PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA -- SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 381 — № 409 (1972)

389.

ON THE NUMBER OF PSEUDOPRIMES $\leq x^*$

Andrzej Rotkiewicz

A composite number *n* is said to be pseudoprime if $n|2^n-2$. Let P(x) denote the number of pseudoprimes $\leq x$. K. SZYMICZEK [3] proved the following theorem:

If k is a natural number and x is sufficiently large, then

$$P(x) > \frac{1}{4} \{ \log x + \log \log x + \cdots + \underbrace{\log \log \cdots \log x}_{k \text{ times iterated logarithm}} \}.$$

Here we shall prove the following much stronger theorem.

Theorem 2. $P(x) > \frac{5}{8} \log_2 x$ (Here $\log_2 x$ denotes logarithm at the base 2.)

Definition. A factor m of $2^n - 1$ is said to be primitive if it does not divide any of the numbers $2^k - 1$, k = 1, ..., n - 1.

Lemma. For every n > 2, $n \neq 6$ the number $2^n - 1$ has at least one primitive prime factor of the form nk + 1. For $2^2 || n^{1}$, n > 20 the number $2^n - 1$ has two primitive factors of the form nk + 1.

This Lemma follows from theorem of K. ZSIGMONDY [4] and theorem of A. SCHINZEL [2].

Theorem 1. If n is a positive even integer $\neq 2, 4, 6, 8, 12$ then $2^n - 1$ has at least one primitive composite factor of the form nk+1. For $2^2 ||n, n>20$ the number $2^n - 1$ has at least two primitive composite factors of the form nk+1.

Proof of the Theorem 1. We shall distinguish the following three cases: a) $2 || n, n \neq 2, 6$ or 16 | n.

Let $2 \parallel n$, $n \neq 2$, 6. By our lemma the number $2^{\frac{n}{2}} - 1$ has a primitive prime factor of the form $\frac{n}{2}k + 1$. Since $2 \not\uparrow \frac{n}{2}$ this prime factor is of the form nk + 1.

^{*} Presented December 25, 1971 by D. S. MITRINOVIĆ.

¹⁾ $r^{\alpha} || m$ means that $r^{\alpha} || m$ but $r^{\alpha+1} \not\mid m$.

If 16 | n then by lemma the number $2^{\frac{n}{2}} - 1$ has a primitive prime factor p of the form $\frac{n}{2}k+1$.

Since 8 $\left| \frac{n}{2} \right|$ the number 2 is a quadratic residue mod p. Thus $p \left| 2^{\frac{p-1}{2}} - 1 \right|$.

Since p is a primitive prime factor of $2^{\frac{n}{2}} - 1$, thus $\frac{n}{2} \left| \frac{p-1}{2} \right|$, hence p is of the form nk+1.

Thus in both cases $(2||n, n \neq 2, 6 \text{ or } 16|n)$ the number $2^{\frac{n}{2}} - 1$ has a prime factor of the form nk+1.

If we multiply this prime factor by a primitive prime factor of the number $2^n - 1$ we get a composite primitive factor of the form $2^n - 1$, which is of the form nk + 1.

b) Let $2^2 \parallel n$. If n = 20, then $341 \cdot 41$ is the primitive composite factor of the number $2^n - 1$, which is of the form nk + 1.

Let $2^2 || n, n > 20$. By lemma the number $2^n - 1$ has two different primitive prime factors p and q of the form nk+1.

On the other hand, since $2^2 || n, n \neq 4$, 12 we have n = 4(2k+1), where k > 1. The numbers

$$2^{\frac{n}{4}} - 1 = 2^{2k+1} - 1,$$
 $2^{\frac{n}{2}} - 1 = 2^{2(2k+1)} - 1$

have prime factors $r = \frac{n}{2}k_1 + 1$ and $s = \frac{n}{2}k_2 + 1$.

If $2 | k_1 k_2$ then one of the numbers r, s is of the form nk+1.

If $2 \not\mid k_1 k_2$, then $2 \mid k_1 + k_2$ and the product rs has the form nk+1. In $\frac{n}{k}$

the both cases the number $2^{\frac{n}{2}} - 1$ has a factor of the form nk + 1. Denote this factor by t. The numbers pt and qt are composite primitive factors of the number $2^n - 1$. Both are of the form nk + 1.

c) $8 \mid n$. Since $n \neq 8$ we have $\frac{n}{2} = (2k+1)4$, where $k \ge 1$. For k = 1 the number $5 \cdot 13 \cdot 17 \cdot 241 \equiv 1 \pmod{24}$ is a composite primitive factor of the number $2^n - 1 = 2^{24} - 1$.

Let k = 2, then $41 | 2^{20} - 1 = 2^{\frac{n}{2}} - 1$ and 41p, where p denotes primitive prime factor of the number $2^{40} - 1$, is a composite primitive factor of $2^n - 1$, which is of the form nk + 1.

If k>2, then by our lemma the number $2^{4(2k+1)}-1$ has two different primitive prime factors $r=\frac{n}{2}k_1+1$ and $s=\frac{n}{2}k_2+1$.

If $2 | k_1 k_2$, then one of the numbers r, s is of the form nk + 1. If $2 \not\mid k_1 k_2$, then $2 | k_1 + k_2$ and rs is of the form nk + 1. In both cases the number $2^{\frac{n}{2}} - 1$ has a factor of the form nk + 1. If we multiply this factor by a primitive prime factor of $2^n - 1$ we get a primitive composite factor of $2^n - 1$, which is of the form nk + 1.

This completes the proof of Theorem 1.

Proof of the Theorem 2. Let $x \ge 1905$. Let a denote the greatest positive integer a such that $2a \le \log_2 x$ and b donote the greatest positive integer b such that $4(2b-1) \le \log_2 x$.

Let us consider the following two sequences:

(1)
$$2^{2 \cdot 1} - 1, \ 2^{2 \cdot 2} - 1, \ldots, \ 2^{2a} - 1 \leq 2^{\log_2 x} - 1 = x - 1,$$

(2)
$$2^4 - 1, 2^{4 \cdot 3} - 1, \ldots, 2^{4(2b-1)} - 1 \leq 2^{\log_2 x} - 1 = x - 1.$$

As it is easy to see every composite divisor of the number $2^{n}-1$ which is of the form nk+1 is a pseudoprime number. Indeed, if nk+1 is a composite divisor of $2^{n}-1$, then $nk+1|2^{n}-1|2^{nk}-1|2^{nk+1}-2$ and nk+1 is a pseudoprime number. We also see that every number of the sequence (2) occurs in the sequence (1).

By Theorem 1 every number $2^{2c}-1$, where c is any positive integer $\leq \frac{1}{2}\log_2 x$, $c \neq 1, 2, 3, 4, 6$ has a primitive composite factor of the form 2ct+1 and every number $2^{4(2d-1)}-1$, where d is any positive integer such that $4(2d-1) \leq \log_2 x, d \neq 1, 2, 3$ has two primitive composite factors of the form 4(2d-1)t+1.

Thus
$$P(x) \ge a+b-8$$
. But $2a > \log_2 x - 2$, hence $a > \frac{\log_2 x}{2} - 1$. Similarly

4 (2 b-1) > log₂ x - 8, hence $b > \frac{\log_2 x}{8} - \frac{1}{2}$. Thus $P(x) > \frac{5}{8} \log_2 x - 1.5 - 8 > \frac{5}{8} \log_2 x - 10$.

From the proof of Theorem 1 it follows that any primitive composite divisor of $2^n - 1$ which we obtain by applying the method given in this theorem is not divisible by any of the numbers: 3, 5, 7 with the exception of the number $3 \cdot 13 \cdot 17 \cdot 241$. But ([1]) 10 numbers: $561 = 3 \cdot 11 \cdot 17$, $645 = 3 \cdot 5 \cdot 43$, $1105 = 5 \cdot 13 \cdot 17$, $1729 = 7 \cdot 13 \cdot 19$, $1905 = 3 \cdot 5 \cdot 127$, $2465 = 5 \cdot 17 \cdot 29$, $2821 = 7 \cdot 13 \cdot 31$, $4371 = 3 \cdot 31 \cdot 47$, $6601 = 7 \cdot 23 \cdot 41$, $8911 = 7 \cdot 19 \cdot 67$ are pseudoprimes.

Thus $P(x) > \frac{5}{8} \log_2 x$ for $x \ge 8911$. For $1905 \le x \le 8911$ we verify Theorem 2 directly.

orem 2 directly.

This completes the proof of Theorem 2.

REFERENCES

- 1. P. POULET: Tables de nombres composés vérifiant la théorème de Fermat pour le module 2 jusque'à 100000000. Sphinx 8 (1938), 42-52.
- A. SCHINZEL: On primitive prime factors of aⁿ-bⁿ. Proc. Cambridge Phil. Soc. 58 (1962), 555-562.
- 3. K. SZYMICZEK: On pseudoprimes which are products of distinct primes. Amer. Math. Monthly 74 (1967), 35-37.

4. K. ZSIGMONDY: Zur Theorie der Potenzreste. Monatsh. Math. 3 (1892), 268-284.

Math. Institute PAN ul. Sniadeckich 8, Warszawa 1, Poland

ţ