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385. ON WEIGHTED MEANS OF ORDER r*

Paul R. Beesack

In 1955, L. C. Hsu [4] proposed as a problem the proof of the follo-
wing inequality

1<
M(t)-M(r)<s(t-r)

(O<r<s<t),
M (t)-M (s) r (t-s)

involving the (ordinary) mean M (r) of order r (MITRINOVIC[6, 75]). Appa-
rently no proof of the inequality (1) has yet been published. The author
would like to thank Professor MITRINOVIC for drawing his attention to this
problem recently. The proof of (1) which follows is based on a little-known
property of M, namely that the function M (r-l) is convex for r>O. This
property of M is not noted in any of the three standard references [2], [3],
[6] on inequalities. However, according to E. F. BECKENBACH[1, 449], it is
shown in G. JULIA [5] that log M (r) is a convex function of l/r for r>O.
Since the convexity of the logarithm of a function obviously implies the con-
vexity of the function (because eX is an increasing, convex function), the
convexity of M (r-l) for r>

°
follows. Because we believe this property should

be more widely known (and its proof more readily accessible), we shall include
a proof of this result here.

The inequality (1) is valid not only f0r the (ordinary) mean of order r,
but also for the weighted means of order r>O,

[ ]

{

n

}

1/r
M(r)=M: (a; q)= 2: qka[ ,

. k=1

(1)

(2)

(3)
b 1~

M(r)=M[r] (j; q; a, b)={ Jq(X)f(X)'dX} .
a

In (2), a = (at' . . . , an) is any sequence of positive numbers, while
n

q = (ql' . . . , qn) is a sequence of positive numbers such that 2: qk= 1. Simi-
k=1

larly in (3), f and q are posilive continuous functions on [a, b] with
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b

Jq (x) dx = 1. The ordinary means of order, are the special cases of (2)
a

obtained by setting all qk = ~. We note that if a is a constant sequence (I is
n

a constant function) or if n= 1, then M(r) is a constant, and the middle
term in (1) is not defined. For this reason we shall always assume that a is
not a constant sequence (that I is not constant), and that n ~ 2. In this case
it is well-known (see [2, 16-18], [3, 26-27] and [6, 74-76]) that M(r) is
a continuous, strictly increasing function of r, and that r log M (r) is a strictly
cOnvex function of ,. The left-hand ineq'uality in (1) follows at Once from
the first of these results, and we shall now show that the strict convexity of
M (r-l) for ,>0 follows from the second. In what follows, we deal with (2),
the proof for (3) being essentially identical.

In order to prove that l(r)=oM(r-l) is strictly convex for r>O, it suffi-
ces [3, 77] to show that I" (r»O for r>O, or since

I" (r) = r-4 M" (r-1) + 2 ,-3 M' (r-l),

it suffices to prove that

(4) g(y)==yZ M" (y) + 2yM' (y»O for y>O.

(5)

Now we have

M' (y) = y-1 {M1-Y (y)

kt1
qk a/log ak - M (y) logM (y)} ,

and so

(6) M" (y) = - y-Z
{

M1-y

~
qk a/log ak - Mlog M}

+ y-l {(1- y)M-Y M'
~

qka/logak+ M1-Y~ qka/ (log ak)Z -M' - M'log M}.

From (4)-(6) it follows that

g(y)= M{(IOgMF- 2 M-Y log M*qka/JOg ak+ M-ZY(~ qka/log akr}
(7)

+ y{ M1-y log M~qka/IOg ak-M1-Zy (~qka/IOg akf
+ M1-y

~
qk a/ (log adZ} .

The first term of (7) is

M(IOgM-M-y*qka/IOgakf,



On weighted means of order r 23

and so it suffices to prove that the second term of (7) is positive. To prove
thi s we use the strict convexity of h (y) =y log M (y) (see the suggested proof
of this in [2, p. 18]), or rather the fact that

S u bstitu ting

"
M' MM"-M'2h (y)=2-+y-->0.
M M2 '

2 MM' + yMM" - yM'2>0 for all y.

from (5) and (6) into (8) we obtain finally

(8)

M2-y log M"iqk a/log ak- M2-2y
("i qk a/log ak)+ M2-y "iqk a/(log ak)2>0

I I I

for all y. It follows from this that the second term of (7) is positive for all
y>O, completing the proof of (1).

We note in passing that, since (yM(y»" = yM" + 2M' = y-l(y2 M" + 2yM'),
it follows that yM(y) is also strictly convex for y>O. (This also follows from
3, TH. 119]).

The proof of the right hand inequality of (1) is now almost immediate
since it is equivalent to

M(s)<r(t-s) M(r)+t(s-r) M(t),
s (t-r) S (t-r)

Setting A=t(s-r)f{s(t-r)}, we have 0<1..<1 for the s in question.
Hence, setting r= I/y, t= I/x, s= I/{Ax+(I-A)Y}, we see that (9) is equi-
valent to

(10) M ( 1 )<AM (~)+(1-A)M (~), (O<x<y, 0<1..<1),
Ax+(l-A)Y x Y

and this foHows from the strict convexity of M (r-I) for r >0.
We also note that, using the strict convexity of yM (y) for y>O, one

can prove that M satisfies the inequality

(9) O<r<s<t.

(t - r) M (rt/s)«s - r) M (r) + (t - s) M (t) (O<r<s<t),

or, setting r = rJ.s, the ineq'Jality

(11) M(rJ.t) <
(l-Q()s

M(rJ. s) + t-s M(t)
t-Q(S t-Q(S

(O<s<t, 0<rJ.< 1).

L. C. Hsu also asserted that the inequalities (1) were best possible. Using
the continuity of M at r this is obvious for th::: left hand ineq'lality of (1)
if we let s approach r. We shall prove that both ineq'lalities of (1) are best
possible for arbitrary (fixed) r, s, t such that O<r<s<t. To prove this we
first take al = a2 = . . . = an-I = e:>0, an = a>O, and note that for each n ~ 2,

{

n-I

}

l/r
IIM(r)= e:rf qk+qnar -+qn ra as e:-+O+.

It follows that
lit I/r

M(t)-M(r)
-+

qn -qn
=
l-yR-T

~ A (y) as e:-+O +,
M(t)-M(s) qnl/t_qnl/s l-yS-T

(12)
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where R=r-l, S=s-t, T=t-1 (so R>S>T>O), and y=qn' Now, lim A(y)= 1,
y->O+

which shows that the constant 1 appearing in the first part of (1) can not
be increased, provided qn- 0 as 11- + 00. However at least one of the weights qk
must tend to zero as 11- + 00, and we clearly may assume this is qn' For the
second part of (1), we take a1=a2=." =an-l=a>O, and an=<:>O, so that

M(r)-(~lqkrra as <:-0+, and again (12) holds, but now with

n-l
y=L: qk=I-qn-I as 11_+00. Now, however,

1

1
.

A ( ) 1
. -(R-T)yR-T-l R-T s(t-r)

1m y = 1m --=-,
y->-l y->-l -(S-T)yS-T-l S-T r(t-s)

and it follows that the constant on the right side of (1) can not be decreased.
At the same time that Hsu proposed the problem (1), he also proposed

the inequality

(13) 1< Q (r)- M(r)-M(-r)
<11

M(r)-M(O)

where M(r) is the ordinary mean defined for all r#O by (2) with all qk= I/n,
and M (0) is the gemetric mean (al . . . an)l/n. Again, if 11~ 2 and not all ak
are equal, the left hand inequality in (13) is trivially true because M is a
continuous, strictly increasing function of r for - 00 ~ r ~ + 00. Although we
have not succeeded in proving the right inequality in (13), we can show that
if the inequality is valid, then the constant 11 is best possible. Indeed, if we
arrange the ak so that O<al ~ . . . ~ an, with strict inequality holding in at
least one place, then [6, 74]

(O<r< + 00),

I '

M (r)-M (-r)
-

an-a,1m -~.
r->-+ooM (r)-M (0) an-(a, .. . an)

n

If we set al=anan(O<a<I), and a2=... =an, the right side of (14)
reduces to (1- an)1 1- a), which tends to 11as a_I-, so that the constant 11
in (13) can not be replaced by any smaller III mber. We observe that, using
the inequality of the arithmetic and gecmetric means, it is easy to prove that
the right side of (14) is ~trictly less than 11. Hence if Q (r) were a nondec-
reasing function the inequality (13) would follow! Unfortunately this is not
the case since (for example) with 11= 2, al = 1, a2= 3, one finds that Q (1) < Q (1/2).

(14)
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