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366. ASYMMETRIC TRIANGLE INEQUALITIES*

Murray S. Klamkin

In a previous note (Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.
.NIl330 - ;NIt 337 (1970), 1-15), the author had derived an inequality re-
lating the elements of two triangles. Its scope bas now been extended to the master
inequality X2+y2+Z2;;;'; (_I)n+l (2yzcosnA + 2zx cosnB+2 xycosnC) where
x, y, z are real numbers, n an integer and A, B, C are angles of a triangle.
There is equality iffx/sinnA~y/sinnB=z/sinnC. For n~l, we get BARROW
and JANIC'S inequality; however an equivalent form was given much earlier by
WOLSTENHOLME. For n~2, we get the inequality of KOOI, (x+y+z)2R2;;;';
;;;';yza2 + zxb2 + xyc2; the inequality of OPPENHEIM, (a2 x + b2y + c2Z)2 ;;;';
;;;';16(yz+zx+xy)LJ2; and one of the author, [(ax+by+ez)/4L1f;;;';xy/ab+
+ yz/ be + zx/ea. However, again an equivalent form was given much earlier by

WOLSTENHOLME. In particular, for x=y=z, 3/2;;;'; (-I)n+1 ~ cosnA ;;;';-3.
For equality, the triangle is not unique for n>2. This corrects some previous
errors for the equality case (Ioc. cit., pp.7-10). The master inequality is then
specialized in many ways to obtain numerous well known inequalities as well
as a number of them which are believed to be new.

1. Introduction

If one peruses the book Geometric Inequalities [1] which is the most
complete reference for triangle inequalities, one finds that almost all of the
ones given are symmetric in form when expressed in terms of the sides a, b, C
or the angles A, B, C of a given triangle. No doubt, part of reason is that the
asymmetric ones are not as easy to come by. In this paper, we will derive a
number of asymmetric inequalities. However, some of these will lead to sym-
metric ones by specialization and we will relate some of these to some of
those given in [1].

Our point of departure will be from a positive semi-definite quadratic
form in three variables.

2. A positive semi-definite quadratic form

In a previous note [2, p. 7], we had derived an equality involving the
elements of two triangles which includes as specid cases, the ones of BARROW
and JANIC, KOOl, OPPENHEIM,TOMESCUas well as other well known ones. We
now extend the scope of that inequality to

(1) x2+ y2+Z2;;;';(_l)n+l {2Yzcos nA +2 zxcos nB+2 xycos nC}
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34 M. S. Klamkin

where x, y, z are arbitrary real numbers, n an integer, and A, B, C are the
angles of an arbitrary triangle. There is equality, if and only if,

(2) ~=~=~
sin nA sin nB sin nC

.

Inequality (1) follows immediately by writing it in the equivalent form

(3) {x+( -l)n (ycosnC+ z cos nB)}2+{y sinnC-z sin nB}2 ~ O.

In applying (1), we can assign A, B, C to be any angles corresponding
to a given triangle and then determine x, y, z for equality from (2). However,
it seems more useful to assign x, y, z first; giving an asymmetric inequality
for the case when x, y, z are not chosen symmetrically. Here, x, y, z cannot
not be completely arbitrary real numbers if we wish to have the equality case
in (1). It will turn out in an argument similar to BOTIEMA(3) that Ix I, Iy I
Iz I must form a triangle. Additionally the corresponding angles A, B, C (for'
the equality case) are not generally unique.

From (2), we have

sin nA =kx,

where k is real. Then,

sin nB=ky, sin nC=kz

( -1 )n+lsin nC = sin n (A + B) = k {x (l-k2 y2)1/2+ y (l-k2 X2)1/2}

or after squaring twice and simplifying

(4) (2 kxYZ)2 = (x + y + z) (x + y-z) (y + z-x) (z + x-y).

Without loss of generality, we need only consider the two cases x, y, z ~ 0 or
x, -y, z ~ O. First, we take care of the degenerate case x or z=o. Here, (1)
red uces to

x2+ y2 ~ (-IY+12xycosnC.

For equality, we must have cosnC= :1:1, x=:l:y and thus lxi, Iyl, 0 form a
degenerate triangle. The corresponding triangle ABC is not unique for n>2.
For if n=2n'+I,

C-~- 2n' + 1 '
A=B=~-~

2 2n' + 1
(r=O, 1,..., n');

for n = 2 n'.

C=
(2r-l)n ,

2n'
A=B=~-

(2r-l~
2 4n'

(r= 1, . . ., n').

If x, y, z>O, it follows from (4) that since (2kxYZ)2 ~ 0, x, y, z must
form a triangle XYZ and that k = :!:1/2 (! where (! is the radius of the circum-
circle of XYZ. Whence, (2) becomes

sinX
=

sin Y
=

sinZ
= :!:1.sin nA sinnB sinnC

Thus,
nA=rn:!:X, nB = s n :!:Y,
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where r+s+t=nT 1, r, s, t have the same parity and such that A, B, C ~ O.
A, B, C are unique only for the cases n= 1,2.

If x, -y, z>O, then it follows similarly, that x, -y, z must form a
triangle XY' Z and then for equality in (1),

nA= rn:!:X, nB= sn:!::Y', nC= tn:!:Z

where r + s + t = n T 1, r, sand t have the same parity and such that A, B, C ~ O.
It is to be noted that the above conditions for equality in (1) rectify

some erroneous ones given in [2, pp. 7 -9].
Another positive indefinite quadratic form was also given previously

[2, p. 13], but its scope is wider than had been indicated and its derivation
was not as clear and simple as it could have been. It should have read:

If x, y, z are arbitrary rea) numbers and a, b, c are the sides of an arbi-
trary triangle of area L1, then

(5)
{

ax+by+ ez
}

2 yz zx xy
.:;-+-+-4,1 be ea ab

with equality, if and only if,

x
a(b2+e2-a2)

=--.l'_=
z

b (e2 + a2-b2) e (a2 + b2-e2)
.

Actually (5) corresponds to the special case n = 2 of (1). To effect the conver-
sion, just let ax=x', by=y', cz=z' and note that

4 L12= a2b2sin2 C = b2c2sin2 A = c2a2sin2 B, cos 20 = 1-2 sin2 O.

(6)

Another form equivalent to (5) is

{X+ y + Z)2R2 ~ yza2 + zxb2 + xyc2

(here R is the radius of the circumcircle of triangle ABC). The latter is due
to KOOI [1, p. 121], [4]. It reduces to (5) by substituting R=abcj4L1, etc.
Another equivalent version is

(6)'

This form and the corresponding equality conditions were stated without proof
by OPPENHEIM[5] who also remarked that it would be an interesting exercise
to see how many triangle inequalities could be deduced from it1. An earlier
version occurs in the problem collection of WOLSTENHOLME2[6, p. 92, N!!514], i.e.,

(6)" (x sin2A + y sin2 B + z sin2 C)2 ~ 4 (yz + zx + xy) sin2A sin2B sin2 C

with equality iff x tan A = y tan B = z tan C (this reduces to a previous form by
letting x sin2 A = x', etc.).

1 This reference was pointed out to the author by A. W. WALKERafter this paper
had been submitted. for publication. Any further references or comments indicated by an
asterisk is to indicate that they have also been pointed out to the author by A. W. WALKER.

2 In a subsequent historical paper, the author expects to give an account of the many
known triangle inequalities which have appeared earlier in this problem collection.

3.



36 M. S. Klamkin

BARROW'Sinequality and its extension by JANIC [1, p. 23], Le., if x, y, z
are real numbers such that xyz>O, then

x cos A + Y cos B + z cos C ;;;
yz

+
zx

+
xy

2x 2y 2z

(if xyz < 0, the inequality is reversed) are equivalent to the special case n = 1
of (1). Incidentally, the equivalent inequality

(7) a2x2+b2y2+c2z2 ~ xy(a2+b2-c2) +yz (b2+ c2-a2) + zx(c2 + a2-b2)

appeared much earlier in the form (29) also as a problem [6, p. 32, N2 207],
but apparently had not been fully exploited (the x, y, z here are different from
above).

3. Special Cases of Inequality (1)

It is rather surprising how many known and apparently some new triangle
inequalities are special cases of (1). A number of these were obtained this way
by KOOI (loc. cit.) and also in [2, p. 7]. But at the time the latter was written
it was not fully realized how many more inequalities could be obtained. Con-
sequently, there will be some duplication here.

If x=y=z::;i:O,
3
- ~ ( -1 )"+1{cos nA + cos nB + cos nC}2

(8)

with equality if

nA=n(r:f: 1/3), nB=n(s:f: 1/3), nC=n(t:f: 1/3),

where r+s+t=n=t=l, r, s, t have the same parity and such that A, B, C>O.
A somewhat trivial companion inequality to (8) is

(-1)"+1 {cos nA +cos nB+cos nC} ~ -31(9)

with equality if
nA = r n, nB = s n, nC = t n

where r+s+t=n and r, s, t have the same parity as n.
Since,

~ cos 2 nA = 4 ( -1)" cos nA cos nB cos nC - 1,

~ cos (2 n + 1)A = 4 (-1)" sin
2n + 1

A sin 2n + 1
B sin

2n + 1 C + 1,
2 2 2

we also have
(10) 1

- ~ (-1 )"+1cos nA cos nB cos nC ~ -1,
8

1-- ( 1)'"
2n+I

A '
2n+I

B "
2n+I

C 12-~ - SIn- SIn- SIn- ~- .
8 2 2 2

(11)

Special cases of (8)-(11) for n = 0, 1, 2 appear in [1, Sect. 2].

1 For n-I, the "-3" can be replaced by "1".
2 For n-0, the "-1" can be replaced by "0".
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Letting yz = 1Ia', zx= lib', xy = lie' in (6), we obtain

(12) (a' + b' + C')2R2 a2 b2 C2
;;::;-+-+-.

a' b' c' a' b' c'

The latter inequality in which a', b', e' are restricted to be the sides of a trianle
was proposed by TOMESCU [7] as a problem. Here, however, a', b', e' can be
arbitrary real numbers. But in order to have equality, Ia' I, Ib' I, Ie'I must be
the sides of a triangle. This follows from (4) since x = a'i ya' b' e' , etc. In par-
ticular, if a' = b, b' = e, e' = a, we obtain the asymmetric but cyclic inequality

(13)

where for convenience the symbol {E} will denote "with equality if and only
if a = b = e". That {E} applies here follows from the conditions for equality, i. e.

sinB sinC sinA
sin2A = sin2B = sin2C

.

As was shown before, the only solution (aside from trivial degenerate triangles,
e.g., a = b, e = 0) corresponds to the solution of

2A=n-B, 2B=n-C, 2C=n-A.

As a companion inequality to (13), we let a' = a3e, b' = b3a, e' = c3b to give

(14) a3e+b3a+e3b;;::; 8s2ry2Rr.

If a', b', e' do not form a triangle, we have strict inequality; if they do, we
have equality if ABC is equilateral. Whether there are any other solutions for
equality depends on the uniqueness of the system (subject of course to A + B + C = n)

tan A sin C=tanBsin A = tan CsinB.1

Letting a' = b2, b' = c2, e' = a2, (12) reduces to

{

a2 +b2 + c2

}

2 a2 b2 c2
;;::; - + - + - ;;::;3 (stronger than

4.1 b2 c2 a2
(15) [1, 4.4]).

If ABC is obtuse, we have strict inequality; if not, we have equality for the
equilateral case. Whether there are any other solutions for equality depends
on the uniqueness of the system.

sin2B sin2C
- -

sin2A - sin2B - sin2C
.

A companion inequality to (15) is obtained by letting a' = a21b2, b' = b2/c2,
e' = e21a2. Whence,

(16)
a2 b2 c2

{
a2+b2+c2

}

1/2
-+-+-;;::; .
b2 c2 a2 R2

1Aside from degenerate triangles (A = B = 0), it has shown subsequently by O. BO'ITEMA,
L. M. KELLY and the author that these equations imply the triangle is equilateral.
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We now consider some special cases of (7). For equality in (7), we must
have x=y=z. Letting x=l/a, y=l/b, z=l/c, we get

(17) a3+b3+c3+3abc ~ ~c(a2+b2)

or equivalently

{E}

(18)

(18)'

(19)

~+~+&+5abc~~+~~+~~+~

abc ~ (b+c-a)(c+a-b)(a+b-c)*, [1, 1.3],

R~2r.

Inequality (17) is also valid for any a, b, c ~ 0 since it is a special case of
SCHUR'Sinequality, i.e.,

a (a-b)(a-c)+b(b-c)(b-a)+ c(c-a)(c-b) ~ O.

A companion inequality to (17) is the one of COLLINS[1, p. 13]

(20) 2 (a+b+c)(a2+b2+c2) ~ 3(a3+b3+c3+3abc) {E}.

An equivalent form for (20) is

(21) S2 ~ 16 Rr-5 r2.

The latter was shown by BLUNDON[1, p. 51] to be the strongest homogeneous
quadratic inequality in s, r, R {i.e., of the type S2 ~ F (R, r».

Letting x= l/a2, y= l/b2, z= l/c2, then

(22) a2b2 +b2c2 + c2a2 ~ 16 Ll2

Letting x= a, y= b, z = c,

{E}, [1, p. 45].

(23) {E}.

The latter inequality is valid for all real a, b, c since it is also equivalent to

(23)'

If x=b, y=c, z=a, then

(24) a2b2+b2c2+ c2a2-abc(a+b + c) ~ a3b + b3c+ c3a-ab3-bc3-ca3

or equivalently either

{E}

(25)

or

(26) 4 S2(s2-4 Rr + r2)-(s2 + 4 Rr + r2)Z~ 2 (a3b + b3c + C3a).

Also, see (13) and (14).
If x= l/b, y = l/c, z = l/a, then

{E}.

. See1 p. 35.
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~ a2(b2+c2-a2)2 6; 3 (a2+b2-c2)(b2+c2-a2)(c2+a2-b2) {E}.

We now relate the result of LmsKIi, OVSJANNIKOV,TULAIKOVand SABUNIN
[1, p. 117] to that of (7). They showed that if p, q are real numbers such
that p + q = 1, then a triangle with sides a, b, c exists, if and only if

pa2+qb2>pqc2 for all p, q.

From (7), we have that if a, b, c are sides of a triangle and x, y, z are arbi-
trary numbers then

(28)

(29) a2(x-y)(x-z)+b2(y-z)(y-X)+C2(Z-X)(Z-Y) 6; O.

There is equality if and only if x = y = z provided ABC is non-degenerate. For
if c = a + b, (29) reduces to

{ax+by-(a+b) z}2;;;;;O.

To establish sufficiency of the above result (and incidentally another proof for
the necessity) one can either proceed as in [1, p. 119] or else note that the matrix

which is associated with the quadratic form (29) is positive semi-definite
[8, p. 74]. Also, note that

I

2aZ cz-az-bz

l

=(a+b+C)(a+b-C)(b+c-a)(c+a-b) 6; O.
cZ-aZ-bZ 2bZ

and det (Ml) = O. Thus [a I, [b I, [c [ form a triangle.
An analogous result also holds for the form (5). Here the associated

matrix is given by

8,1z/ab-ab

8,1z/ca-ca

8,1Zfab-ab

bZ

8,1Z/ca-ca

8,1z/bc-bc

8,1Z/bc-bc
where

16 L)2= (a+b + c)(a+ b-c) (b + c-a) (c + a-b).

The necessary and sufficient condition that (5) be a positive semi-definite form
in x, y, z is that the three principal miners of M2 be 6; 0, i.e.,

[a2 [ ;;;;;0, a2b2-(8 iJ2jab-ab)2 6; 0, det (M2) 6; O.

Again we need only consider "necessity" since we previously established the
"sufficiency". Since it can be shown that det (M2) vanishes identically, we need
only consider the 2nd order minor which can be rewritten as

(a+b +c)(a +b-c) (b+ c-a) (c+a-b)

x {4a2b2-(a+b+c)(a+b-c)\b+c-aHc+a-b)} 6; O.
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Since the latter is obviously valid if Ia I,Ib I, Ie' form a triangle, we have
another "sufficiency" proof. If the inequality is valid, then it is easy to
show that

/a/+lb I-I el, Ib1+1e/-Ial, Iel+lal-Ibl ~ 0
(we need only consider the two cases a, b, e ~ 0 or a, b, -e ~ 0).

The natural generalization of the previous two results is that the neces-
sary and sufficient condition for form (1) to be positive semi-definite, in which
the term cos nA is replaced by cos n COS-l(b2+ e2-a2)/2 be and symmetrically
for the other cosine terms, is that IaI, Ib I,Ie I form a triangle. For "necessity"
the 2nd order minor of the associated matrix Mn then satisfies

1-cos2ncos-l(a2+b2-e2)/2ab ~ o.
Consequently,

1 ;;;::a2+!J2-c2;;;::-1- 2ab -

and thus' a I, Ib I, Ie I form a triangle. Then

det (Mn) = 1 + (-l)n+l cos nA cos nB cos nC -~ COS2nA

vanishes identically.
Now we consider some special cases of (5). Letting x=a3, y=b3, z=c3,

we obtain

~~ ~+~+~~4A~~+~~+~~~
Coupling (30) with (22) yields

(31) ~+b4+e4 ~ 4 A

If x=a2, y=b2, z=e2, then

{E}.

{E} [1, p. 45].

(32)

or equivalently

{E},

(33)

Another proof of (33) follows by squaring out and using the best homogeneous
quadratic inequalities for S2 [1, p. 51], i.e.,

(34) 4R2+4Rr+3r2~s2~ 16Rr-5r2

If x= 11a, y= lib, z= lie, then

{E}.

(35)

or equivalently

{E},

(36)

Another proof of (35) follows by applying (34) to (36).
If we let x = 1, y = 1, z = 0, then

(37)
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with equality, if and only if, a = b = c/y2. This is a stronger inequality than
the following ones of SKOPECand ZAROV [1, p. 122]:

a2-ab+b2 ~ 2,1, a2+b2 ~ 4,1, (a+b)2 ~ 8,1.

The above follows from the sequence of simple inequalities:

4 (a2-ab+b2) ~ 2 (a2+b2) ~ (a + b)2 ~ 2(a+b)yab.

For our final section, we give some more special cases of (1) which
are associated in form with the following inequality of PEDOE.[1, p. 92]* relating
the elements of two triangles ABC and Al Bl Cl :

(38) a12(b2+ c2-a2) + b/ (c2+ a2-b2) + C12(a2+b2-C2) ~ 16,11,1

with equality, if and only if, AlBl Cl"",ABG. If in (7), we now let x= 1/a12,
y = Ifb12, Z = 1/C12,we obtain

(39) a2b2c2
{
~+~+~ } ~"a2(b2+c2-a2)~ 16,1 ,11 1 1
a14 b14 C14 - L., 1 - 1

with simultaneous equality if and only if both triangles are equilateral. Now
letting a2= aI2, b2= bI2, c2= c/ (here we are assuming that Al BI CI is acute but
this puts no restrictions on A2B2 C2), we obtain

(40)

We now employ the area inequality of FINSLERand HADWIGER[1, 10.3] that

4,112 ~ V3 Lfz.
Whence,

a2 b2 c2 8 LlY Ll2V3
2+2+2~
a2 b2 C2 a2b2c2

The latter also implies a number of well known inequalities. Letting az = a,
etc. and then letting az =b, etc., and using (16) we obtain the following chain:

(41) {E}.

(42) {E}

(see [1, p. 42 (4.4)]). We obtain an alternate chain by considering (27), the
I.h.s. of (42) and {40) with az=a, bz=b, cz=c giving

(43)

and

{E},

(44) {E}.

The latter elegant asymmetric inequality was recently proposed as a problem
by A. W. WALKER [9]. I confess I was not able to prove it until after a

* This result had been established much earlier by J. NEUBERO:Sur les projections. ..
Acad. Roy. de Belgique, Memoires Couronnes 8°, 44 (1891), 31-33.
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communication with the proposer in which he casually mentioned that he had
arrived at it in connection with some work on BROCARDpoints1. That triggered
off the solution. For if Q denotes a BROCARD point of ABC, then B Q

=(2 Rsinw)blc, etc. [9, pp. 264-268]. Since also, a2b2+b2c2+c2a2=4L12/sin2w,
(44) can be rewritten as

3 (A Q2+B Q2+ C Q2) ~ (a2+b2+c2~ {E}.

The latter is valid for any point Q [1, p. 117] with equality if and only if Q

coincides with the centroid. That this only occurs for an equilateral triangle,
follows from [10, p. 268, eq. d]. In a similar way, one can show (using
[1, 12.18]) that

(45)
{

a b C
}

2
- ri

{
Ill

}-+-+- ~4v3.1 -+-+-
b C a a2 b2 C2

We can also change the elements of (44) and (41) to their square roots with-
out loss of generality as we did for (39). Whence,

a b c 8'/235/8 LI'/2 LI '/4
-+-+- ~

2

a2 b2 C2 - (a2 b2 C2)'/2

{E}.

{E},(46)

(47)

(47)'

{
a b C

} {

Ill
}

3 -+-+- ~ (a+b+c) -+-+-
b C a a b C

{E},

(a+b-c)(b-cP+(b+ c-a)(c-a)2+(c+a-b)(a-b)2 ~ 0*.

(48)

Also, for any real a, b, c, (abc=;i=0), we have

a2 b2 C2 b c a
-+-+-~-+-+-b2 c2 a2 - a b c

{E}.

This follows immediately from 'i:.(alb-blc)2 ~ O. Also, since

3
{:: + :: + :: } ~

{I : I
+

I ~ I
+

I : Ir ~ 9, (abc=;i=O),

(49)
{
a2 b2 c'

} {

a b C
}-+-+- ~ -+-+-b2c2a2 b c a

{E},

where a, b, c are real and abc=;i=O.

We now compare some of the latter inequalities. There is no comparison
between the second parts of (42) and (43). Here we are equivalently comparing
'i:.cos A and ('i:.sin2 A)1/2. Now consider the two cases, (nI2, n12, 0), (n, 0, 0).
The last part of (42) is weaker than (43) since

(50) a(b2+c2-a2)+b(c2+a2-b2)+c(a2+b2-c2) ~ 8.13/231/4

is equivalent to

(51) tR+r)2~V3rs.

On using 4 R + r ~ s.J3 [1, p. 49], we get

(R+r)2 ~ r(4R+r) ~ rs.J3.

{E},

. In a further communication, the proposer notes that his proof follows by setting
(x, y, z) = (b', c'-, a2) in (7).
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Inequality (27) is stronger than the 1. h. sand r. h. s of (43). This implies that

(52)

or equivalently that

(53)

The latter is similar to a SCHUR type inequality and it can be proven in the
same way. We show more generally that

(54) {E},

for all a, b, c ~ 0 and n>O.l Since I is cyclic in a, b, c, it suffices to consider
the two cases a ~ b ~ c, a;;;;;b ;;;;;c. In the first case,

I ~ an(a-b) + b" (b-c)-b" (a-c) = (a"-b") (a-b) ~ O.

In the second case,

I ~ b" (c-a)-b" (c-b)-a" (b-a) = (b"-a") (b-a) ~ O.

In order to show that (27) is a stronger inequality than the first part of
(42), we need to show that

(55)

where k = 1. Actually, a, b, c need not be the sides of a triangle but can be
any non-negative numbers. Also, k = 1 can be replaced by k = 5/2.2 We may
assume without loss of generality that a ~ b ~ c and we rewrite (55) as

Then,
{a + b + c}{(a-b)2 + (b-C)2 + (a-c2)2} ~ 5 (a-b)(b-c)(a-c).

(a-c)2 (a+b + c) = (a-c)2{(b-c) +(a-b)+(2 c+b)} ~ 3 (a-b) (b-c) (a-c)

and

(a+b)2+(b-c)2~
{

a-c
}

2(a-b)(b-C).
a+b+c

Although (55) does not appear to be a sophisticated extension of the A.M.-G.M.
inequality for three variables, apparently it does not follow from the various
extensions of the A.M.-G.M. given in [11, pp. 81-85].

Finally, there is no direct comparison between (27) and (44).
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1 For n<O, the inequality is reversed.
2 In a private communication, D. J. NEWMANshowed that the best possible constant is

V9 + 6 V3 .This will appear as a problem proposal in the SIAM Review, Oct. 1971.
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