PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D’ÉLECTROTECHNIQUE DE L'UNIVERSITÉ A BELGRADE

443. INEQUALITIES FOR THE TRIANGLE*

Mirko Jovanović

Theorem 1. For the triangle the following inequality

$$
\begin{equation*}
\frac{m_{a}}{b+c}+\frac{m_{b}}{c+a}+\frac{m_{c}}{a+b} \geqq \frac{3 \sqrt{3}}{2} \frac{r}{R} \tag{1}
\end{equation*}
$$

holds, with equality if and only if the triangle is equilateral.
Proof. Let a triangle $A B C$ be given, and let $m_{c}=C C_{1}$. From triangles $A C C_{1}$ and $B C C_{1}$ we have respectively

Therefrom

$$
\frac{R \sin \gamma}{\sin \Varangle A C C_{1}}=\frac{m_{c}}{\sin \alpha}, \quad \frac{R \sin \gamma}{\sin \Varangle B C C_{1}}=\frac{m_{c}}{\sin \beta} .
$$

$$
\sin \gamma(\sin \alpha+\sin \beta) \frac{R}{m_{c}}=\sin \Varangle A C C_{1}+\sin \Varangle B C C_{1} \leqq 2 \sin \frac{\gamma}{2}
$$

or

$$
\begin{equation*}
\frac{2 m_{c}}{a+b} \geqq \cos \frac{\gamma}{2} . \tag{2}
\end{equation*}
$$

Analogously to inequality (2) we have

$$
\begin{equation*}
\frac{2 m_{a}}{b+c} \geqq \cos \frac{\alpha}{2}, \quad \frac{2 m_{b}}{c+a} \geqq \cos \frac{\beta}{2} . \tag{3}
\end{equation*}
$$

On the basis of (2) and (3)

$$
\begin{equation*}
2 \sum \frac{m_{a}}{b+c} \geqq \cos \frac{\alpha}{2}+\cos \frac{\beta}{2}+\cos \frac{\gamma}{2} . \tag{4}
\end{equation*}
$$

Since ([1])

$$
\begin{equation*}
\cos \frac{\alpha}{2}+\cos \frac{\beta}{2}+\cos \frac{\gamma}{2} \geqq \sin \alpha+\sin \beta+\sin \gamma \tag{5}
\end{equation*}
$$

and

$$
a+b+c \geqq 6 r \sqrt{3},
$$

i. e.,

$$
\begin{equation*}
\sin \alpha+\sin \beta+\sin \gamma \geqq 3 \frac{r}{R} \sqrt{3}, \tag{6}
\end{equation*}
$$

we get the required inequality.

[^0]Theorem 2. The following inequality

$$
\frac{\sqrt{3}}{F} \geqq \frac{1}{m_{b} m_{c}}+\frac{1}{m_{c} m_{a}}+\frac{1}{m_{a} m_{b}}
$$

holds, with equality only for an equilateral triangle.
Proof. From (2) we have

$$
2 m_{c} \geqq(a+b) \cos -\frac{\gamma}{2} \Rightarrow m_{c}^{2} \geqq a b \cos ^{2} \frac{\gamma}{2}
$$

i.e.,

$$
\begin{equation*}
\sqrt{\operatorname{tg} \frac{\gamma}{2}} \geqq \frac{\sqrt{F}}{m_{c}} . \tag{7}
\end{equation*}
$$

Analogously we get

$$
\begin{equation*}
\sqrt{\operatorname{tg} \frac{\alpha}{2}} \geqq \frac{\sqrt{F}}{m_{a}}, \quad \sqrt{\operatorname{tg} \frac{\beta}{2}} \geqq \frac{\sqrt{F}}{m_{b}} . \tag{8}
\end{equation*}
$$

From (7) and (8) we have

$$
\begin{equation*}
\sum \sqrt{\operatorname{tg} \frac{\beta}{2} \operatorname{tg} \frac{\gamma}{2}} \geqq F \sum \frac{1}{m_{b} m_{c}} . \tag{9}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left(\sum \sqrt{\operatorname{tg} \frac{\beta}{2} \operatorname{tg} \frac{\gamma}{2}}\right)^{2} \leqq 3 \sum \operatorname{tg} \frac{\beta}{2} \operatorname{tg} \frac{\gamma}{2}=3, \tag{10}
\end{equation*}
$$

from (9) we obtain the requested inequality.
Theorem 3.

$$
\left(m_{b} m_{c}\right)^{2}+\left(m_{c} m_{a}\right)^{2}+\left(m_{a} m_{b}\right)^{2} \geqq r s^{2}(4 R+r) .
$$

Equality holds if and only if the triangle is equilateral.
Proof. Since

$$
m_{a}^{2}=\frac{b^{2}+c^{2}}{2}-\frac{a^{2}}{4}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4},
$$

and

$$
b^{2}+c^{2} \geqq 2 b c,
$$

we obtain

$$
m_{a}^{2} \geqq s(s-a) .
$$

Similarly

$$
m_{b}^{2} \geqq s(s-b), \quad m_{c}^{2} \geqq s(s-c) .
$$

Therefore

$$
\begin{equation*}
m_{b}^{2} m_{c}^{2} \geqq s^{2}(s-b)(s-c)=F^{2} \frac{s}{s-a}=F s r_{a} . \tag{11}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
m_{c}^{2} m_{a}^{2} \geqq F s r_{b}, \quad m_{a}^{2} m_{b}^{2} \geqq F s r_{c} . \tag{12}
\end{equation*}
$$

Adding (11) and (12)

$$
\sum\left(m_{b} m_{c}\right)^{2} \geqq F s\left(r_{a}+r_{b}+r_{c}\right)=r s^{2}(4 R+r)
$$

Theorem 4.

$$
\sum \frac{a^{2}}{m_{b}{ }^{2}+m_{c}^{2}} \leqq 2,
$$

with equality if and only if the triangle is equilateral.
Proof. This inequality is equivalent to

$$
\begin{equation*}
\sum\left(1+\frac{1}{4} \frac{b^{2}+c^{2}}{a^{2}}\right)^{-1} \leqq 2 \tag{13}
\end{equation*}
$$

Start with the function

$$
\begin{equation*}
f(x)=\frac{x}{m x+n} \quad(m, n, x>0) . \tag{14}
\end{equation*}
$$

Since

$$
f^{\prime \prime}(x)=\frac{-2 m n}{(m x+n)^{3}}<0,
$$

function f, given by (14) is concave, so that

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{1}{m+\frac{n}{x_{i}}} \leqq 3\left(m+3 \frac{n}{x_{1}+x_{2}+x_{3}}\right)^{-1} \tag{15}
\end{equation*}
$$

Putting in (15) $m=3, n=a^{2}+b^{2}+c^{2}, \quad x_{1}=a^{2}, \quad x_{2}=b^{2}, x_{3}=c^{2}$ we get inequality (13).

Theorem 5.

$$
\sum \frac{b^{2}+c^{2}}{w_{a}^{2}} \geqq 8
$$

Equality holds only for an equilateral triangle.
Proof. Since

$$
\cos \frac{\gamma}{2}=\frac{w_{c}}{2}\left(\frac{1}{a}+\frac{1}{b}\right) \geqq \frac{2 w_{c}}{a+b},
$$

we have

$$
\begin{equation*}
\frac{a+b}{w_{c}} \geqq 2 \sec \frac{\gamma}{2} \Rightarrow \frac{(a+b)^{2}}{w_{c}{ }^{2}} \geqq 4 \sec ^{2} \frac{\gamma}{2} . \tag{16}
\end{equation*}
$$

From $2\left(a^{2}+b^{2}\right) \geqq(a+b)^{2}$ it follows

Similarly

$$
\begin{equation*}
\frac{a^{2}+b^{2}}{w_{c}^{2}} \geqq 2 \sec ^{2} \frac{\gamma}{2} . \tag{17}
\end{equation*}
$$

$$
\frac{b^{2}+c^{2}}{w_{a}^{2}} \geqq 2 \sec ^{2} \frac{\alpha}{2}, \quad \frac{c^{2}+a^{2}}{w_{b}^{2}} \geqq 2 \sec ^{2} \frac{\beta}{2} .
$$

Adding up inequalities (17) and (18) we get

$$
\sum \frac{a^{2}+b^{2}}{w_{c}^{2}} \geqq 2 \sum \sec ^{2} \frac{\alpha}{2} \geqq 8 .
$$

REFERENCE

1. M. S. Klamkin: Notes on inequalities involving triangles or tetrahedrons. These Publications № 330-№ 337 (1970), 1-15.

[^0]: * Presented June 23, 1973 by O. Bottema and R. R. Janić.

