the remaining relations we obtain (5).
Corollary. The automorphism $\alpha: a_{i} \rightarrow a_{i+1}(1 \leqq i \leqq 6)$ of $H \cong G$ is outer.
Proof. By Theorem 1 we know that such automorphism exists and it is obviously of order 6 . We have a homomorphism $g: H \rightarrow S_{7}$ such that

$$
\begin{array}{lll}
a_{1} \rightarrow(45)(67), & a_{2} \rightarrow(23)(67), & a_{3} \rightarrow(27)(36), \\
a_{4} \rightarrow(14)(36), & a_{5} \rightarrow(13)(46), & a_{6} \rightarrow(46)(57) .
\end{array}
$$

The image of g is doubly transitive and the fixer of 6 and 7 in $\operatorname{Im} g$ has the order $\geqq 4$. Thus $|\operatorname{Im} g| \geqq 4 \cdot 42=168$. Therefore g is injective.

If α were inner we would have

$$
x^{-1} g\left(a_{1}\right) x=g\left(a_{2}\right), \quad x^{-1} g\left(a_{2}\right) x=g\left(a_{3}\right)
$$

for some $x \subseteq S_{7}$ which is obviously impossible.
Remarks. (i) If we identify H with G as in Theorem 1 then α^{2} is the conjugation by $\left(\begin{array}{lr}3 & -2 \\ 3 & 3\end{array}\right)$.
(ii) Note that $\alpha^{3}=\beta$ is also an outer automorphism and $\beta^{2}=1$. Thus $\operatorname{Aut}(G)$ is a splitting extension of G.

REFERENCE

1. H. S. M. Coxeter and W. O. J. Moser: Generators and Relations for Discrete Groups. New York 1965.

[^0]: * Presented October 20, 1973 by D. S. Mitrinović.

