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420. SOME NEW RELATIONS FOR JACOBI POLYNOMIALS
ARISING FROM COMMUNICATION NETWORKS THEORY*

Branko D. Rakovic and Petar M. Vasic

O. The classical orthogonal polynomials are widely used in communication theory
and particularly in the synthesis of electric filters. Apart from CHEBYSHEV
polynomials, which are of utmost importance in the synthesis of filters exhibiting
a sharp increase in attenuation as the frequency increases above cutoff, other
classes of orthogonal polynomials such as JACOBI, LEGENDRE, GEGENBAUER,
LAGUERRE,HERMITEand BESSELpolynomials have found many useful applications
in the synthesis of electric filters.

A special class of filter functions of odd order providing monotonic
magnitude characteristic of the resulting filter has first been investigated by
P APOULIS[1] by means of LEGENDREpolynomials. Subsequently these results
have been extended so as to include filters of even degree [2], [3], and also some
other functions leading to the same class of filtering networks whose magnitude
response is bounded to be monotonic have been derived using a different approach
based on the applications of JACOBIpolynomials [4].

In the first part of this paper a new summation formula for Jacobi
polynomials is derived, the special ca~es of which enable the solution for the
transfer functions of low-pass filters with monotonic magnitude response to be
obtained in more compact form for both n even and n odd simultaneously. In
the second part a general differential-difference property of the JACOBIpolynomi-
als is derived the special case of which stems from some properties of the
aforementioned class of monotonic magnitude filters.

1. We shall start with the known relationship for the JACOBI polynomials
[5; p. 276]

(2 n- 2 k+'A-I)P~~I},r» (x)

= (n-k + 'A-I) P~'=-~)(x)- (n-k +~) P~'=-~~I(x) ('A=()(+~+I)

which is valid for ()(>O, ~> -1, k~n-1.
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Multiplying both sides by (A)n-k-l (n--k+~+lh CoFO)where

(ah=a(a+I).. .(a+k-I) (k~I), (a)o=l,

and summing with respect to k (k = 0, I, ..., n-I), we find

n-l

L (2 n- 2 k+ A-I)(A)n-k-l (n-k + ~ + l)kP~<x-=-l,[3>Cx)
k~O

n-l

= L (A)n-k-l (n-k + A-I) (n-k + ~ + Ih p~':~ (x)
k~O

n-l
- L (A)n-k-l(n-k+~)(n-k+~+I)kP~':~)-l(X)

k=O

n-l
= L (I')n-r(n-r+~+ l)rP~':~)(x)

r=O
n

- L (A)n-r (n- r + ~ + I)r P~':~) (x)
r~1

wherefrom follows

n-l

L (2n-2k+A-I) (A)n-k-l(n-k+~+lhp~,,-,/,[3)(X)
k=O

= (A)n
p~(f,,[3)

(x)- (~+ I)n p&<x,(3)(x).

Now with the change of summation limits and with the summation
performtd with respect to k (k = I, 2, ..., n) we finally get

(1.1)
n

L (2 k + A-I) (A)k-l (k + ~ + I)n-k
p~<x-l,(3)(x)

k=l

= (A)np~<x,(3)(x)- (~+ I)n'

where, as before, <X>O, ~> -I, A= <X+~ + I.
Special cases. For <X=1, ~=q-I (q>O), we have A=q+ I and the sum-

mation formula (1.1) reduces to

n

L (2 k + q) PkO,q-l) (x) = (n + q) p~l.q-l) (x)-q,
k~l

so that

(1.2)
n

L (2 k + q) P~O,q--l) (x) = (n + q) p~l,q-l) (x)
k~O

Using the relationship between JACOBI polynomials p~<x,(3)(x) and the shifted
JACOBI polynomials Gn (p, q, x)

P~p-q,q-l) (x) =
r (2n + p)

Gn (p, q, 1 + X)n! r(n+ p) 2
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we easily deduce from (1.2)

~ r (2 k +q -1-1)
G ( ) -

r (2 n + q + 1)
G ( 1 )k q, q, X - n

q + , q, x ,
k~O k! r (k + q) n! r (n + q)

. (0,0) (2n)! ( 1 +X) d
(1,1) 2 d

or, slllce, Pn (x)= Gn 1,1, - =Pn(x) an Pn (x)=- -Pn+l(X),
(n!)2 2 n + 1 dx

where Pn (x) is the LEGENDREpolynomial of order n, we find by substituting
p = q = 1 and p = q = 2 in (1.3) respectively

(1.3)

(1.4) i (2k+I)Pk(x)= (2n+I)!Gn (2, 1, ~+X),
k~O

(n!)2 2

and

~ Qk+ fl.! G (2,2
1 +X )= ~P (x).

k7:0 (k!)2 k ,
2 dx n+l

The last two formulas are directly involved in determining the transfer
functions of monotonic magnitude filters.

Substituting in (1.1) cx=..!.., ~=_..!.., A=I, p~-1/2,-1/2)(X)= (I/2)nT(x),
2 2

.
n! n

where Tn (x) is the CHEBYSHEVpolynomial of the first kind, and collecting the
product terms, we find

( 1.5)

~ T() ~

(2n)!!
P

(I/2,-1/2) () 1
L kX- n x+-.

k~O 2(2n-I)!! 2

Similarly, for cx=~+I, and, since p~,0)(x)=if3+I)k C~+1/2)(X)
(2 ~ + I)k

C~+1/2) (x) is the GEGENBAUER polynomial, we obtain

(1. 6)

where

i (2 k+ 2 ~ + 1) C~+1/2) (x) =
(2~+ 1)n+lp~+l,~) (x)-(2 ~ + 1).

k~O (~+ I)n

Subftituting ~ =..!.. and using the relation C~1)(x)
= Un (x), where

2
the CHEBYSHEV polynomial of the second kind, (1.7) reduces to

(1.7)

Un (x) is

i (k + 1) Uk (X) =
(n+2)! p~3/2,1/2)(X).

k=O
. 2 (3/2)n

2. In this part the following formulae will be used (see [5], p. 276):

(1. 8)

(2.1)

(2.2)

(2 n + A+ 1) (1 + x) p~a,b+l) (x) = 2 (n + b + 1) p~a,b) (x) + 2 (n + 1) p~a-i-~)(x),

(2 n + A-I) p~a-l,b) (x) = (n + A-I) p~a,b) (x)-- (n + b) p~a~~)(x),

(2.3)

(2.4)

p~a,b-l) (x)_p~a-l,b) (x) =p~~~) (x),

2
:x

p~a,b) (x) = (n + A)p~~-;I,b+I) (x),

where A= a + b + 1.
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(2.5)

From (2.4) and (2.3) we obtain

2 (1 + x) ~ p~",[j)(x) = (1 + x)(n + ()( + ~+ 1) p~,,-~I,[j+I) (x)
dx

= (1 + x) (n + ()(
+ ~ + 1) (p~"+I,[j) (x)_p~",HI) (x)) .

Substituting a = ()( + 1 and b = ~-1 in (2.1) we have

(2 n + ()(+ ~ + 2) (1 + x)
p~"+I,[j) (x) = 2 (n +~)

p~"+I,[j-I) (x)

+ 2 (n + 1) P~"cV,[j-I) (x),

(2.6)

while for a =
()( and b =~, (2.1) becomes

(2.7) (2 n + ()( + ~+ 2)(1 + x) p~'" HI) (x) = 2 (n + ~ + 1) p~'"
[j)

(x)

+ 2 (n + 1) p~~~) (x).

of (2.1) and (2.3), the relation (2.5) can be written in the fol-By uSe
lowing form

(2.8) 2 (1 + x) ~ p~'"
[j)

(x) =
11Ht+ ~+ 1 (2 (n +~) p~"+I, [j-I) (x)

~ 2n+~+~+2

-2 (n + ~ + 1) p~",[j)(x) + 2 (n + 1) p~"+I,[j) (x)).

Now, substituting a=()(+ 1, b=~ in (2.2) and taking into account (2.3)
we find

(n + ()(+~+ I)P~"+I,[j) (x)
= (2 n + ()(+ ~ + 1)

p~",[j)(x)

+ (n +~) (p~"+I,[j-I) (x)-P~",[j) (x»).

Eliminating p~"+I,[j) (x) from (2.8) and (2.9), and rearranging the terms
we deduce

(2.9)

(2.10) (1 + x)~P~'"
[j)

(x) = (n +~) p~"+I,[j-I) (x)- ~p~",[j) (x).
dx

(2.11)

The special caSe of (2.10), obtained for ()(
= 0, ~= I,

(1 + x)
d~

p~o, I)
(x) = (n + 1) p~I,O) (x)-P~o, I)

(x)

derive!> its origin from an interrelation between different subclasses of monotonic
magnitude filters.
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