SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE № 412 - № 460 (1973)

413. ON SOME INEQUALITIES FOR CONVEX AND g-CONVEX FUNCTIONS*

Petar M. Vasić and Ljubomir Stanković

1. Let $g: I^{2} \rightarrow I$ be a given function such that $g(x, y)>0$ for $y>x(x, y \in I)$. It is said that $f: I \rightarrow R$ is a convex function on I if

$$
\begin{equation*}
g\left(x_{2}, x_{3}\right) f\left(x_{1}\right)+g\left(x_{3}, x_{1}\right) f\left(x_{2}\right)+g\left(x_{1}, x_{2}\right) f\left(x_{3}\right) \geqq 0 \tag{1.1}
\end{equation*}
$$

is valid for every $x_{1}, x_{2}, x_{3} \in I\left(x_{1}<x_{2}<x_{3}\right)$ (see [1]).
Of particular interest are the g -convex functions satisfying $g(x, y)+$ $+g(y, x)=0$, because several properties of convex (in the ordinary sense) functions may be associated with them. Hence, in this paper only those functions g will be dealt with for which

$$
g(x, y)+g(y, x)=0(\Rightarrow g(x, y)=h(x, y)-h(y, x))
$$

holds.
The inequality

$$
\begin{equation*}
\frac{f\left(x_{1}\right)}{g\left(x_{1}, x_{3}\right) g\left(x_{1}, x_{2}\right)}+\frac{f\left(x_{2}\right)}{g\left(x_{2}, x_{1}\right) g\left(x_{2}, x_{3}\right)}+\frac{f\left(x_{3}\right)}{g\left(x_{3}, x_{1}\right) g\left(x_{3}, x_{2}\right)} \geqq 0 \tag{1.2}
\end{equation*}
$$

is equivalent to (1.1), irrespective of the way in which the numbers x_{1}, x_{2}, x_{3} are arranged in (1.2) subject to the constraint $x_{1} \neq x_{2} \neq x_{3} \neq x_{1}$.

Substituting

$$
x_{1}=x_{i}, x_{2}=\sum_{k=0}^{n} p_{k} x_{k}, x_{3}=x_{0}\left(p_{k}>0, x_{i} \in I\right)
$$

in (1.2), we get

$$
\begin{align*}
\frac{f\left(x_{i}\right)}{g\left(x_{i}, x_{0}\right) g\left(x_{i}, \sum_{k=0}^{n} p_{k} x_{k}\right)} & +\frac{f\left(\sum_{k=0}^{n} p_{k} x_{k}\right)}{g\left(\sum_{k=0}^{n} p_{k} x_{k}, x_{i}\right) g\left(\sum_{k=0}^{n} p_{k} x_{k}, x_{0}\right)} \tag{1.3}\\
& +\frac{f\left(x_{0}\right)}{g\left(x_{0}, x_{i}\right) g\left(x_{0}, \sum_{k=0}^{n} p_{k} x_{k}\right)} \geqq 0 \quad(i=1, \ldots, n) .
\end{align*}
$$

* Presented May 5, 1973 by D. S. Mitrinović.

If

$$
\begin{equation*}
g\left(x_{i}, x_{0}\right) g\left(x_{i}, \sum_{k=0}^{n} p_{k} x_{k}\right)<0 \quad(i=1, \ldots, n) \tag{1.4}
\end{equation*}
$$

we obtain from (1.3)

$$
\begin{equation*}
p_{i} f\left(x_{i}\right) \leqq \frac{p_{i} g\left(x_{i}, x_{0}\right)}{g\left(\sum_{k=0}^{n} p_{k} x_{k}, x_{0}\right)} f\left(\sum_{k=0}^{n} p_{k} x_{k}\right)+\frac{p_{i} g\left(x_{i}, \sum_{k=0}^{n} p_{k} x_{k}\right)}{g\left(x_{0}, \sum_{k=0}^{n} p_{k} x_{k}\right)} f\left(x_{0}\right) \quad(i=1, \ldots, n) . \tag{1.5}
\end{equation*}
$$

By summing the inequalities (1.5) we find

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leqq \frac{\sum_{i=1}^{n} p_{i} g\left(x_{i}, x_{0}\right)}{g\left(\sum_{k=0}^{n} p_{k} x_{k}, x_{0}\right)} f\left(\sum_{k=0}^{n} p_{k} x_{k}\right)+\frac{\sum_{i=1}^{n} p_{i} g\left(x_{i}, \sum_{k=0}^{n} p_{k} x_{k}\right)}{g\left(x_{0}, \sum_{k=0}^{n} p_{k} x_{k}\right)} f\left(x_{0}\right) . \tag{1.6}
\end{equation*}
$$

Since $g\left(x_{0}, x_{0}\right)=0$, for

$$
\begin{equation*}
g\left(x_{0}, \sum_{k=0}^{n} p_{k} x_{k}\right) \neq 0 \tag{1.7}
\end{equation*}
$$

we have

$$
p_{0} f\left(x_{0}\right)=\frac{p_{0} g\left(x_{0}, x_{0}\right)}{g\left(\sum_{k=0}^{n} p_{k} x_{k}, x_{0}\right)} f\left(\sum_{k=0}^{n} p_{k} x_{k}\right)+\frac{p_{0} g\left(x_{0}, \sum_{k=0}^{n} p_{k} x_{k}\right)}{g\left(x_{0}, \sum_{k=0}^{n} p_{k} x_{k}\right)} f\left(x_{0}\right),
$$

which, when added to (1.6), yields

$$
\begin{equation*}
\sum_{i=0}^{n} p_{i} f\left(x_{i}\right) \leqq \frac{\sum_{i=0}^{n} p_{i} g\left(x_{i}, x_{0}\right)}{g\left(\sum_{k=0}^{n} p_{k} x_{k}, x_{0}\right)} f\left(\sum_{k=0}^{n} p_{k} x_{k}\right)+\frac{\sum_{i=0}^{n} p_{i} g\left(x_{i}, \sum_{k=0}^{n} p_{k} x_{k}\right)}{g\left(x_{0}, \sum_{k=0}^{n} p_{k} x_{k}\right)} f\left(x_{0}\right) . \tag{1.8}
\end{equation*}
$$

Therefore, we have proved that:
Theorem 1. If the conditions (1.4) and (1.7) are valid, then for every g-convex function f inequality (1.8) holds.

If we take $g(x, y)=y-x$, then g-convexity transforms into the ordinary convexity, and (1.4) becomes

$$
\begin{equation*}
\left(x_{i}-x_{0}\right)\left(\sum_{k=0}^{n} p_{k} x_{k}-x_{i}\right)>0 \quad(i=1, \ldots, n) . \tag{1.9}
\end{equation*}
$$

In this case the inequality (1.8) reads:

$$
\begin{equation*}
\sum_{i=0}^{n} p_{i} f\left(x_{i}\right) \leqq \frac{\sum_{i=0}^{n} p_{i} x_{i}-x_{0} \sum_{i=0}^{n} p_{i}}{\sum_{i=0}^{n} p_{i} x_{i}-x_{0}} f\left(\sum_{i=0}^{n} p_{i} x_{i}\right)-\frac{1-\sum_{i=0}^{n} p_{i}}{\sum_{i=0}^{n} p_{i} x_{i}-x_{0}} \sum_{i=0}^{n} p_{i} x_{i} f\left(x_{0}\right) . \tag{1.10}
\end{equation*}
$$

F. Giaccardi [1] proved the inequality (1.10) under the assumptions that f is a convex function and

$$
\begin{equation*}
0 \leqq x_{0}<x_{i}<\sum_{i=0}^{n} p_{i} x_{i} \quad(i=0,1, \ldots, n) . \tag{1.11}
\end{equation*}
$$

Condition (1.9) is weaker than (1.11).
2. Let us write

$$
\begin{equation*}
P_{n}(p, x ; f)=f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-\left(1-\sum_{i=1}^{n} p_{i}\right) f(0) \tag{2.1}
\end{equation*}
$$

If $x_{0}=0$, the inequality (1.10) yields

$$
\begin{equation*}
P_{n}(p, x ; f) \geqq 0 \tag{2.2}
\end{equation*}
$$

provided that f is a convex function,

$$
\begin{equation*}
x_{i}\left(\sum_{k=1}^{n} p_{k} x_{k}-x_{i}\right)>0 \quad(i=1, \ldots, n) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} x_{k} \neq 0 \tag{2.4}
\end{equation*}
$$

Evidently, the condition (2.4) is implied by (2.3) and hence it can the disregarded.
The inequality (2.2) is a particular case of this result under the conditions that f is a convex functon, $x_{1}, \ldots, x_{n}>0, p_{1}, \ldots, p_{n} \geqq 1$ (see [2]) and M. Petrovićs inequality (see: [3]):

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} x_{i}\right) \geqq \sum_{i=1}^{n} f\left(x_{i}\right)-(1-n) f(0) \tag{2.5}
\end{equation*}
$$

where $x_{1}, \ldots, x_{n} \geqq 0$ and f is a convex function.
From (2.1) we have

$$
P_{n}(p, x ; f)-P_{n-1}(p, x ; f)=f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-f\left(\sum_{i=1}^{n-1} p_{i} x_{i}\right)--p_{n} f\left(x_{n}\right)+p_{n} f(0)
$$

For $n=2$, from (2.2), (2.3), we obtain

$$
\begin{equation*}
f\left(p_{1} x_{1}+p_{2} x_{2}\right)-p_{1} f\left(x_{1}\right)-p_{2} f\left(x_{2}\right)-\left(1-p_{1}-p_{2}\right) f(0) \geqq 0 \tag{2.6}
\end{equation*}
$$

under the conditions

$$
\begin{align*}
& x_{1}\left(p_{1} x_{1}+p_{2} x_{2}-x_{1}\right) \geqq 0, \\
& x_{2}\left(p_{1} x_{1}+p_{2} x_{2}-x_{2}\right) \geqq 0 . \tag{2.7}
\end{align*}
$$

Substituting

$$
x_{1} \rightarrow x_{n}, x_{2} \rightarrow \sum_{i=1}^{n-1} p_{t} x_{i}, p_{1} \rightarrow p_{n}, p_{2} \rightarrow 1
$$

from (2.6) we find

$$
\begin{equation*}
P_{n}(p, x ; f)-P_{n-1}(p, x ; f) \geqq 0 \tag{2.8}
\end{equation*}
$$

provided that f is a convex function and

$$
\begin{align*}
x_{n}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{n}\right) & >0 \\
\sum_{i=1}^{n-1} p_{i} x_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n-1} p_{i} x_{i}\right) & =p_{n} x_{n} \sum_{i=1}^{n-1} p_{i} x_{i}>0 \tag{2.9}
\end{align*}
$$

Therefore, the following theorem is valid:
Theorem 2. If f is a convex function and if the conditions (2.9) are valid, then the inequality (2.8) holds.

Remark. By iteration of the inequality (2.8), we arrive at

$$
P_{n}(p, x ; f) \geqq P_{n-1}(p, x ; f) \geqq \cdots \geqq P_{1}(p, x ; f)=0,
$$

where f is a convex function and

$$
x_{k}\left(\sum_{i=1}^{k} p_{i} x_{i}-x_{k}\right)>0, \quad p_{k} x_{k} \sum_{i=1}^{k-1} p_{i} x_{i}>0 \quad(k=1, \ldots, n) .
$$

This result is an improvement of (2.2).
3. N. Levinson [5] proved the inequality

$$
\begin{equation*}
\frac{\sum_{k=1}^{n} p_{k} f\left(x_{k}\right)}{\sum_{k=1}^{n} p_{k}}-f\left(\frac{\sum_{k=1}^{n} p_{k} x_{k}}{\sum_{k=1}^{n} p_{k}}\right) \leqq \frac{\sum_{k=1}^{n} p_{k} f\left(2 a-x_{k}\right)}{\sum_{k=1}^{n} p_{k}}-f\left(\frac{\sum_{k=1}^{n} p_{k} f\left(2 a-x_{k}\right)}{\sum_{k=1}^{n} p_{k}}\right) \tag{3.1}
\end{equation*}
$$

under the assumption that $f^{\prime \prime \prime}(t)>0$ for $t \in(0,2 a), 0<x_{k} \leqq a, p_{k}>0$.
P. M. Vasić and R. R. Janić [6] proved, by taking into account the supplementary assumptions $p_{k} \geqq 1$ and $\sum_{k=1}^{n} p_{k} x_{k} \in[0, a]$, that the inequality

$$
\begin{align*}
\sum_{k=1}^{n} p_{k} f\left(x_{k}\right)-\sum_{k=1}^{n} p_{k} f\left(2 a-x_{k}\right) \geqq & f\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-f\left(2 a-\sum_{k=1}^{n} p_{k} x_{k}\right) \tag{3.2}\\
& -\left(1-\sum_{k=1}^{n} p_{k}\right)(f(0)-f(2 a))
\end{align*}
$$

holds.

Putting $n=2$ in (3.1) and substituting

$$
x_{1} \rightarrow \sum_{k=0}^{n} p_{k} x_{k}, x_{2} \rightarrow x_{0}, p_{1} \rightarrow 1, \quad p_{2} \rightarrow \frac{\sum_{k=0}^{n} p_{k} x_{k}-x_{i}}{x_{i}-x_{0}} \quad(i=1, \ldots, n)
$$

we find
(3.3)

$$
\begin{aligned}
f\left(x_{i}\right)-f\left(2 a-x_{i}\right) & \geqq \frac{x_{i}-x_{j}}{\sum_{k=0}^{n} p_{k} x_{k}-x_{0}} f\left(\sum_{k=0}^{n} p_{k} x_{k}\right) \\
& +\frac{\sum_{k=0}^{n} p_{k} x_{k}-x_{i}}{\sum_{k=0}^{n} p_{k} x_{k}-x_{0}}\left(f\left(x_{0}\right)-f\left(2 a-x_{0}\right)\right) \\
& -\frac{x_{i}-x_{0}}{\sum_{k=0}^{n} p_{k} x_{k}-x_{0}} f\left(2 a-\sum_{k=0}^{n} p_{k} x_{k}\right) \quad(i=1, \ldots, n) .
\end{aligned}
$$

Therefore, after multiplication by $p_{i}>0$, summation and addition of $f\left(x_{0}\right)-$ $-f\left(2 a-x_{0}\right)=f\left(x_{0}\right)-f\left(2 a-x_{0}\right)$ to the corresponding sides of the resulting inequality, we get

$$
\begin{align*}
\sum_{i=0}^{n} p_{i} f\left(x_{i}\right)- & \sum_{i=0}^{n} p_{i} f\left(2 a-x_{i}\right) \tag{3.4}\\
& \geqq \frac{\sum_{i=0}^{n} p_{i} x_{i}-x_{0} \sum_{i=0}^{n} p_{i}}{\sum_{i=0}^{n} p_{i} x_{i}-x_{0}}\left(f\left(\sum_{i=0}^{n} p_{i} x_{i}\right)-f\left(2 a-\sum_{i=0}^{n} p_{i} x_{i}\right)\right) \\
& +\frac{\sum_{i=0}^{n} p_{i}-1}{\sum_{i=0}^{n} p_{i} x_{i}-x_{0}} \sum_{i=0}^{n} p_{i} x_{i}\left(f\left(x_{0}\right)-f\left(2 a-x_{0}\right)\right)
\end{align*}
$$

subject to the conditions

$$
\left(x_{i}-x_{0}\right)\left(\sum_{i=0}^{n} p_{i} x_{i}-x_{0}\right)>0 \quad(i=1, \ldots, n)
$$

and $f^{\prime \prime \prime}(t)>0$ for $t \in(0,2 a)$ and $\sum_{i=0}^{n} p_{i} x_{i} \in[0, a]$.
Inequality (3.3) yields (3.2) for $x_{0}=0$.
4. Let f be a convex function of the second order for $x \in(0,2 a)$ and let $x_{1}, \ldots, x_{4} \in[0, a]$. Then the inequality

$$
\begin{align*}
& \frac{f\left(x_{1}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)}+\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} \tag{4.1}\\
& \quad+\frac{f\left(x_{3}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)}+\frac{f\left(x_{4}\right)}{\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)} \geqq 0
\end{align*}
$$

holds (see [4], pp. 15-17).
Upon substitution $x_{i} \rightarrow 2 a-x_{i}(i=1, \ldots .4)$, we obtain from (4.1)

$$
\begin{align*}
& \frac{-f\left(2 a-x_{1}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)}+\frac{-f\left(2 a-x_{2}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} \tag{4.2}\\
& \quad \quad+\frac{-f\left(2 a-x_{3}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)}+\frac{-f\left(2 a-x_{4}\right)}{\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)} \geqq 0 .
\end{align*}
$$

Replacing $x_{4}=a$ in (4.1) and (4.2) and adding the obtained inequalities, we get

$$
\frac{\frac{f\left(x_{1}\right)-f\left(2 a-x_{1}\right)}{x_{1}-a}}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}+\frac{\frac{f\left(x_{2}\right)-f\left(2 a-x_{2}\right)}{x_{2}-a}}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}+\frac{\frac{f\left(x_{3}\right)-f\left(2 a-x_{3}\right)}{x_{3}-a}}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} \geqq 0 .
$$

Therefore, the function

$$
x \mapsto \frac{f(x)-f(2 a-x)}{x-a}
$$

is convex (order 1) on $[0, a]$ and from Jensen's inequality we get

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} \frac{f\left(x_{k}\right)-f\left(a-x_{k}\right)}{x_{k}-a} \leqq \sum_{k=1}^{n} p_{k} \frac{f\left(\frac{\sum_{k=1}^{n} p_{k} x_{k}}{\sum_{k=1}^{n} p_{k}}\right)-f\left(2 a-\frac{\sum_{k=1}^{n} p_{k} x_{k}}{\sum_{k=1}^{n} p_{k}}\right)}{\sum_{k=1}^{n} p_{k} x_{k}-a \sum_{k=1}^{n} p_{k}} . \tag{4.3}
\end{equation*}
$$

The inequality (3.1) does not imply the validity of (4.3), and vice versa.
This stems from the fact that the convexity of $x \mapsto g(x)$ does not mean of necessity that $x \mapsto \frac{g(x)}{x-a}$ is also convex, and vice versa.

REFERENCES

1. P. M. Vasić, J. D. Kečkić: A generalisation of the concept of convexity. Publ. Inst. Math. Beograd 11 (25) (1971), 53-56.
2. F. Graccardi: $S u$ alcune disuguaglianze. Giorn. Mat. Finanz. 1 (4) (1955), 139-153.
3. M. Petrović: Sur une fonctionnelle. Publ. Math. Univ. Beograd 1 (1932), 149-156.
4. D. S. Mitrinović: Analytic Inequalities. Berlin-Heidelberg-New York, 1970.
5. N. Levinson: Generalization of an inequality of Ky Fan. J. Math.' Anal. Appl. 8 (1964), 133-134.
6. P. M. Vasić, R. R. Janić: On an inequality of N. Levinson. Publ. Inst. Math. Beograd 10 (24) (1970), 155-157.
