PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculté d'électrotechnique de l'universite à belgrade

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE
N2 412 - № 460 (1973)
418.

A PROOF OF THE STEFFENSEN INEQUALITY*

Ostoja Rakić

Theorem. Let f and g be two continuous functions on $[a, b]$ such that f does not increase and that $0 \leqq g(x) \leqq 1$ for $x \in[a, b]$. Then we have

$$
\begin{equation*}
\int_{b-c}^{b} f(x) d x \leqq \int_{a}^{b} f(x) g(x) d x \leqq \int_{a}^{a+c} f(x) d x \tag{1}
\end{equation*}
$$

where $c=\int_{a}^{b} g(x) d x$.
Proof. First we suppose that f has the form

$$
f(x)=y_{i}=\text { const } \quad\left(x \in\left[x_{i}, x_{i+1}\right) ; i=0,1, \ldots, n-1\right),
$$

with $x_{0}=a, x_{n}=b$ and $y_{i+1} \leqq y_{i}(i=0,1, \ldots, n-1)$.
Since

$$
c=\int_{a}^{b} g(x) d x \leqq b-a \quad \text { and } \quad c \geqq 0
$$

we have that $a \leqq b-c \leqq b$. Let $b-c \in\left[x_{i}, x_{i+1}\right]$. Then

$$
\begin{equation*}
\int_{b-c}^{b} f(x) d x=y_{i} c+y_{i}\left(x_{i+1}-b\right)+\sum_{k=1}^{n-i-1} y_{i+k}\left(x_{i+k+1}-x_{i+k}\right) . \tag{2}
\end{equation*}
$$

From $g(x) \leqq 1$ and $y_{i} \geqq y_{i+k}(k=1, \ldots, n-i-1)$ we get

$$
\left(y_{i}-y_{i+k}\right) g(x) \leqq y_{i}-y_{i+k} \quad(k=1, \ldots, n-i-1),
$$

whence it is

$$
\int_{x_{i+k}}^{x_{i+k+1}}\left(y_{i}-y_{i+k}\right) g(x) d x \leqq\left(y_{i}-y_{i+k}\right)\left(x_{i+k+1}-x_{i+k}\right) \quad(k=1, \ldots, n-i-1)
$$

[^0]4 Publikacije Elektrotehničkog fakulteta 49

Adding the obtained inequalities we get

$$
\sum_{k=1}^{n-i-1}\left(y_{i}-y_{i+k}\right) \int_{x_{i+k}}^{x_{i+k+1}} g(x) d x \leqq y_{i}\left(b-x_{i+1}\right)-\sum_{k=1}^{n-i-1} y_{i+k}\left(x_{i+k+1}-x_{i+k}\right) .
$$

The last inequality can be written in the form

$$
\begin{aligned}
\sum_{k=0}^{i} y_{k} \int_{x_{k}}^{x_{k+1}} g(x) d x & +y_{i} \sum_{k=0}^{n-i-1} \int_{x_{i+k}}^{x_{i+k+1}} g(x) d x+y_{i}\left(x_{i+1}-b\right) \\
& +\sum_{k=1}^{n-i-1} y_{i+k}\left(x_{i+k+1}-x_{i+k}\right) \leqq \sum_{k=0}^{n-1} y_{k} \int_{x_{k}}^{x_{k+1}} g(x) d x .
\end{aligned}
$$

Since $y_{k} \geqq y_{i}$ for $k \leqq i$, we find

$$
y_{i} \sum_{k=0}^{i-1} \int_{x_{k}}^{x_{k+1}} g(x) d x+y_{i}\left(x_{i+1}-b\right)+\sum_{k=1}^{n-i-1} y_{i+k-1}\left(x_{i+k+1}-x_{i+k}\right) \leqq \sum_{k=0}^{n-1} y_{k} \int_{x_{k}}^{x_{k+1}} g(x) d x .
$$

Left side of this inequality is equal to the value of the integral $\int_{b-c}^{b} f(x) d x$ and the right side to the integral $\int_{a}^{b} f(x) g(x) d x$. Hence, the first inequality in (1) is proved. The second inequality in (1) will be proved by applying a procedure analogous to the above. First, we have

$$
\int_{a}^{a+c} f(x) d x=y_{i} c+y_{i}\left(a-x_{i}\right)+\sum_{k=0}^{i-1} y_{k}\left(x_{k+1}-x_{k}\right)
$$

Starting from $g(x) \leqq 1$ and $y_{k} \geqq y_{i}(k=0,1, \ldots, i-1)$ we find

$$
\left(y_{k}-y_{i}\right) g(x) \leqq y_{k}-y_{i} \quad(k=0,1, \ldots, i-1),
$$

from where we have

$$
\left(y_{k}-y_{i}\right) \int_{x_{k}}^{x_{k+1}} g(x) d x \leqq\left(y_{k}-y_{i}\right)\left(x_{k+1}-x_{k}\right) .
$$

After addition we have

$$
\sum_{k=0}^{i-1}\left(y_{k}-y_{i}\right) \int_{x_{k}}^{x_{k+1}} g(x) d x \leqq y_{i}\left(a-x_{i}\right)+\sum_{k=0}^{i-1} y_{k}\left(x_{k+1}-x_{k}\right) .
$$

This inequality can be put also in the form

$$
\begin{aligned}
& \sum_{k=0}^{i-1} y_{k} \int_{x_{k}}^{x_{k+1}} g(x) d x+\sum_{k=0}^{n-i-1} y_{i+k} \int_{x_{i+k}}^{x_{i+k+1}} g(x) d x \\
& \quad \leqq y_{i}\left(a-x_{i}\right)+\sum_{k=0}^{i-1} y_{k}\left(x_{k+1}-x_{k}\right)+y_{i} \sum_{k=0}^{i-1} \int_{x_{k}}^{x_{k+1}} g(x) d x+\sum_{k=0}^{n-i-1} y_{i+k} \int_{x_{i+k}}^{x_{i+k+1}} g(x) d x
\end{aligned}
$$

Since $y_{i}>y_{i+k}(k>0)$, this inequality gives

$$
\sum_{k=0}^{n-1} y_{k} \int_{x_{k}}^{x_{k+1}} g(x) d x \leqq y_{i}\left(a-x_{i}\right)+\sum_{k=0}^{i-1} y_{k}\left(x_{k+1}-x_{k}\right)+y_{i} \int_{a}^{b} g(x) d x,
$$

which is the second inequality from (1).
Inequality can be easily proved also when the function f is continuous and nonincreasing. The interval $[a, b]$ should be divided in n parts, and then the graph of f should be replaced by a polygonal line and finally allow n to tend to infinity.

In this way we shall get the inequality

$$
\int_{b-c}^{b} f(x) d x \leqq \lim _{n \rightarrow+\infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \int_{x_{i}}^{x_{i+1}} g(x) d x \leqq \int_{a}^{b-c} f(x) d x
$$

Since

$$
\lim _{n \rightarrow+\infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \int_{x_{i}}^{x_{i+1}} g(x) d x=\int_{a}^{b} f(x) g(x) d x
$$

the statement is proved in the general case.
If the function g is positive and greater than unity, but limited, then

$$
\frac{g(x)}{M}=b(x) \leqq 1
$$

where M is an upper boundary of the function g in the interval $[a, b]$ and the given inequality has the form

$$
\int_{b-c}^{b} f(x) d x \leqq \frac{1}{M} \int_{a}^{b} f(x) g(x) d x \leqq \int_{a}^{a+c} f(x) d x
$$

where

$$
c=\frac{1}{M} \int_{a}^{b} g(x) d x
$$

But if the function g is negative in the interval $[a, b]$ and if its least value is $-m$, then the function $g(x)+m$ will be positive. If N is the upper boundary of the function $g(x)+m$ then we have

$$
\int_{b-c}^{b} f(x) d x \leqq \frac{1}{N} \int_{a}^{b} f(x)(g(x)+m) d x \leqq \int_{a}^{a+c} f(x) d x
$$

where

$$
c=\frac{1}{N} \int_{a}^{b}(g(x)+m) d x .
$$

EDITORIAL NOTE

There is a number of proofs for Steffensen's inequality. See:
D. S. Mitrinović: Analytic Inequalities. Berlin-Heidelberg-New York 1970, pp. 107-119.
D. S. Mitrinović: The Steffensen inequality. These Publications № 247 - № 273 (1969), 1-14.

In these proofs even weaker assumptions of functions f and g are used (instead of being continuous, it is sufficient that f and g are integrable). The above proof is of interest, because it is directly connected to the definition of the integral.

[^0]: * Presented February 5, 1973 by B. Crstici.

