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363. SOME INEQUALITIES FOR TRIANGLES*
A. Oppenheim

1. Inequalities are obtained for pairs of triangles, plane or spherical, which are
such that the angles (sides) of one triangle lie between the least and greatest
of the angles (sides) of the other, the two triangles baving equal angle (side)
sum, The results follow from Theorem 108 in the famous treatise Inequalities
by HARDY, LITTLEWOOD and PoLyA (Cambridge, 1934). (I am indebted to
PeTAR M. Vasi¢ for pointing out that the theorem I had originally used to
obtain these inequalities was simply a special case of Theorem 108.)

Inequalities are also found for pairs of triangles whose sides satisfy the con-
ditions @’ 2 a, b’ 2 b, ¢’ = c: for triangles such that a=max (a,, a,), b=max (b, b,),
c=max(c,, ¢,): for triangles such that a=(a?+a,P)'’? (p=1,2, 4), etc.

2. I quote (with appropriate expansion) from Inequalities, p. 89.
Theorem 108. In order that the inequality
B@)+ - +P@)sP@)+--- +D(a)

should be true for all continuous convex functions @ it is necessary and sufficient
either that (i) (a)<(a), i.e. that (a')is majorised by (a), or that (1) (a') is an
average of (a).

If these conditions are satisfied, and @' (x) exists for all x and is positive,
then equality can occur if and only if the two sets (a) and (a') are identical.

Without loss of generality it can be supposed that
a'z...za/; az=---2a,
(a’) is majorised by (@) means that (Inequalities, p. 45)
a'+-..-.-+a’ =a+-.-. +a,,
a'+.--+a/sa+--. +a,, r=1,..., n—1).

(@) is an average of (a) means that (Inequalities, p. 49) there exist n?
numbers p,, such that

p,‘,.;o, zp;w=1, ZP,W=1
u=1 v=1

and
G, =Py @+ - +Dun@y.

* Presented June 1, 1971 by O. BoTrtEMA, D. S. MrTriNovi¢ and P. M. VasIC.
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22 A. Oppenheim

The two statements, ,,(a’) is majorised by (a)*, ,,(¢') is an average of (@)
are equivalent. (I/nequalities, Theorem 46, p. 49;.

To obtain inequalities relating to triangles it is enough to take n=3.
Thus we obtain

Theorem 1. If ABC, A'B'C’ are two triangles whose angles a, 8, v, a', ',y are
such that (a)>(a") (or what is here the same thing o, ',y lie between the least
and greatest of the angles a, 8, y) then for any continuous convex @

D(a)+P(F)+P()=P(@+PB)+2 )

with equality (when @' (x)>0) if and only if ¢’ =a, f'=8, ¥y =y.
Angles can be replaced by sides if we assume triangles have equal peri-
meters. Similar statements hold for pairs of spherical triangles.

As a very special case take @ (x)= —sinkx. We obtain
¢)) sin ka +sin kB +sinky <sinka’ +sinkf’ +sinky’

(0<k<2) provided ka=<m. Equality occurs if and only if a=a', =5, y=y".
Since (i) the angles of an equilateral triangle are majorised by those of
any triangle, (ii) the angles of an acute angled triangle are majorised by the

acute angled (%n—e, %n——s, 2 s) for sufficiently small &, (iii) the obtuse-angled

(%n+23, %n—e, %n——e) is majorised for sufficiently small ¢ by any given

obtuse-angled (a>%n, B, y) which in turn is majorised by the obtuse-angled

(m—2¢,¢,¢) for sufficiently small ¢, it is clear that Theorem 1 leads to ine-
qualities for families of triangles.

Theorem 2. For any continuous convex @,
3(15(%)é@(a)+¢(ﬁ)+¢(y)<¢(n)+2Q)(O)
(all triangles: equality only for equilateral triangles);

3¢(§)§2¢ () <2 di(%at)-i—tb(O)
(all acute angled triangles);
@(%n>+2@(%n)<2 @ (0)<® () +2 D (0)

(all obtuse angled triangles).

Several results in Geometrical Inequalities (Groningen, 1969) by BOTTEMA,
DiIORDIEVIC, JANIC, MITRINOVIC, VASIC are special cases of this theorem. For
example @ (x)= —sinx(k=1in(1) above) yields 2.2 of G.I. As another example
suppose that 0<<k<<1: then

2sin % krn<Zsinka<3sin —;—k 7, (acute triangles)

)

sink n<Zsink a<<sin % ka+2sin %k 7, (obtuse triangles).
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For k=% compare G.I. 2.9,
1<Z= sin%agg (all triangles).
It may be noted that the inequality in (2) for acute angled triangle

holds for 0<<k=<2.

Further inequalities may be obtained by integration with respect to k.
Thus we arrive at
3) > sin? ka’[2

’,

n2
sin? ka/2 <>

a a

valid whenever (a’) is majorised by (a) with equality if and only if a'=a,
f'=p, y=y. It is assumed that for acute angled trinagles 0<<k=<2: for obtuse
angled triangles 0<<k < 1.

In particular then we have the curious inequalities
@ AsinLpncy Sitk2 9 Giolkn

4 4 a 12 6
for all acute triangles (0<k <2):
sin? ka/2 2
<

(5) Lz kg <y S0 2o lia+ st lin
4 2 a 7 4 4 8

for all obtuse triangles (0<<k=1).

From (4) as a special case (k=2)
(6) 16R<aS L <21 R
a

for any acute triangle, equality only for equilateral triangles.

As an example of Theorem 1 applied to products we have
@) [Icoska<T]] coska’
whenever (a')<(a), equality only for o« =a ectc. (valid for k>0 and kag%n:

thus for all acute T if k<1 and all obtuse T if k=< %) Hence for all acute T

(®) cos2%k:n< 1 cos kagcos3%kn 0<k<l),
equality only for equilateral triangles; and for all obtuse T

) coskn<]] cos ka<cos%k:n: coszékn <0<k < %) )

For k=% we obtain on the right (1++/2)/4: it appears that the third
inequality in G.I. 2.28 has -Z—\/i in place of (1+/2)/4.
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Here is another example:
(10) Ztan ko' <Xtan ka

if (¢)<(), kag%ﬂ whence

11 Ztanka = 3tan kn/3 (0<k=1)

all acute T; (For k=1 cf. G.I. 2.30; k=%, G.I. 2.33.): for all obtuse T

(12) tan%kn+2tan-i—kn<2tanka<tankn (0<k§%).

It is clear that many of these inequalities apply also to pairs of spherical
triangles in which the angles (sides) of one are majorised by the angles (sides)
of the other.

3. Inequalities for two triangles ABC, A’B’C’ when the sides of A'B’C’ are majo-
rised by the sides of ABC: specifically a=b=c, a'=2b'=c', a+b+c=a +b' +¢';
a, b, ¢’ lic between the least and greatest of a, b, c.

Theorem 3. If the sides of A'B'C’ are majorised by the sides of ABC, then F'=F
and v’ =r. Equality occurs if and only if the triangles are congruent.

If T' is not obtuse, then R'< R with equality if and only if the triangles
are congruent.

It is only necessary to consider the last part since the inequalities F'=F,
r’'zr follow at once from Theorem 108.

We show that the assumption R'>R leads to a contradiction.
Note that
Rsiny<R'siny’, R'sina’=<Rsina,
RXYsina=R Zsinda'.

. . . 1 1
Hence sind’ <sina, o' <a, since a’ g;n whether a g;n or not. If also

y<9’, then (a")<(a) and so by (1) above Zsina<Zsina’ (equality excluded),
R>R’ contrary to the assumption R<R'. Thus y>»’. Hence f<f'<xn/2. But
plainly

sin p (sin @’ +sin B’ + sin y’) < sin ¢’ (sin a + sin g+ sin y)
whence

.1 1, , anwn 1, 1
sin —y cos —(a' —p')<sin—y cos—(a—
5 Y cos—-(a'—p) 5 ¥ cos—(a—h),
a contradiction since
’ 1 7 TANN
o<y <y§in, 0<—(a—ﬂ)<i(a—ﬂ)<in.
2 2 2 2
It follows that if T’ is not obtuse-angled and the sides of T’ are majo-

rised by the sides of 7, then R=R’ and equality occurs if and only the
triangles are congruent.

If however T’ is obtuse it may happen that R<R'.
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4. 1 give now inequalities relating to two triangles T, 7' such that a<d/,
b=b', csc.

Theorem 4. (i) If a<da’, b<b’, c=c’ and T’ is not obtuse angled, then F<F'.
If T' is obtuse, the inequality need not be true.

@) If a<d’, b<b’, c<c’ and T is not obtuse, then R<R'. If T is obtuse,
the inequality need not be true.

(iii) No necessary relation holds between the in-radii. It is possible to have
two acute angled triangles T, T’ such that

a<d, b<b', c<c but r>r'.

Proof. (i) Since a+f+y=a +f +9" it follows that for at least one pair
(a, @), (B,B) (y,¥'), we have say a<a’:sina<sin a’ since o’ <7/2. Thus

2F =b'c'sina’ =z besina=2F.
Plainly the inequality need not be true if 7" is obtuse.
(i) For at least one pair, say (8, f), f=f and now
2Rsinf' <2 Rsinff=b=b'=2R'sinf’, R=R,
since f<n/2. Plainly the inequality need not hold if T is obtuse.
(iii) It is sufficient to give a numerical case:
a,b,c=21,1515:a,b,¢=20, 15,15

for which r’<<r. Choose k>1 so that kr'<<r. Then the two triangles of
sides (21k, 15k, 15k), (20, 15,15) are both acute angled: the sides of the
first exceed the sides of the second but the first in-radius is less than the second
in-radius.

5. Theorem 5. Suppose that a triangle T is formed from two triangles T, and
T, by taking
a=max(a,,a,), b=max(b,,b,), c=max(c,c,).
Then
Fzmin (F,, F,).

If one of T,, T, is non-obtuse, then R=min (R, R,).
If both T,, T, are non-obtuse, then
Fzmax(F,,F,), Rzmax(R,, R)).

If both T, and T, are obtuse, no conclusion can be drawn about R.

Proof. Essentially only two cases arise:
1 aza,, b zb,, c=c;
II a,<a,, bz=b,, ¢, =c,.

In case I, F=F,zmin(F,, F,): if T, is not obtuse, then F,=F,. In case II
use the relations

b2+c2—2b,c,cosa, =a’=a>=b2+¢2—2b,c,cosa,
b2+ ¢,2—2b, ¢, cos a,=a,? =b2+¢2—2b,c cosa.
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If a g—;—n, then 0<cosa=<cosa, so that a,<a. Thus

2F=b sinazbic sing,=2F,.
If however a>%n, then
2 b,c, cos(m—a,) =2 b;c, cos (F—a)>0,
0<7t——a2§n—-a<%n, sin a, <sin g,

2F=bc;sinazb,c,sina,=2F,.

In any case F=min(F,, F,).

The rest of Theorem 5 is simply an application of Theorem 4. To see
that no conclusion can be drawn about R if both 7, and T, are obtuse take
T; t> have sides 2,1+¢, 14+¢& and T, to have sides 1+¢,2, 1+¢ for small
enough positive &.

6. I conclude with an inequality relating to the areas of three triangles whose
sides are connected by the equations

() a=G@r+ap, b=(br+bp", c=(r+en (pz1).
Theorem 6. The areas of triangles T, T,, T, whose sides satisfy (1) are such that
) FPPzFP 4 F? (r=1,2,4).

Equality occurs if and only if T,, T, are similar.

For any p>4 (integer or not) there exist triangles 7, 7, and T for
which the inequality is false.

REMARKS. 1. I gave the case p=2 as a problem some years ago: see G.L
10.12. The inequality is equivalent to PEDOE’s two-triangle inequality (G.I. 10.8)

Za?(by2+c,2—a)=16F, F,;
equality if and only if 7, and T, are similar: it is also equivalent to the inequality
(A@+u b +vc?)? =16 (uv+vA + pld) F?

for any triangle T of sides a, b, ¢ and area F: the last inequality is essentially
G.I. 14.1.

2. It would be interesting to determine whether the inequality (2) holds
l=p=4.

Proof for p=1. Plainly
s=s5,+5,, s—a=(s;—a,)+(s,—a,), etc.
where s, s5;, 5, are the respective semi-perimeters. MINKOWSKI’s inequality applied
1 1
to F?= {s(s—a) (s—b) (s—e)}? yields
1 1 1
F*>2F?+F,>,
equality only for similar triangles.
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In the same way for any integer n=5
3) 2n—in f2n> F 2n L F 2n,
equality only for congruent triangles T, T,.

Proof for p=2. 1 give my original proof which depends on a classical
inequality of MiNkowskl for definite real matrices. Suppose that 4=(ay),
B=(b,) are positive definite nxn matrices: then C=4+B is positive definite
and the determinants satisfy the inequality

4) |cu i = fay [+ by [,
equality if and only if 4 and B are proportional. (See e.g. HLP, Inequalities, p. 35.)
Take
A— ‘ b2 b, ¢, cosa, B— ‘ b,? b,c,cosa,
bic,cosa;, ¢? b,c,cosa, ¢?
so that
b? becos a |

a

bccosa c? |
and the inequality F = F, + F, is simply the case n=2 of MINKOWSKI’s inequality.

It is also the case that
(5)

(where A,, B,, C, are corresponding principal minors). This inequality which I
gave in 1930 (Journal London Math. Soc. 5 (1930), 114-119), is known as
BERGSTROM’s Inequality after BERGSTROM who discovered it independently (and
realised its importance) in 1949 (see reference p. 90 in BECKENBACH and
BELLMAN, Inequalities, Berlin 1961.) As an application (5) yields for n=2 and
the matrices 4, B the inequality

6) hzh?+h?
for corresponding altitudes of T, Tj, T,.

Icl 141, 18
[Ci| 4] By

Plainly corresponding inequalities hold in E?: for example if tetrahedra
T, T;, T, have edges connected by the equations

@?=a’+a?, ..., ...
then their volumes satisfy the inequalities
(7) V2B > V12/3 + V22/3,

equality if and only if T, and 7, are similar: their corresponding altitudes
satisfy the inequalities
R =h?2+h2
Proof for p=4. It is enough to note that

1 1
8 (F2—F2—F2)=Z{(b* +b,)” (¢,*+ ¢,)* — (b ¢+ by ¢;2)}
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and
(B + 8,9 (e + &) = (b2 2 + b2 ¢+ (b2 0> —b% oD
so that F2z F2+ F,? with equality only for similar T}, T,.
To show that the inequality (2) cannot hold for p>4 and all triangles
T, T, it is sufficient to take a degenerate case; T, of sides 2x, x, x (x large)
and T, of sides 1, 1, 1. Then for large x an easy calculation gives
Fay2(1—22)[pxP~4, F,=0, F,2=3]16

so that the inequality F?/2>F 724 F,?? cannot hold for large x if p>4.
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