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386. THE EVALUATION OF CHARACTER SERIES
BY CONTOUR INTEGRATION*

Bruce C. Berndt

A classical and well known application of the calculus of residues occurs
in the evaluation of series of the form,

+oo +oo
S @ oor S (=1yf),

n=—ow0o n=—oo

where f is a suitable meromorphic function. See the texts by HILLE [4, pp.
258—264] and MiTrINOVIC [6, pp. 80—87] for good discussions of this topic.
In this paper we extend this theory by showing how to evaluate by contour
integration character series of the form,

S oxmfmy or S (~ 1y,

where y is a primitive character modulo k.
Let G(z. ) denote the Gaussian sum,
k—1 .
Gz P=3 x(j)emilk,
j=1

7

and put G(y)=G (1, y). For primitive characters, we have the factorization
theorem [1, p. 312],

1) G(n, X)=x(mG ),

where n is an integer. We also put
1
3=—{1-x(- D}

Finally, R{g(z), z,} denotes the residue of g(z) at z=z,.

* Presented January 15, 1972 by D. S. MITRINOVIC.
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26 B. C. Berndt

Theorem 1. Let f be meromorphic in the extended complex plane. Suppose that
there exist positive numbers A and a>1 such that |f(z)|<A|z|~% uniformly as
\z| tends to . Let S=S(f)={z,, ..., 2,3 denote the set of all poles of f.
Then,

(2) +Zm x(mf(n)=— % R{me ™f(2) G(z, 1)/G () sin (% 2), z,}.
n=-—00 r=1

n&ES

Theorem 2. Let f and S be as given in Theorem 1. Define

k2 B W=t
(3) F(z, )= x(NHe™@k (=1 5 y(j)e ?ridlk,
j=1 Jj=1

where [x] denotes the greatest integer =<x. Then,

o m o
@ 3 (—rmfm= = 2 RS F @060 sin(x2) 2}

n=—=—00

Proof of Theorem 1. Let C, denote the square whose center is the origin
and whose sides are parallel to the real and imaginary axes and are of length
2 N+1, where N is an integer chosen large enough so th.t S is contained on
the interior of C,. By the residue theorem,

m

1 (rmemif@)GGE D 4 — iz IG () si
°) 27ricf Corsintn = 2 R{meTE ()G (= 0IG () sin(n2), 2}

r=1

+ ;_NR {r =™ f(2) G (z, )/G () sin (w z), n}.
nES
If neES, we have from (1)
(6) R{me ™ f(z)G (z,1)/G(x)sin (m z), n} =1 (n) G (n, 1)/G () =f (n) 1. (n).

By our choice of C,, we sce that there exists a positive constant M= M(y)
such that for z=x+iy on C,, -

k—1
_ ey Z i(j])x(]'z)ezni-‘f(fl—jz)/k—2ﬂy(f1+fz)/k
e—miz G (z,%) _ Juia=l
sin (7 z)

2

A

M.

sin? (® x) + sinh?(w y)
Thus, the modulus of the integral on the left side of (5) is less than
42N +1)mAM

— 1\a -
!G(X)\(N+‘2—)

Hence, upon substituting (6) into (5) and then letting N to oo, we obtain (2).
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Proof of Theorem 2. Procceed as in the proof of Theorem 1. In this case
we have for nd=S,

(7 R{m f(2) F(z, )/G (x) sin (m 2), n} = (= 1) f (n) F (n, 1)/ G ().

If we replace j by k—j in the second sum on the right side of (3), we
have by the periodicity of %,

— k2 » k=1 _ —
(8) F(n,x)= > y()emmik4 (=1 5  y(—j)erinlk=G(n,y),
j=1 J=141k/2]

since x(—/)=x(—=1 (/). By an argument similar to that in the proof of
Theorem 1, there exists a constant M=M(y) such that for z on Cy,

F(z, )
sin (7 z)

=M.

Proceeding as in the previous proof, and using (8) in (7), we obtain (4)
upon letting N tend to oo.

The hypotheses on f in the above theorems may be relaxed somewhat.
We could prove a similer theorem if f were meromorphic only in the finite
complex plane. The growth conditions on f may also be weakened in some
cases. For example, see [4, pp. 260—263].

Exampre 1. Let f(2)=1/z2 in Theorem 1. If m is a positive integer, define

k—1

Mu = 2 2 U)im

ji=1
Observe that for this example the left side of (2).is 0 if y is odd. Therefore, assume
that y is even. Replacing j by k—j, we have since y is even,

k—1 k-1

M )= 2 1 (=) k=D =— 2 1(=D) j=—M, (0.
j=1 j=1

Thus, M, (x)=0. A simple calculation shows that
R {me- iz G (z,0)/2* G () sin (v 2), 0} = =272 M, ()/k* G ()

Now [1, p. 313],

©) G =F.

Since y is even, from (9) we find that G () =k/G (x). Hence, by Theorem 1 we con-
clude that

-

+ _—
L2,0)= 2 xm)n-2=n2G () M, (0/k.
1

n=

If we let f(z)=1/z% in Theorem 2, an almost identical calculation gives for y even,

400 2 . _
S (—1)"x(n)n"’=£,;G(x){12N2 G0~k Ny (DY,
n=1

where
/21

Ny 0= X ()im.
j=1
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ExampLE 2. Let f(z)=1/2%. If x is even, the left sides of (2) and (4) are both zero in this
case. Thus, assume that y is odd. By replacing j by k—j, it is easy to show that for x odd,
M, () =kM, (x). Using this fact, by an elementary division of power series, we find that
3

Lk M, G)—M, (0}
)

— — 4
R{me—miz G (z, 0)/2° G () sin (72), 0} =—
3G

Since y is odd, from (9) we find that G (x) = —&/G (x). Hence, by Theorem 1 we have shown that

+® 2rdi _ _
LG0= 1 () n=3 == G OO {6 My () —M; (0}
n=1

In a similar fashion we find that
3

_ — 2 1 _ _
R{nF(z, 1/ G () sin(w2), 0} =——— {k2N, ()— 4 N, 00}
3G

Thus, by Theorem 2,

-+

)

M

37 _ _
(=1 x (yn=> =;’—kj G () (N, ()—4 N, G0}
1

3
[

It is clear from the above examples that Theorem 1 enables us to cal-
culate L(n,y), n=2, when n=38 (mod 2). (In fact, a slight extension of The-
orem 1 enables us to calculate L (1, %) as well, if y is odd.) For other general
methods of calculating L (n, %) when n=3 (mod 2), see [2], [3] and [5].

ExampLE 3. Let f(2)=1/(z*+a?), a>0. If x is odd, the left sides of (2) and (4) are clearly
equal to 0. Thus, assume that x is even. A simple calculation yields

net™ G (Lai, 3)

R{me-7iz G (z, 1)/(z* + a*) G () sin (r 2), Lai}=

24G () sinh (na)
After simplification, we find that Theorem 1 gives
+ k—1 B
X(")2= _T S % () cosh(ma—2r ajjk).
nol Mta 2aG () sinh (wa) j=1
Secondly, _
=~ o . n F(dai, X)
R{mF(z,%)/(z*+a* G (3) sin(wz), t+ai}= — .
2aG () sinh (wa)

Thus, Theorem 2 yields upon a little simplification,

o g 2
S =D _ T > x(j)cosh (2wja/k).

nmy Ma aG (y) sinh (ta) j—1

Observe that by letting a tend to 0 in the two results of Example 3, we obtain, resp-
ectively, the two results of Example 1.

ExaMPLE 4, Let f(z)=1/(z+a)?, where a is not an integer. Upon calculating the residue at
z=-—a and using Theorem 1, we find that

+ o 702 emia k_l__
(10) > A (ta)t=——— >y (j) e—2niailk {cot (ma) — i+ 2ji/k}.
n=—oo G () sin (ma) j=1
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As a particular example, let x (n) be the residue class chracter (—4|n). Then, x (1)=1,
x(3)=—1, x(Q=x#=0, and G(x)=2i Replacing n by 2n+1, we find that (10) yields
after some simplification

te n* 1
2, Qn+l+a} 4sin(za/2) [I-COSZ(Tca/Z)}'

n=—
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