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464. COMPUTER PROGRAMS FOR COMPUTATION OF THE
HYPERBOLIC TANGENT FUNCTlON*

Dusan V. Slavic and Laslo L. Kraus

In the present paper programs for computation of the hyperbolic tangent
function of a real variable for the standard and extended precision of the
computer IBM 1130 are suggested.

The hyperbolic tangent function is one of the few elementary mathemati-
cal functions which are infallibly present in a subroutine library of any com-
puter. The large-scale application of computers requires a constant improvement
of computer programs. The intention of this paper is to substitute the present
programs for computation of the function x ~ th x by programs having incom-
parably higher accuracy and greater speed of computation.

Due to the specific manner of representation of real numbers III com-
puters and to the properties of the hyperbolic tangent function, it is useful to
adopt the next algorithm for computation of this function:

{

X (Ixl<a),

thxR::!
~(x) (a~lx[<b),

T(x) (b~lx[<c),

sgnx (c~lx[).

Here R (x) is a polynomial or a rational function suitable for the desired
accuracy of the given computer, and T(x) is a transcendental expression based
on the equation:

(I)

(2)

Parameters a, b, c, depend on the computer characteristics, primarily on
the desired accuracy. Having in view the requested accuracy, endeavours should
be made to choose a as large as possible and band c as small as possible,
in order to obtain the highest possible speed of computation of the function
x ~ th x.

The boundary between the rational and the transcendental approximation
of the function x ~ th x is determined differently in various papers. Starting
from the general mathematical considerations the boundary b = 0.5 log 3 =
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= 0.54930614433 is obtained leading to numerous approximative expressions
for thx in the segment (--0.5 log 3, 0.5 log 3); see for examplt [1] (pp. 160,
183-185, 188-190, 196, 204) and [2] (pp. 31, 39). For this value of b it
is useful to adopt the transcedental approximation in the form (see for exam-
ple [3], p. 99):

thX= (I--
.

2_-- )sgnx.
e2 ix I+ 1

Depending on the hardware and the software of the particular computer,
the domain of application of the transcendental approximation can be extended.
So, for example, the company CII uses the next formula [4]:

thx=
{
2(0.5-1./(e2x+1.)) (x> b)
2 (1./(e-2X + I.) - 0.5) (x< - b)

where b = 0.5 log 2 = 0.34657359.

Computer CDC 3600 uses formula (2) with b=0.3, see [4], p.98.

When the characteristic of a real number is for the base 2, it is con-
venient to choose the boundaries of the form 2--m (m being an integer), because
then the determination of the region wherein the particular argument lies
is very simpk and the selection of the approximation is easy. For this reason
the value b = 0.5 is adopted in [5]. In that paper for the extended prtcision
of the computer IBM 1130 the formula

thx = (0.25 - e2!X~>C+ 0.75) sgn x(3)

is used, ensuring the highest possible accuracy. However, formula (3) is unap-
plicable for b<0.5. Further, it is not necessary to make programs with pos-
sible maximum accuracy. Minor computational errors smaller than those occur-
ring in computation of other elementary functions are to be accepted; especi-
ally if it contributes to greater speed of computation.

Company Hewlett-Packard has adopted for their computer 2100 A the
value b = 118 and formula (2) (see for example [6]). More than hundred thous-
and of tests have shown that formula (2) and value b = 1/8 can be used also
in the IBM 1130 for computations in extended precision. Moreover, with some
modifications, in standard precision of the IBM 1130 this formula can be used
even for b = 1/32.

Such small values of the parameter b enable relatively simple realisation
of the rational approximation of the function x 1-+th x. Instead of the compli-
cated approximations by rational functions based on the simplifications of the
continued fraction developments

XX2X2X2X2

thx= - --
. .

1+ 3+ 5+ 7+ 9~.
or

X3

thx=x -..-----.

3 + X2 -+-

. . .,
5+ 7+ 9+



Computer programs for computation of the hyperbolic tangent function 43

see [7], p. 85, or on high order polynomial (as for example by CDC 3600),
the error of the polynomial approximation can be reduced to the least possible
value even by 7th and yd order polynomials for the extended and standard
precision of the IBM 1130, respectively.

By careful writing of the program, the 7 th order polynomial for the ex-
tended precision can be realized by four multiplications and three additions only
(i.e., with 4 calls to the program EMPY and 3 calls to the program EADD).
The yd order polynomial for the standard precision is realized by integer ari-
thmetic operations only (i.e., without any call to the programs FMPY and FAD D).

The boundary a between the monomial and polynomial approximations is
determined from the request that (a - th a)ja is less than the allowed error of
computation. That means that a = 2-14 for the extended precision and a = 2-12
for the standard precision of the IBM 1130.

The boundary c between the transcendental approximation and the asym-
ptotic region is determined from the request that 1 - th c is less than the al-
lowed error of the computation. That means that c = 16 for the extended pre-
cision and c = 8 for the standard precision of the IBM 1130.

In [8], Chapter 2, p. 88, the next values for these parameters: a = 0,
b = 0, c = 32, are adopted. See [9], pp. 96-100.

By [10] the hyperbolic tangent function in the IBM 1130 (Disk Monitor
System, Version 2, Modification 11) is computed by the next algorithm:

e2x-l
»Tanh(x)=-

e2x + 1

for x;:;; 32

x;;;; -32

Tanh (x) = 1

Tanh (x) = - 1«,
compare with [10], p. 105.

However, investigations of the programs ETANHjETNH
FTNH have shown other algorithms.

The algorithm for the extended precision is

and FT ANHj

(xl< 16),

(x;:;;16),

(x;;;;-16).

The algorithm for the standard precision is

(e2X + 1.) + (-2.)-a,(e2X + 1.)+(-2.)-a-- (e2X + 1.)-a2
(e2X + 1.)-a

1.

-1.

(lxl<16),

(x;:;;16),

(x;;;;-16),

thx=

where:

a - is the value of the binary digits in the second half of the second
word of the mantissa of the expression (e2X+ 1.),
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~1- is the value of the binary digits in the second word of the man-
tissa of the expression (e2x + 1.) + ( - 2.),

~2- is the value of the binary digits in the second word of the man-
tissa of the expression (e2X+ 1.).

Here we assume ~,al' a2 to be in non-packed form, I.e. that they are
III three-word form in PAC.

EPR SPR
ENT ETH ENT FTH
ENT ETHN ENT FTHN

'"
ess 3 z ess 1

B ess 2 FTH ess 1
ETH DC LleF FGETP'

LlBF , EGETP FTHN DC
ETHN DC ~D 3 125

~D 3 125 S P
S F ese ~e.z+
ese ~D.Z+ ~D 0+1

~DD H+1 STO 3 125
AND 3 126 ~DD 0
OR G+1 OR R
STD 3 126 AND 3 126

~D G OR 0
STO 3 125 A STD 3 126

e Bse I ETHN e ese I FTHN
D A I e A 5

ese ETHN.Z+ ese FTHN.Z+
S J S T
ese ~E.- Bse ~F.-
LlBF ESTO ~D U
DC B S 3 125

~leF EMPY 5TO D
DC B ~D 3 126
LlRF ESTo STO Z
DC A D DC
5 K STO D
STO 3 125 M Z
LlBF SNR M D

~!BF EADD M V
DC ~SRT ..
LlBF EMPY AD 3 126
DC A MDX A
LlBF EADD F A W
DC M STO 3 125
LlBF EMPY eA~~ FXPN
DC A LlBF FADD
LlBF EMPY DC 0
DC B LIeF FSTO
LleF EADD DC Z
DC B ~D 3 127
MDX e AND x

E A M STO D
STO 3 125 LIBF FADD
CA~~ EXPN. DC R
LlBF ESTO ~D 0
DC e 5 0
LlBF E"'DD M 3 126
DC G 0 Z

~IBF ESTO 5RT 16
DC

'"
AD 3 126

~1E1" E~D STD 3 126
DC e LIeF FD1V
LIBI' E"'DD DC Z
DC H MDX B
LI81' EDIV 0 DC 0
DC

'"
0 DEe 1. .

MOX C R DEe -2.
F DC 133 5 DC 15
G XFLC 1. T DC 7
H XFLC -1. U DC 118FB
1 DC 19 V. DC IF"'Ae
.J DC 12 W DC 125
K DC .. X DC 255
L DC 126 P DC 132

DC 17502 END
M XFLC -0.33333..3

END
Figure 1
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This algorithm enables reduction of the constant b even to 2-5 with still
satisfying accuracy.

We note, that the author of the IBM's programs did not introduce regi-
ons of the monomial and polynomial approximation (i.e. a = 0, b = 0, in his
programs). A large relative error and low speed of computation are stemming the-
refrom. These disadvantages are removed by programs ETHjETHN and
FTHjFTHN, suggested on Figure 1.

Both programs follow the general algorithm given in (I). Parameters a,
b, c, are those already chosen in the preceding discussion.

In the program ETHjETHN for 2-3;;;; Ix! <24 the formula (2) is used,
while for 2-14;£ Ixl <2-3 the formula

x H>-R (x) = x- 0.3333343 x3 + 0.13353 x5 - 0.0625 x7
is adopted.

In the program FTHjFTHN for 2 - 5;£ Ix 1<23 the formula

(e2x+1 )+(-2)-~
(e2x+1.)+(-2.)-~

. . 1

th
(e2X +] ')-~2XR:i

(e2X + 1.)-~

is used, where a, al' az are variables as previously defined. For 2-14;;;; Ixl<2-5
the formula

thxR:ix-0.3333 X3

is adopted.
In Tables 1. through 4. a comparative survey of characteristics of the

IBM's programs (ETNH and FTNH) the programs suggested in the present paper
(ETHN and FTHN) for computation of the function x H>-th x in the IBM
1130 (in extended and standard precision, respectively) is given.

K
I

ETNH
I

ETHN
I

0-93

5.6-5.8

94-97

5.6-8.2
I

98-113

1

-
7.6-8.2

0.06
I

] ]4-]25

7.4-8.0
I

126-131 I
7.3-8.0

I

'

7.4-8.1

132

5.6-8.0

Table 1

133-2551
---~l

0.156

I

'

0.1120.06 0.06 I 4.5-5.5 5.7-8.1

Table 2

I

K

I

FTNH

FTHN

i 94-102

I

3.9-4.6

0.06

/

103-116

4.3-4.6

I

0.06

1117-123
I 4.3-4.6

10.24-0.26

124-]31

4.1-4.3
I

132

3.9-4.2

I

0.11

1133-255

I

~:~:4.1-4.3
-

Table 3

133-2551

~ I

K
I

0-1191~1~21 !~
I

~
.

~
..

1~
1

~1126-1281129-132

~;1~-I-+-I+-I- : J~--I+I+! : I ~



I

K 0-113 114
1~51

I

FTANH >9 9

FTH 0 0 01

Table 4

119 120 121-122 123 124-1321133-255

7 6 5 4 3 2 2 1 0
-- -~ --- --

0 0 0 0 0 1 2 1 I 0
--
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"--

116 117 118'
---

In Tables, K is the characteristic of the
form X = M. 2K-128 where M is a normalized
for X=O, when M=O).

Tables 1 and 2 show the time of computation in the above programs in
milliseconds for the various values of the characteristic K of the argument X.
The storage cycle of the machine is 3.6 !losec.

Tables 3 and 4 show the number of inaccurat;: binary digits of the man-
tissa of the result of computation for the same programs.

From Tables 1 through 4 it is evident that programs suggested in the
present paper (ETH/ETHN and FTH/FTHN) do not have greater error of
computation than IBM's programs (ETANH/ETNH and FTANH/FTNH), and
that they have, in the wide region of the argument, considerably smaller error
and greater speed of computation.

real argument X represented in
mantissa, 0.5 ~ IMI < 1 (except

** *
D. S. MITRINOVIC,J. LYNESS,W. J. CODY, H. UNGERand E. PESCHLhave

read this article in manuscript and have made some valuable remarks and
suggestions.
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