465. ON AN INEQUALITY FOR CONVEX FUNCTIONS OF ORDER \boldsymbol{k}^{*}

Ljubomir R. Stanković

Let $F_{1}, F_{2}, \ldots, F_{n}$ be integrable nonnegative and monotone functions in the same sense on $[a, b]$ and let P be a positive and integrable function on $[a, b]$. Then the following inequality of Cebyšev holds

$$
\begin{align*}
\left(\int_{a}^{b} P(x) \mathrm{d} x\right)^{n-1} & \left(\int_{a}^{b} P(x) F_{1}(x) \cdots F_{n}(x) \mathrm{d} x\right) \tag{1}\\
& \geqq\left(\int_{a}^{b} P(x) F_{1}(x) \mathrm{d} x\right) \cdots\left(\int_{a}^{b} P(x) F_{n}(x) \mathrm{d} x\right) .
\end{align*}
$$

Equality in (1) holds if and only if $F_{i}(x)=C_{i}\left(C_{i}=\right.$ const $)(i=1,2, \ldots, n)$. It is known that if some additional restrictions are introduced for function F_{i}, inequality (1) could be improved. Namely, P. M. Vasić [1] has proved the following:
Theorem 1. If f_{1}, \ldots, f_{n} are integrable and convex functions on $[a, b]$ such that $f_{k}(x) \geqq 0$ for $x \in[a, b]$ and if $f_{k}(a)=0(k=1, \ldots, n)$ and $p(x)$ is a positive and integrable function on $[a, b]$ we have

$$
\begin{align*}
& \left(\int_{a}^{b} p(x) \mathrm{d} x\right)^{n-1}\left(\int_{a}^{b} p(x) f_{1}(x) \cdots f_{n}(x) \mathrm{d} x\right) \tag{2}\\
& \quad \geqq M\left(\int_{a}^{b} p(x) f_{1}(x) \mathrm{d} x\right) \cdots\left(\int_{a}^{b} p(x) f_{n}(x) \mathrm{d} x\right)
\end{align*}
$$

where

$$
\begin{equation*}
M=\frac{\left(\int_{a}^{b} p(x)(x-a)^{n} \mathrm{~d} x\right)\left(\int_{a}^{b} p(x) \mathrm{d} x\right)^{n-1}}{\left(\int_{a}^{b} p(x)(x-a) \mathrm{d} x\right)^{n}} \tag{3}
\end{equation*}
$$

* Presented December 10, 1973 by P. M. Vasić.

Equality in (2) holds if and only if $f_{k}(x)=c_{k}(x-a)(k=1, \ldots, n)$.
Since, on the basis of (1), $M \geqq 1$, we see that (2) is a sharper inequality than (1).

Putting $p(x)=1, a=0, b=1$, we have $M=\frac{2^{n}}{n+1}$, and (2) yields inequality of B. J. Andersson ([2], see also [3], p. 306)

$$
\begin{equation*}
\int_{0}^{1} f_{1}\left(x_{1}\right) \cdots f_{n}(x) \mathrm{d} x \geqq \frac{2^{n}}{n+1}\left(\int_{0}^{1} f_{1}(x) \mathrm{d} x\right) \cdots\left(\int_{0}^{1} f_{n}(x) \mathrm{d} x\right) . \tag{4}
\end{equation*}
$$

We shall show that inequality (2) can be improved under certain conditions. Primarily, we shall quote the following result, which may be proved by application of mathematical induction.

Theorem 2. Let f be a nonnegative function on $[a, b]$, satisfying conditions:
$1^{\circ} f$ is a convex function of order k,
$2^{\circ} \quad \lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{r}}=0 \quad(r=0,1, \ldots, k-2)$,
then function $x \mapsto \frac{f(x)}{(x-a)^{k-1}}$ is nondecreasing.
Let us put in (1) $n=2$ and

$$
P(x)=p(x)(x-a)^{k-1}, \quad F_{1}(x)=\left((x-a)^{k-1}\right)^{n-1}, \quad F_{2}(x)=\frac{f_{1}(x) \ldots f_{n}(x)}{\left((x-a)^{k-1}\right)^{n}}
$$

where functions f_{1}, \ldots, f_{n} satisfy condtions of the rem 2 . Then we have

$$
\begin{align*}
& \left(\int_{a}^{b} p(x)(x-a)^{k-1} \mathrm{~d} x\right)\left(\int_{a}^{b} p(x) f_{1}(x) \cdots f_{n}(x) \mathrm{d} x\right) \tag{5}\\
& \quad \geqq\left(\int_{a}^{b} p(x)\left((x-a)^{k-1}\right)^{n} \mathrm{~d} x\right)\left(\int_{a}^{b} p(x) \frac{f_{1}(x) \cdots f_{n}(x)}{\left((x-a)^{k-1}\right)^{n-1}} \mathrm{~d} x\right) .
\end{align*}
$$

Putting in (1)

$$
P(x)=p(x)(x-a)^{k-1}, F_{i}(x)=\frac{f_{\mathrm{i}}(x)}{(x-a)^{k-1}} \quad(i=1,2, \ldots, n)
$$

we get

$$
\begin{align*}
&\left(\int_{a}^{b} p(x)(x-a)^{k-1} \mathrm{~d} x\right)^{n-1}\left(\int_{a}^{b} p(x) \frac{f_{1}(x) \cdots f_{n}(x)}{\left((x-a)^{k-1}\right)^{n-1}} \mathrm{~d} x\right) \tag{6}\\
& \geqq\left(\int_{a}^{b} p(x) f_{1}(x) \mathrm{d} x\right) \cdots\left(\int_{a}^{b} p(x) f_{n}(x) \mathrm{d} x\right) .
\end{align*}
$$

By combining inequalities (5) and (6) we get

$$
\begin{align*}
\left(\int_{a}^{b} p(x) \mathrm{d} x\right)^{n-1}\left(\int_{a}^{b} p(x)\right. & \left.f_{1}(x) \cdots f_{n}(x) \mathrm{d} x\right) \tag{7}\\
& \geqq M_{k}\left(\int_{a}^{b} p(x) f_{1}(x) \mathrm{d} x\right) \cdots\left(\int_{a}^{b} p(x) f_{n}(x) \mathrm{d} x\right)
\end{align*}
$$

where

$$
\begin{equation*}
M_{k}=\frac{\left(\int_{a}^{b} p(x)\left((x-a)^{k-1}\right)^{n} \mathrm{~d} x\right)\left(\int_{a}^{b} p(x) \mathrm{d} x\right)^{n-1}}{\left(\int_{a}^{b} p(x)(x-a)^{k-1} \mathrm{~d} x\right)^{n}} \tag{8}
\end{equation*}
$$

Equality in (7) holds if and only if $f_{i}(x)=c_{i}(x-a)^{k-1} \quad(i=1,2, \ldots, n)$. Putting $k=2$ we have $M_{2}=M$, and (7) becomes (2). Therefore we have:
Theorem 3. If f_{1}, \ldots, f_{n} are integrable nonnegative and convex functions of order k on $[a, b]$, such that $\lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{r}}=0 \quad(r=0,1, \ldots, k-2)$, then inequality
(7) holds; M_{k} being given by (8).

We shall prove that $M_{k} \geqq M_{k-1}$, i.e. that by increasing the order of convexity, much better inequalities are obtained.

Introduce in (1)
$P(x)=p(x)(x-a)^{k-2}, F_{1}(x)=\left((x-a)^{k-2}\right)^{n-1}, F_{i}(x)=x-a \quad(i=2,3, \ldots, n+1)$, we obtain

$$
\begin{align*}
&\left(\int_{a}^{b} p(x)(x-a)^{k-2} \mathrm{~d} x\right)^{n}\left(\int_{a}^{b} p(x)\left((x-a)^{k-1}\right)^{n} \mathrm{~d} x\right) \tag{9}\\
& \geqq\left(\int_{a}^{b} p(x)\left((x-a)^{k-2}\right)^{n} \mathrm{~d} x\right)\left(\int_{a}^{b} p(x)(x-a)^{k-1} \mathrm{~d} x\right)^{n}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{\int_{a}^{b} p(x)\left((x-a)^{k-1}\right)^{n} \mathrm{~d} x}{\left(\int_{a}^{b} p(x)(x-a)^{k-1} \mathrm{~d} x\right)^{n}} \geqq \frac{\left(\int_{a}^{b} p(x)(x-a)^{k-2}\right)^{n} \mathrm{~d} x}{\left(\int_{a}^{b} p(x)(x-a)^{k-2} \mathrm{~d} x\right)^{n}} \tag{10}
\end{equation*}
$$

Since on the basis of (10), $M_{k} \geqq M_{k-1}$, we see that (7) is a sharper inequality than (2). The above sharper inequality is obtained by adding the order k convexity condition.

REFERENCES

1. P. M. Vastć: On an inequality for convex functions. These Publications № $\mathbf{3 8 1}$ - № $\mathbf{4 0 9}$ (1972), 67-70.
2. B. J. Andersson: An inequality for convex functions. Nordisk Mat. Tidskr. 6 (1958), 25-26.
3. D. S. Mitrinović: Analytic Inequalities. Berlin-Heidelberg-New York, 1970.

Elektronski fakultet
18000 Niš, Jugoslavija

