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339. A FAMILY OF GONIOMETRIC INEQUALITIES*
Anders Bager

Introduction

1. The present paper is inspired by my study of the first eight chapters, in
particular chapter two, of the book [GI]. All decimal references will be to this
book, in which a sufficient number of references to more original literature
can be found.

The main part of the paper provides a graphical representation of about
300 goniometric inequalities of a certain form (see 5). Of those inequalities we
need only prove 38 as the remaining will follow by transitivity. Unfortunately,
I have only been able to prove 35 of the fundamental inequalities; three have
been stated as conjectures.

For 32 of the fundamental inequalities I have found quite elementary
proofs. To make this part of the paper accessible to a wide circle of readers
I have provided this rather long introduction, which contains nothing new.

The final part of the paper consists of various applications of the inequ-
alities in the (proved part of the) graph. Of the three more ,,advanced* funda-
mental inequalities I have made only a single application.

2. We shall only derive results valid for an arbitrary triangle ABC (it may be
a very good exercise for the reader to develop inequalities valid for acute
triangles only!). In accordance with [GI] the sides will be denoted a, b, ¢, the
angles a, f, y, the area F, the semiperimeter s, the circum-radius R, the inradius r,
the exradii r,, rp, 7., the circum-center O and the incenter I.

We deviate a bit from [GI] in using three-letter denotations for all six
goniometric functions considered: sin, cos, tan, cot, csc, sec. The reader may
translate from [GI] to the present paper by means of tg=tan, cotg=cot and
COSEC = CSC.

If either a<f<y or a=f=y we shall call § the middle angle.

3. For any given triangle there will exist a triangle with angles —Z-—i, n_F ,

%——%. This transformation of angles will be denoted ¢. If the given triangle

* Presented October 1, 1970 by O. BorTEMA and D. S. MiTRINOVIC.
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6 A. Bager

is acute there will exist a triangle with angles w—2a, n—2p, n—2y. This
transformation of angles will be denoted 7. The reader may observe that ¢ and 7,
in a certain sense, are inverse to each other, From every generally valid equation
or inequality of angles we may immediately form another by using 0. When we
restrict our attention to acute triangles (which we will be forced to in some
proofs) = can be used in the same manner.

4, Let f be a function defined on the open interval (0, @). We shall use the

abbreviations
2.f(@) =1 (@) +f(B)+f(¥),
2LB ) =fBYf )+ ) f (@) +f (@) f(B),

I1f(@=f@fB S

In a few cases we shall use the similar abbreviations Z f(a), Z f(b)f(c) and
11f(a), where now f is supposed to be defined on the positive real axis.

. . . P X X X
5. The functions sinx, sin bR COS X, COS o tan PR cotx, cot S CSC X,

cse >, sec—2x~ are all defined on (0, z). Hence they give rise to 30 symmetric

functions of the three vaiiables a, f, y (or of the triangle ABC) as described
in 4. Properly speaking, though, there are only 26 distinct such functions,
among those the constant 1 (see 8). Each of these 26 functions we shall nor-

malize by multiplying it with a suitable positive constant in order to make the

function assume the value 1 at (%, %, %), i.e. for equilateral triangles.

. . 4 . .
Examples of such normalized functions are: —\/3—432c0t a, 32sm g siny and

8Hﬁn%.
Our goal shall be to find all inequalities

D(a, B, V)=¥(a, B, 7)

between normalized functions @ and ¥, valid for all triangles and being equa-
tions if and only if the triangle is equilateral.

Of course the inequalities will very rarely appear in their normalized form;
two inequalities, one of which can be derived from the other by multiplication
by a positive number, will be identified.

6. Whenever possible we shall adhere to the following convention. When a
trigonometric inequality using the sign ,,<‘ or the sign ,,=* is stated, equality
will obtain in the equilateral case and in this only. The few exceptions will be
clearly indicated. In all proofs the discussion of the condition for equality is
easy and will be left to the reader.

7. We shall use a few algebraic inequalities concerning a triple (x, y, z) of
arbitrary non-negative numbers. We shall state the inequalities without proofs
(which will easily be found elsewhere): The arithmetic-geometric mean inequality

3
X+ z —
,_..13/:’—_2 .\/xyz,
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A family of goniometric inequalities 7

and the arithmetic-square mean inequality
x+y+25y/3E@TITD,
which we shall also use in one of the alternative forms
YZ+zx +xy=x2+y2+ 22,
3(yz+zx +xy)<(x+y+2)2.

The last inequality, in which x, y, z are restricted to positive values, is the
arithmetic-harmonic mean inequality

(X +y+2) (1 Hy 4+ 2 29,
In each of the inequalities stated above the condition of equality is x =y =z.

8. We shall use some goniometric identities, which we shall now state and
prove presupposing only very elementary trigonometry (among this the most
elementary geometry of the incircle and the excircles). For later reference the
formulas will be indicated by capital letters (numbers being reserved for a certain
purpose, see 11).

If no angle is % we have

1 t
—tan y =tan (a+ﬂ)zm’
l—tana tan g

Ztana=Htana.

Using o (see 3) on this we get our first formula:

(A) Zcot%:ﬂcot%.

which can be reduced to

Multiplying (A) and the formula preceding it by | ] tan % and [ Jcota, respec-

tively, we get the formulas
(B) Ztangtan%-—: 1,

(©) D.cotfcoty=1

(it is easily verified that (C) remains valid in right triangles, excluded in the
proof given). Next we shall prove:

(D) ZSina=4Hcos%.

Proof. (sina+sinf)+siny=2 sin?%lg cosa_;’?+ 2sin % cos%

=2cos~ cos‘iﬁ)—FZCos‘ﬂ9 cos =
2 2 2 2

=200s1(cos Cﬂg—l—cos(mg>=4]—lcosi.
2 2 2 2
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(E) Zcosa=l+4Hsin%.

Proof. (cosa-+cos f)—(1—cosy)=2cos (L";—é cos a—;E— 2 sin? %

=2sinl(cosgf—ﬁ—cosﬂ)=4Hsini.
2 2 2 2

F ZcosZa:-l—4Hcosa.
Proof. (1 +cos2a)+(cos2f+cos2y)=2cos2a+2cos(f+y)cos(f—yp)
= —2cos a(cos (f+y)+cos (B—))=—4 ][ cosa.

As cc)82x=1+c052x and sin2x=1—0032x,
2 2
(F) vields the next two formulas:
G) Zcos2a= 1—2] ] cosa,
(H) Dsinza=2(1+]]cosa).
Using o on (G) we get:
) Esinz%=1—2Hsin-‘;‘-.

The next formula we shall prove is:

J) 25 cota _ 2 sinta

Hsinz;z.
. ) .
Proof. 2ZCOta=Z(COtﬂ+coty)=2ﬂ(ﬂf7)=z .sm(‘z ‘=ZS”'] a.

sin § siny sin fsiny Hsma

Combining (H) and (J) we get
(K) Scota= 1] cosa

3
II sin a

and from this by o:

(L) > tan >

Dividing (D) by % [Isina=4]1] (sin % cos %) we get:

™M) 2chcﬁcscy=ﬂcsc%.
Multiplying (L) by T cot % we find:

(N) Zcotgcot%=l+ncsc%.
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A family of goniometric inequalities o

In one case we shall need the less well-known formula
©O) Zcotz—;—= (Z cot—az—) (4Zcota—Zcot;—).

Proof. As a=2Rsina and F=2R? H sina, formula (J) can restated as
2 Z cota= (Z a?)/(2F). Hence
Z cotz 2 + (Z cot i)z _(—a)P+ (b +(s—c)+s* _a+ b+ c?
2 2

r? r2

4_F,z;_fit_a 4s200ta 4(ZCOt")(ZCOta)

That there are only 26 normalized functions (see 5) follows from formulas (A),
(B), (C), (D) and (M). At the same time we see that the constant function 1
is one of the functions.

9. We shall now derive a few formulas of another kind. Dividing

(s—a)+(—b)+(s—c)=s by F=rs=r,(s—a)=ry(s—b)=r,(s—¢)

we get the formula

1 1 1 1
— ==
. e P, Fo T
The next formula is
ro+ry+r.—r=4R.

Proof. ra+rb+rc—r=F(_+_,+____

=F( c 4 c ): Fabe M@—4R
(s—a) (s—b) s(s—c)) s@—a)@s—b(s—c) F

By means of this formula we get

r(4R+r):era=z(s——b) tan g(s—c) cot%:Z(s—b) (s—o)

=zs2—s2(b+c)+2bc=3s2—4s2 + 2, be.
bec+ca+ab=s2+r(4R+r).

As Za2=(2a)2—22bc this formula yields the following:
a2+b2re2=2[s2—r(4R+1r)].

This is all we shall need but we shall give the following remark: From
the last formula but one combined with a+b+c=2s and abc=4RF=4Rrs
we conclude that, in fact, every symmetric polynomial in a, b, ¢ can be expres-
sed as a polynomial in s, R, r.

Hence:

10. As we shall see now even some symmetric goniometric functions of a, 8, y
can be expressed as (rational) functions of s, R, r. By means .of the formulas

Za =2R Z sina and (D) we get the three formulas:

. 5 a 5 a
ZSma—;, HCOS?=E, HSCC'—‘—T
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10 A. Bager

As F=2R[[sina and [] sin%=—1~(H sina)(H sec—;—) we get:
[{sina=-"- Hsm—— , Hcsc—;—‘=4—R.
r

The formulas (M) and (E) yield:
chc fescy ==— Zcos a=F

By the formulas z tan % = (H sin %) ( 11 sec %) and (A) we get:

H tan—:——-— Zcot—— H cot——
The formulas (L) and (N) yield:

Ztan%=4R+r Zcot cot%:iﬁf.
¥

The formula ZZcota =(Z a2)/(2F) (see the proof of (0)) together with the
last formula in 9 yield the formula

Scotq=S=rUREN
- 2rs
As
2.sin Bsiny= (2 be)/(4R2), D csca =(2 sin B siny)([]csca)
and

2.cos Bcosy =2 sin fsiny— 2 cosa
we get, by means of a formula from 9, the following three formulas:
. . s24+r(AR+r)
> sin Bsin Y

z s2+r(4R +r)
csCa=————
2rs
r?+st—4 R?
4R>

2

b

Zcosﬁcosy=
By formula (F) we have
(1 + 2, cos a2— (3 sin a)?
=1+Zcosza+2Zcosa+22cosﬁcosy—Zsin2a—2ZSin,Bsiny
—1+4 D cos2a— . sin2a=1+ cos2a=—4]] cosa.

Inserting here the expressions for Zcosa and Zsina found above we get:

S’—QR+n?

] cosa= T
As Jlcota=(]]cosa) (ITcsca) we finally get:
I cota= S—QR+r?

2rs
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The graph of inequalities

11. We shall now prove the 35 inequalities and state the three conjectures
(see 1). The 35 fundamental (proved) inequalities will be indicated by numbers,
by means of which the reader may locate them in the graph. As lemmas for
our proofs, we need some further inequalities and two theorems; these lemmas
will be indicated by small letters. The first and by far the most fundamental
is EULER’s inequality

(a) Rz2r.

It is a corollary of the formula
OI?=R>*—2Rr,

but we shall indicate the following more elementary proof: By the arithmetic-
-harmonic mean inequality (see 7) we have

(ra+rp+r)(rgt +ryt+rg)=9.
By means of two formulas from 9 this reduces to

AR+nNr1z9,
which immediately yields (a).

12. By (a) and [[sin %3411? (see 10) we get
’ . 1
b Lz
(b) ] sin T3
By (b) and formula (N) we get our first fundamental inequality:
B v.9 a
1 t—cot—-=<— —.
(1) 2002002—81_10502
Considering first the acute case we get, using T on (b):
© [Tcosax %
which is trivially seen to be true in the other cases. By (c) we get:

1+Hcosa§—:—.

Dividing this by ][] sina and using formula (K) we get:

2) Zcot a g% ITecsce.
Using o on (2) we get:

9 a
3 tan —<— =.
3) Zanz_snsec2

13. From (b) and formula (E) we get:
(d) Zcosa__<_.—;—.
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Using o on (d) we get:

. 3
4 is__
4) Zsm 5=

By the arithmetic-harmonic mean inequality we get:

(z sin %) (Z csc %) =9.
Hence by (4):
4 2 csc % =6.

Dividing (4) by || sing— we get:
(6) chcﬁcsclsincsci.
2 272 2
By (6) and the arithmetic-harmonic mean inequality we get:
7 in2 sin 2= 6 [sin 2.
@) Zsmzsmz_ I_Ism2

In the acute case we get using 7= on (7):

(8) 2. cosfcosy=6]] cosa,

which is trivially seen to be true in the right case. Considering, finally, the
obtuse case, we shall suppose that y > % By division by the negative number

[T cosa we rewrite (8) as
sec a +sec f << 6 +sec(a+ f).

1 1
As a+ﬁ<% we cannot have both cosaéz and cos ﬁgz. Hence we sug-

pose that cosa > L Then seca< 6 and sec B < sec(a+p) (as sec is increasing),

from which the rewritten inequality .follows by addition.
14, Using (4), (b) and formula (I) we get:

22sin§sin%= (Z sin%)2 +2]]sin %—— | é%,
(e) ZSingsin%_S_%.

By means of (¢) we shall prove the inequality

) 2Zcos az cos(f—y).
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Proof. 2 cosa— ., cos(B—y) =2, [cos B+ cos y—cos (B—)]
=Z[Zcosﬁ%/cos ﬂ%y—ZcosZﬁ%y+ 1]

= Z[l +2 cosﬂ%y (cos ﬁ%—cosﬂ_Ty)]

=3——4Zcosﬂ;ysin —ﬁ~sin123—4 Zsinﬁsinlgo.
2 2 2 2 2
By (f) we get:
225inﬁsiny=2cos(ﬂ—-—y)+Zcosa§3Zcosa,

9) z sin fsiny=— Z cos a.
Using o on (9) we get:
(10) ?cos #cos ——s Zsm—

15. By the arithmetic-square mean inequality, formula (H), and (c) we get:

Dsinas< \/32 sin2a=\/6(1+Hcosa)§¥

Thus we have proved the inequality

® S sinas 3—\2@ :
on which we use ¢ and find:
(11) Z cos % = # .
Dividing (11) by T cos % we get:
343
(12) Zsecgsec%éiz/—_nsec—;——.
By (11) and the arithmetic-harmonic mean inequality we get:
(13) Zsec—a{z 24/3.
We multiply (13) by 1] cos % and get:
14) Zcosgcos%gZﬁHcos%.

16. Combining (10) and (14) we get:
z s1n —= H cos —
=73

Dividing this by ][ sin-a« we fmd.

(15) chc—cs l’_ \/incot—
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17. By means of (g) and formula (D) we get

(h) I1cos 7 =— 3 \/3 .
We multiply (h) by 8 [Tecsca and get:
(16) Hcsc%_s_ 3+/3 1] csca.

By (2) and the arithmetic-square mean inequality (see 7) we get:

3> sin Bsiny<(2 sin a)2< Zsm a,

amn S‘smﬁsxn;}s zsma
Using o on (17) we get:
(18) Zcos——co % Zcos—

Dividing this by Hcos% we find:
a _+/3 B ec?
(19) > sec 2 sec - sec %

7=

~l

We multiply (h) by 8 ]]sin % and [] tan% , respectively, and get the following

two inequalities:

(20) I[Isina<3 \/§Hsin%,

@an Hm §3\/—Ht

18. By formula (D) the first inequality in the proof of (17) can be rewritten as
32 sinfsiny<16]] cos2 —
Dividing this by 3 [ ] sina we get:

(22) zcsca g,% I_I cot % .

19. By the arithmetic-harmonic mean inequality we have
(Z sin a) (Z csca)=9.

Dividing by Z sina and using formula (D) we get:

(23) chca;%nsec%.

We multiply (23) by | ] sina and get:

(24) Zsinﬂsinygwnsin%.
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20. Combining (22) and (23) we get:

a _ 27 a
cot—=— sec —
I 525 [Tsec,
which we restate as

a 8 1 a

In the acute case we get by 7:

(26) T cot a g% I1sina,

and this is trivial in the other cases.

21. As ZZcosa=Z(cosﬂ+cosy)=2§:sin%cos '32;?§22sin% we have:

27) Z cosas Z sin % .

The reader may note that the same idea can be used to give a much simpler
sroof of 2.4 than the one offered in [GI].

22. Let x, y, z be real numbers satisfying x+y+z=0. Then we have
xX+y

sinx+siny+sinz=25in——2~cos x—?+2sin%cos —;—

= —2sin % cos =2+ 2 sin - cos 22
2 2 2 2

Y

X+ xX— . X . . zZ
4 )= —4sin~ sin Lsin Z.
2 2 2

=2sinZ (cos ———cos —

2 2 2

\s D (%—— a) =0 the formula just proved yields:
QZCOS a—%z sina=Zsin(%—-— a) =—4]]sin (%-—%) .

‘rom this formula we easily derive the following theorem:

i) Let f denote the middle angle (see 2). Then:

/3>% = Y sina < +/32cosa,
/3=1;—:> > sina = /32 cosa,
ﬂ<% = > sina>+/3 2 cosa.

Ising ¢ on (i) we get the parallel theorem:
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(j) Let B denote the middle angle. Then:
ﬁ<% > Zcos%> \/§zsin
B = :3!" = ZCOS% = \/§Zsin
ﬁ>% = zcos%<\/§§:sin

>

]

a
2
a
2
a
2

23. The two theorems from 22 make it possible for us to prove the inequality
(28) Z cos %2\/32005 a.

Proof. We suppose that asf<y ‘and counsider three cases separately

) a=f=y= —7;— . Clearly equality holds.

2) a<ﬂ§z;—<y. By (j) and (27) we
get
Zcos ~§g\/§Zsin%>\/§Zcosa.

3) a<% < B <y. By (14), (18), and (i) we have

Zcos %> > sina > /32 cosa.
Thus the proof is finished.

24. The next inequality
29) 2> sin g sin %g 2 cosa
is proved in 2.56 and I kaow no other proof. I shall reproduce the proof.

In this we disregard the convention from 6, but the reader will observe thai
we stick to the convention in (29). We let § be the middle angle and choose

the notations a and y such that either a§%§ﬂ§y or ag% = f =vy. Then
clearly:
(2 sinf.— 1)(2 sin L — 1)g 0
2 2

2 sin £+2sinl§1+4sinﬁsin—y—
2 2 2 2

2 (sin L sin < +sin = sin ﬁ)ésini+ 411 sin = .
2 2 2 2 2 2

To this inequality we add the inequality
B t4 B—

. . ' . a . a
2 sin -~ sin ~=cos —~—sin — < 1 —sin —,
2 2 2 2

use formula (E), and have (29).
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25. Multiplying (b) and (h) we get:
@ [Tsina=?¥2,

By formula (J), the arithmetic-geometric mean inequality and (k) we get
2 1 sin 1 2
5 D cota=— 2 > 2

3 sinﬂsiny_\/nsma V3’
0 > cota=+/3.

Using o on (I) we get:

(m) > tan %g V3.

Finally, multiplying (m) by Hcot% we get:

30) Zcot%cot%g ﬁncot%.
26. We shall prove the inequality
(31 3Zcotachot-‘2’-.

Proof. By the arithmetic-square mean inequality we have
> sinza =, sin fsin y.
Using sin B siny =cos fcosy+cosa and formula (H) we restate this inequality as
2(1+ 7 cos a)EZCos a+Zcos pcosy.
Adding 1+ ][] cosa to both sides we get
3(1+J]cosa)=]] (1 +cosa).
We divide this by [ ] sina, use formula (K), and have (31).
27. Combining (22) and (31) we get:

: chcaéZZcota,
from which we get by o:

(32) Zsec%§22tan%.

28. For the next three inequalities I krow no strictly elemen‘ary proofs. My
proof of the first inequality

33) Zcosﬁcosyé%ll sin ¢
will depend on the inequality
11
2<4R2+——F
(n) 2= =+ Ve

2 Publikacije
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stated (correctly) in 7.4, but misstated in 7.3. For a proof the reader may
consult the two papers indicated in 7.3 and 7.4. NAKAJIMA’s proof is not quite
elementary as it uses calculus. As a prepara‘ion for the proof we translate (33)
by means of formulas from 10. The translated inequality reads:

(0) r2+s2§4R2+:/%rs.
In view of (n), to prove (o) we need only show that

11 4
Wi rs < 7 rs.
This inequality we easily reduce to
s=3+/3r,
a well-known fact (see 5.11), which we later shall derive from our earlier
results (see 36).
Using ¢ on (33) we get:

r2+

34) Zsmﬁm lgvz_zn os%.
Dividing (34) by I sin % we get:

2 a
35 s —.
(35) ZCSCZ—V3H°°t2
29. We state the three conjectures (see 1):
i) Zcosﬂcosy>~— I] cota,
(Ci,) > sin 7 sin - > I_I tan =
(Ci») chcigg—%iﬂsec%.

In essence there is only one conjecture: Clearly (Cj,) and (Cj,) are equivalent,
i.e. easily derived from each other, and (Cj,) follows from (Cj,) by o. Similarly,
in the acute case (Cj;) follows from (Cj,) by 7. If there is a simple proof of
(Cj)) in the obtuse case — I do not know whether there is — it is sufficient
to prove any one of the three conjectures. Anyway it will suffice to prove (Cj,).

30. We shall now describe the graph, hintcd at in 1 and shown on page 19.
For clearness’s sake we shall first assume that all conjectures are true and
neglect the broken arrows in the graph (but retain the undulating ones!).

The 26 vertices of the graph represent the 26 normalized functions (see 5);
which one represents which, will be clear later. An arrow means: =, with

equality if and only if a=p =y=%“. The undulating arrows represent the
conjectures. The 35 proved fundamental inequalities are, in the graphi, indicated

by their numbers. The reader will now be able to find out, not only the
identity of each vertex but also of each of the conjectures.
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It is recommended that the reader
makes his own drawing, on which he writes ,
at each vertex its corresponding expression;
some functions have two or even three dif-
ferent expressions; it pays to write them all. ‘\
We have described the graph under
the assumption that the conjectures are
facts. The broken arrows reprasent inequal-
ities aimed at making life without the

conjectures a bit easier. 27 ‘VS

31. Assume again that the conjectures are

facts. Then the graph (without the broken 2;\ ‘,'_/fv N
arrows) is complete in the following sense: N

Every generally valid inequality between 3/’ \2
normalized functions (see details in 5) is

represented in the graph by an arrow or . 4

a directed string of arrows (transitivity!). >\ 19 7

To prove this it is sufficient to show that L 4 , 4

the functions in each of the following pairs DT /
)

cannot be the two sides of a generally
valid inequality:

(ETTesc2, Y25 cota), ”/“\‘

X ; ) ; .28
= ScotLcot?, = >cescLese l) 18 27
9 ~ 2’ 2 22

2

9
(52
(—QZsma, §Zcosa)
(iZSingsin%, %Zsinﬂsiny)
(3\/§Htan§, %Zsinﬂsiny),
(8] cosa, 3\/§Hcot a).

2%

The graph.
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20 A. Bager

Two of these cases are covered by the theorems (i) and (j) in 22, and the
other cases can be covered by choosing suitable examples. We shall leave this

tedious work to the reader, only advicing him that the two limiting cases
T

(0, 0, m) and (O, %, ;) of (a, B, v) can be useful.

Should the conjectures be false a certain amount of work remains in order
to complete the graph; clearly the broken arrows are not sufficient.

Some applications of the graph.

32. From now on we stop indicating fundamental inequalities by their numbers.
If the reader has drawn the graph as recommended in 30, he will rapidly locate
each inequality from the graph stated in the following.

Of the more than 300 inequalities readable from the graph only a few
are found in [GI], namely in the following sections: 2.1, 2.7, 2.9, 2,12, 2.15,
2.16, 2.22, 2.23, 2.27, 2.28, 2.33, 2.34, 2.38, 2.40, 2.41, 2.42, 2.49, 2.51, 2.53,
2.54, 2.55 (the first inequality is valid only in acute triangles), 2.56 (see 24)
and 2.63; among those are most of our lemmas.

33. Orne of the more interesting non-fundamental inequalities in the graph is
II tan %g H cot a.

Multiplying by ] sin a we get:

11 —cos a)z]] cosa.
From this we get by o:

11 (1—-sin%>z 11 sin2£ .
34. The second inequality in 33 may be restated as

Z cosa=z1—2]]cosa+ 2 cosfcosy.
By means of formula (G) this can be rewritten as
> cosaéz cosza+ . cos fcosy.

Adding > cos 8 cosy to both sides we get:

> sing sin y < (2, cos a)*

The author regards the proof above as an answer to the request by the editor
at the end of [LC].

35, As3) cotaz= > cot —(21— formula (O) yields

Z cot? %g(z cot —;) (Z cot o)~

Compare 2.44.
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We replace the left hand side by (2 cot %)2——2 > cot g cot %, divide

by z cot %= 1T cot —2a~ , and have the inequality
Z cot%gz cota+2 Z tan g‘.

As cot %—tan §=2 cot x the last inequality above can also be deduced from

the inequality 3 > tan %g > cot %

36. Every inequality in the graph, not containing any of the expressions

Zsm— Zsm%sm? zCOS? Zcosacos— chc—
chc csc— Zsec—— Zsec

may be translated, by means of formulas from 10, into inequalities between
functions of s, R, r. B

~3V3

=8

In this manner the inequality [] cos

3V3 »

SS—-—

7 yields

compare 5.3. The inequality Ztan %gﬁ yields the stronger inequality

s\/3<4R+r.
Compare 5.5, 5.25, 5.33 (see the proof) and 7.2. The inequality

Hsinagz—; [Icota

yields the inequality

This inequality is stronger than both 5.7 and the right hand inequality of 5.8, i.e.
s2<4R2+4Rr+3r2.

All other estimations above of s by functions of R, r obtained in the manner
indicated are weaker than the last mentioned inequality, which may be derived
by translating the inequality proved in 34.

Turning now to estimations below of s in terms of R, r, we first note

that || cot—g—g3\/§ yields
s§=3+/3r.
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Compare 4.2 and 5.11. 11 cos %g% IT tan % yields the stronger one:
252=27 Rr,
compare 5.12. The inequality 3 Zcot az=]] cot —Z— yields

s2=3r(4R+7),

which is the strongest estimation below obtainable in the manner considered
here. Compare 5.5 and 5.6.

I should very much like to see a derivation from the inequalities in the
graph of the left hand inequality in 5.8, which is the strongest estimation
below of s2 by a homogeneous polynomial (of the second degree) in R, r.

37. Let B denote the middle angle. In view of the formulas ), sin o= % and
Z cos a= %Lr theorem (i) of 22 yields

ﬂ<§ = s</3(R+7)
/3=3;— = s=+3R+7)
l3>§ = s>/3R+7).

In particular, s and (R+7r) \/3 are incomparable in the sense that no generally
valid inequality between them exists.

38. Those inequalities from the graph, which contain just one of the expres-
sions mentioned in the beginning of 36, are capable of partial translation by

formulas from 10. From 2 cos %g V32 cosa and 2 sin % =D cos a We get:

From the inequalities
B 7 Vis. By _ 1
cos — cos —-=Y— > sina and sin — sin —<— 2, cos a
Z 2 2 2 Z 2 2 2 2 z
we get by subtraction and partial translation the inequality

svV/3—(R+7)

2R

S a
Z sin > =

The two estimations of sin% are independent of each other in the sense

that, depending on the triangle, one or the other may be the stronger one.
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R+r

From 37 it easily follows that sin%g is the stronger one (the weaker

one) if p<7 (if ﬁ>§), and that they coincide if f— =, § being the middle
angle.

We also note that . sin %2-1:

> sina yields the estimation

V3
. 5
sin—= —
2 27 Ry3

although this estimation can never be better than both the preceding ones

because s/(R \/3) is a weighted mean (with weights 1 and 2) of the two prece-
ding right members.

39. As sin g-=j etc., we conclude from 38 the following three inequalities:

1
AL T N B
Al  BI (I r R

_l__l_i_i__l.‘gs_\/_?:(.}iﬂ)_,
Al BI (I 2 Rr

11_L>s

= =—.
Al BI  CI~ rR\/3

. 3 .
From D sin %é; we get an estimation above:

111<3

Al BI CI™ 2r
Observing that r3/(] [ 41) =] sin %= r/(4R) we have

AI-BI-CI=4Rr2,

Multiplying the four inequalities above by 4Rr2 we get the following four
estimations of » BI.CI:

BI.CI+CI-AI+AI-BIz4r(R+7),
BI.CI+CI-AI+ AI-BI=2F+/3—2r(R+7),.

BI.CI+CI-Al+AI. Bl = % F,
V

BI-CI+CI-AI+ AI-BI<6Rr.

The chain 6§ > ésc %g% 11 cot% yields the chgip

6r<Al+BI+CI<-2,
3
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which at right is stronger than 12.1, and as above the chain

SIS SEI S S -
2Rr  BI-CI CI-Al  AI-BI 2+/3 Rr*  4r

(the last inequality follows from s§3—\4‘3 R).
Finally, 2 Z sin g sin %g 2 cos a yields the two inequalities

1 1 1 _R
+ L
BICI' CI-Al AIBI 2R

A[+BI+CI<2(R+7),

compare 12.2.

1—cosx

40. Ascscx—cotx= =tan -;C— the inequality \/3< 2 tan % yields:

sin x

chca;Zcota+\/§.

z sec%than%+\/§.

Putting > tan %=4R+r- we get:

Using ¢ we get:

R
ﬂi § z sec _g__.\/—g R
s 2

from which one can deduce the right hand izequality in 4.8.
41, By adding the iaequalities

> ccl<? > cotﬁcoti and 3§i200t £ cot =

2 3 2 2 3 2 2
we get:
342 cscr< cotﬁc t2.
z 2 z 2 © 2

Using 7 on this we get 2.63, which is only valid in the acute case.

42. By adding the inequalities

Y3 e S d i 1S dnasETun s

Z cos (a —%)g z cos (%-—ﬁ).

3

we get:

43. Dividing the inequality sv/3<4R+r (see 36) by R and using that

+r

> sin a‘=“% and D cosa= R



A family of goniometric inequalities 25

we get: -
VAR sina<3+ cosa.

V32 cos l§3+z sin = .
2 2
The two inequalities can be rewritten as follows:

Z cos (a +£)2—i
3 2
Zcos(l+ﬁ)§i.
2 6 2

The last one can, alternatively, be proved by replacing (a, §, y) with (%+-761,

B Ty @\ . . . 3
42, Z 4} in the inequalit cosa=—.
2 6 2 6> q Y 2 2

By o we get:

44. Many non-goniometric inequalities in [GI] can directly be translated into
goniometric inequalities from our graph. For example can 6.11 be translated

into 2 z sin fsin y<3 > cos a, one of our fundamental inequalities.
We shall conclude with another example which is more instructive. After
division by 2F=4R2[[sina, 6.4 can be translated into the inequality

3 E cscaz4 Zsin a, a very weak inequality from our graph. We extend it
to the chain

> csc a;%n 560%22 > tan %22 Vig%Zsin a.
Translating this chain and multiplying by 2 F=2rs we get:

bc+ca+ab=18 Rrg4r(4R+r)_2_4F\/§g—:— (oo + hohg + hah) -
Compare 4.5, 5.16 (2), 6.18 and 7.2.
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