PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA – SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 461 — № 497 (1974)

468.

A PRESENTATION OF $PSL_2(F_7)^*$

Dragomir Ž. Djoković

The simple group $G = PSL_2(F_7)$ has order 168. It is isomorphic to the group $PSL_3(F_2) = SL_3(F_2) = GL_3(F_2)$.

A presentation of all the groups $PSL_2(F_p)$, where p is a prime, is well-known (e. g. [1]). In the case when p = 7 we find in [1], Table 6, p. 138 the following presentation:

$$R^3 = S^3 = (RS)^4 = (R^{-1}S)^4 = E,$$

where

$$R = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \qquad S = \begin{pmatrix} 2 & 0 \\ 1 & -3 \end{pmatrix}.$$

We shall give another presentation of this group which uses involutions as generators and possesses an obvious cyclic symmetry. It is well-known that the group of outer automorphisms Aut(G)/Inn(G) is cyclic of order 2. One can exhibit an outer automorphism of G by cyclically shifting our generators.

Two involutions in a group generate always a dihedral group. Thus we need at least 3 involutions to generate G. In fact, G can be generated by 3 involutions but we shall start with 6 involutions.

Theorem 1. Let the group H be generated by a_i $(1 \le i \le 6)$ with defining relations

(1)
$$a_i^2 = 1$$
 $(1 \le i \le 6),$

(2)
$$a_i = (a_{i-1} a_{i+1})^2 \quad (1 \le i \le 6),$$

(3)
$$(a_i a_{i+3})^3 = 1$$
 $(1 \le i \le 3),$

where $a_i = a_{i+6}$. Then H is isomorphic to $G = PSL_2(F_7)$ with

$$a_1 \rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad a_2 \rightarrow \begin{pmatrix} 3 & -2 \\ -2 & -3 \end{pmatrix}, \quad a_3 \rightarrow \begin{pmatrix} 3 & -1 \\ 3 & -3 \end{pmatrix}, \\ a_4 \rightarrow \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix}, \quad a_5 \rightarrow \begin{pmatrix} 3 & 1 \\ -3 & -3 \end{pmatrix}, \quad a_6 \rightarrow \begin{pmatrix} 3 & 2 \\ 2 & -3 \end{pmatrix}.$$

Proof. The elements of G can be represented by matrices with determinant 1 over the Galois field F_7 . We recall that two such matrices represent the same element of G if they differ in sign. It is easy to see that there exists a homomorphism $f: H \rightarrow G$ such that the generators $a_i (1 \le i \le 6)$ are

* Presented October 20, 1973 by D. S. MITRINOVIĆ.

mapped as indicated in the theorem. We leave to the reader to verify that f is onto.

Let K be the subgroup of H generated by a_1 , a_2 , a_3 and a_6 . A tedious but routine computation using the systematic method of coset enumeration ([1], Ch. 2) shows that $(H:K) \leq 7$.

From (1) and (2) we obtain $(a_i a_{i+1})^2 = (a_{i-1} a_{i+1})^2 a_{i+1} (a_{i-1} a_{i+1})^2 a_{i+1} = 1$, i. e.,

(4) $a_i a_{i+1} = a_{i+1} a_i$ $(1 \le i \le 6).$

Every word w in a_1 , a_2 , a_3 and a_6 can be written in the form $w = w_1w_2$ where w_1 is a word in a_3 , a_6 and w_2 is a word in a_1 , a_2 . One can obtain such form by using the relations

$$a_1 a_6 = a_6 a_1, \quad a_2 a_6 = a_6 a_2 a_1, \quad a_2 a_3 = a_3 a_2, \quad a_1 a_3 = a_3 a_1 a_2,$$

which follow from (1), (2) and (4). Since $(a_3a_6)^3 = 1$, $a_3^2 = a_6^2 = 1$ there are at most 6 different words w_1 . Since $a_1a_2 = a_2a_1$, $a_1^2 = a_2^2 = 1$ there are at most 4 different words w_2 . It follows that $|K| \le 24$, $|H| \le 7 \cdot 24 = 168$. Since $f: H \to G$ is an epimorphism we have $|H| \ge |G| = 168$. We infer that |H| = 168 and that f is an isomorphism.

The theorem is proved.

Now, it is easy to remove three involutions.

Theorem 2. The simple group $PSL_2(F_7)$ is isomorphic to the group generated by three elements a, b, c with defining relations

(5)
$$a^2 = b^2 = c^2 = (abcbc)^3 = (cabab)^3 = (bcaca)^3 = 1,$$

 $(\mathbf{5})$

 $(abacbc)^2 = b$, $(bcbaca)^2 = c$, $(cacbab)^2 = a$.

Proof. Put $a_1 = a$, $a_3 = b$, $a_5 = c$ in (1), (2), (3). The relations (2) for i=2, 4, 6 express a_2, a_4, a_6 in terms of a, b, c. Substituting these expressions for a_2, a_4, a_6 in the remaining relations we obtain (5).

Corollary. The automorphism $\alpha: a_i \rightarrow a_{i+1} \ (1 \le i \le 6)$ of $H \ge G$ is outer.

Proof. By Theorem 1 we know that such automorphism exists and it is obviously of order 6. We have a homomorphism $g: H \to S_7$ such that

 $a_1 \rightarrow (45) (67), \quad a_2 \rightarrow (23) (67), \quad a_3 \rightarrow (27) (36),$

$$a_4 \rightarrow (14)(36), a_5 \rightarrow (13)(46), a_6 \rightarrow (46)(57).$$

The image of g is doubly transitive and the fixer of 6 and 7 in Im g has the order ≥ 4 . Thus $|\text{Im } g| \ge 4 \cdot 42 = 168$. Therefore g is injective.

If α were inner we would have

$$x^{-1}g(a_1)x = g(a_2), \quad x^{-1}g(a_2)x = g(a_3)$$

for some $x \in S_7$ which is obviously impossible.

REMARKS. (i) If we identify H with G as in Theorem 1 then α^2 is the conjugation by $\begin{pmatrix} 3 & -2 \\ 3 & 3 \end{pmatrix}$. (ii) Note that $\alpha^3 = \beta$ is also an outer automorphism and $\beta^2 = 1$. Thus Aut(G) is a splitting extension of G.

REFERENCE

1. H. S. M. COXETER and W. O. J. MOSER: Generators and Relations for Discrete Groups. New York 1965.