PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA -- SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 412 — № 460 (1973)

419. TWO ELEMENTARY INEQUALITIES*

Gojko Kalajdžić

This Note is a supplement to the collection of inequalities appearing in Part 3 of the book; D. S. MITRINOVIC *Analytic Inequalities*. Berlin-Heidelberg-New York, 1970.

1. If $a_k \ge 0$, $n \le a \le n+1$, n=0, 1, ..., the implication

(1.1)
$$\sum_{k=1}^{n+1} \frac{1}{1+a_k} \ge a \implies \prod_{k=1}^{n+1} a_k \le \left(\frac{n+1-a}{a}\right)^{n+1}$$

is valid.

Proof. Let $\sum x_1 \cdots x_k$ $(k=1,\ldots,n+1)$ denote the sum of all products having the form $x_{i_1} \cdots x_{i_k}$ with $1 \le i_1 < \cdots < i_k \le n+1$, and let $b^{n+1} = a_1 \cdots a_{n+1}$.

The left-hand side of the implication (1.1) is equivalent to

i.e.
$$\frac{\sum (1+a_1)\cdots (1+a_n) \ge a (1+a_1)\cdots (1+a_{n+1})}{n+1+\sum_{k=1}^{n} (n-k+1) \sum a_1 \cdots a_k \ge a + \sum_{k=1}^{n+1} a \cdot \sum a_1 \cdots a_k;}$$

therefrom, upon a short arrangement and using the relationship between means of various sequences, it follows, one after the other:

$$n+1-a \ge \sum_{k=1}^{n+1} (a-n+k-1) \sum a_1 \cdots a_k$$

$$\ge \sum_{k=1}^{n+1} (a-n+k-1) \binom{n+1}{k} (a_1 \cdots a_{n+1})^{\frac{k}{n+1}} = \sum_{k=1}^{n+1} (a-n+k-1) \binom{n+1}{k} b^k$$

$$= (a-n-1) \sum_{k=1}^{n+1} \binom{n+1}{k} b^k + b \left(\sum_{k=1}^{n+1} \binom{n+1}{k} x^k \right)'_{x=b}$$

$$= (a-n-1) \left((1+b)^{n+1} - 1 \right) + b \left((1+x)^{n+1} - 1 \right)'_{x=b}$$

$$= (1+b)^n (a-n-1+ab) + (n+1-a),$$
i. e.
$$(1+b)^n (a-n-1+ab) \le 0 \Rightarrow b \le \frac{n+1-a}{a},$$

^{*} Presented April 1, 1973 by D. S. MITRINOVIĆ and B. CRSTICI.

and finally

$$a_1 \cdot \cdot \cdot a_{n+1} = b^{n+1} \le \left(\frac{n+1-a}{a}\right)^{n+1}$$

which was to be proved.

Example. If we put $a_k = \lg^2 x_k$ (k = 1, ..., n + 1) in (1.1), for $n \le a \le n + 1$ we get the implication

$$\sum_{k=1}^{n+1} \cos^2 x_k \ge a \Rightarrow \prod_{k=1}^{n+1} \operatorname{tg}^2 x_k \le \left(\frac{n+1-a}{a}\right)^{n+1}.$$

REMARK 1. In the book [1] implication 3.2.44 reads

(1.2)
$$\sum_{k=1}^{n+1} \frac{1}{1+a_k} \ge n \Rightarrow \prod_{k=1}^{n+1} \frac{1}{a_k} \ge n^{n+1} \qquad (a_k > 0; \ k = 1, \ldots, n+1).$$

Implication (1.1) for a = n reduces to (1.2). A rather complicated proof for (1.2) was given in Elemente der Mathematik 14 (1959), 132 by C. BINDSCHEDLER.

2. For $a_i \in [k, +\infty)$ (k = 1, 2, ...) we have

(2.1)
$$\frac{k}{k+1} \leq \frac{\left(\prod_{i=1}^{n} a_i\right) / \left(\sum_{i=1}^{n} a_i\right)}{\left(\prod_{i=1}^{n} [a_i]\right) / \left(\sum_{i=1}^{n} [a_i]\right)} \leq \left(\frac{k+1}{k}\right)^n \qquad (n=1, 2, \ldots)$$

where [a] denotes the integral part of the real number a.

Proof. Inequality (2.1) may be written in the form

(2.2)
$$\frac{k}{k+1} \leq \prod_{i=1}^{n} \frac{a_i}{[a_i]} \cdot \frac{\sum_{i=1}^{n} [a_i]}{\sum_{i=1}^{n} a_i} \leq \left(\frac{k+1}{k}\right)^n,$$

in which it will be proved.

Since the sequence $\left(\frac{n+1}{n}\right)_{n=1,2,...}$ decreases for any $x \ge k$ the inequality $\frac{x}{[x]} \le \frac{k+1}{k}$ holds, so that the right-hand inequality in (2.2) follows directly because $[a_i] \le a_i$ $(i=1,\ldots,n)$.

On the other hand, from $\frac{a_i}{[a_i]} \le \frac{k+1}{k}$ follows $[a_i] \ge \frac{k}{k+1} a_i$ $(i=1, \ldots, n)$. or, after the addition,

$$\sum_{i=1}^n [a_i] \ge \frac{k}{k+1} \sum_{i=1}^n a_i$$

Since it is obvious that $\frac{a_i}{[a_i]} \ge 1$ (i = 1, ..., n), we conclude that the left-hand inequality in (2.2) is valid, too. Thereby inequality (2.2) as well as, inequality (2.1) is proved.

REMARK 2. For $a_i \in [n, +\infty)$ we have

$$\frac{n}{n+1} \le \frac{\left(\prod_{i=1}^{n} a_i\right) / \left(\sum_{i=1}^{n} a_i\right)}{\left(\prod_{i=1}^{n} [a_i]\right) / \left(\sum_{i=1}^{n} [a_i]\right)} < e.$$

REMARK 3. The following inequality

$$1 \leq \frac{\left(\prod_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} a_i\right)}{\left(\prod_{i=1}^{n} \left[a_i\right]\right) \left(\sum_{i=1}^{n} \left[a_i\right]\right)} \leq \left(\frac{k+1}{k}\right)^{n+1}$$

holds under same conditions under which (2.1) is valid,

COMMENT OF B. CRSTICI RELEVANT TO IMPLICATION (1.1)

P. HENRICI (Elem. Math. 11 (1959), 112; see also D. S. MITRINOVIĆ: Nejednakosti, Beograd 1965, p. 165) proved the following implication

$$0 \le a_1, \ldots, a_{n+1} \le 1 \Rightarrow \sum_{k=1}^{n+1} \frac{1}{1+a_k} \le \frac{n+1}{1+\left(\prod_{k=1}^{n+1} a_k\right)^{1/(n+1)}}.$$

Therefrom it follows that if a is any positive number for which

$$\sum_{k=1}^{n+1} \frac{1}{1+a_k} \ge a, \text{ then } \prod_{k=1}^{n+1} a_k \le \left(\frac{n+1-a}{a}\right)^{n+1},$$

i.e. KALAJDŽIĆ's result is obtained for any possible positive a, but with $0 \le a_1, \ldots, a_{n+1} \le 1$. KALAJDŽIĆ obtained that implication for any $a_1, \ldots, a_{n+1} \ge 0$ but with a restriction for a $(a \ge n)$.

Now, the following problem arises. P. Henrici proved that if $a_1, \ldots, a_{n+1} \ge 1$, then

$$\sum_{k=1}^{n+1} \frac{1}{1+a_k} \ge \frac{n+1}{1+\left(\prod_{k=1}^{n+1} a_k\right)^{1/(n+1)}}.$$

Therefrom, it follows that the implication

$$\sum_{k=1}^{n+1} \frac{1}{1+a_k} \le a \Rightarrow \prod_{k=1}^{n+1} a_k \ge \left(\frac{n+1-a}{a}\right)^{n+1} \qquad (a_1, \ldots, a_{n+1} \ge 1)$$

is valid for $a_k \ge 1$.

In the light of KALAJDŽIĆ's paper, it would be interesting to see which additional condition should be satisfied by a, in order to get that implication for any $a_k \ge 0$ (k = 1, ..., n + 1).

AUTHOR'S COMMENT

It is not difficult to see that for the quoted proof of the implication (1.1) the conditton $a \ge n$ is essential. However, the condition $a \le n+1$ is only formally quoted because $\sum \frac{1}{1+a_k}$ cannot be greater than n+1.

Further, if we put $\sum_{k=1}^{n+1} \frac{1}{1+a_k} = b \ge a$ in (1.1) we get

$$\prod_{k=1}^{n+1} a_k \le \left(\frac{n+1-b}{b}\right)^{n+1} \le \left(\frac{n+1-a}{a}\right)^{n+1},$$

where from HENRICI's inequality follows

$$\sum_{k=1}^{n+1} \frac{1}{1+a_k} \le \frac{n+1}{1+\left(\prod_{k=1}^{n+1} a_k\right)^{1/(n+1)}}$$

for any $a_1, \ldots, a_{n+1} \ge 0$ for which $\sum_{k=1}^{n+1} \frac{1}{1+a_k} \ge n$ (we encounter condition $0 \le a_1, \ldots, a_{n+1} \le 1$ in Henrici's paper).

As far as the implication

(1.1)'
$$\sum_{k=1}^{n+1} \frac{1}{1+a_k} \le a \implies \prod_{k=1}^{n+1} a_k \ge \left(\frac{n+1-a}{a}\right)^{n+1}$$

is concerned, from the quoted proof for the implication (1.1) it follows that the implication (1.1)' will hold for any $a_k \ge 0$ $(k=1,\ldots,n+1)$ if $0 < a \le 1$ (namely, then $a-n+k-1 \le 0$ for $k=1,\ldots,n$).

If we put $\sum_{k=1}^{n+1} \frac{1}{1+a_k} = b \le a$ in (1.1), then we get

$$\prod_{k=1}^{n+1} a_k \ge \left(\frac{n+1-b}{b}\right)^{n+1} \ge \left(\frac{n+1-a}{a}\right)^{n+1},$$

and therefrom HENRICI's inequality follows

$$\sum_{k=1}^{n+1} \frac{1}{1+a_k} \ge \frac{n+1}{1+\left(\prod_{k=1}^{n+1} a_k\right)^{1/(n+1)}}$$

for any $a_1, \ldots, a_{n+1} \ge 0$ with $\sum_{k=1}^{n+1} \frac{1}{1+a_k} \le 1$ (we encounter condition $a_1, \ldots, a_{n+1} \ge 1$ in Henrici's paper).

REFERENCES

- D. S. MITRINOVIĆ (with cooperation P. M. VASIĆ): Analytic Inequalities. Berlin— —Heidelberg—New York, 1970.
- D. S. MITRINOVIĆ P. M. VASIĆ; Généralisation d'une inégalité de Henrici. These Publications № 210 — № 228 (1969), 35—38.
- 3. D. S. MITRINOVIĆ. Elementarne Nierówności. Warszawa, 1972, p. 141.