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330. NOTES ON INEQUALITIES INVOLVING TRIANGLES
OR TETRAHEDRONS.

Murray S. Klamkin

NOTE I

TR,IANGLE INEQUALITIES

Four inequalities of Oppenheim involving elements of two triangles
are extended to elements of n triangles.

In this note, we give extensions to four triangle inequalities of OPPEN-
HEIM which appeared in Problem 5092 (Amer. Math. Monthly, 71 (1964),
444-445). Our derivation is similar to the published solution (loc. cit.)
by NOLAN.

Suppose that ~, Be. Ci (i = 0, I, .. . , n- I) are n triangles with sides
at> bi, Ci, area Ai, and altitudes Pt, qi, ri' If an, bn, Cn are defined by the
equations

n-I
an2= 2: a,z,

o

then we will show that
(i) an, bn, Cn are the sides of a triangle,

n-I
(ii) Pn2;;;; 2: Pi2,

o

. n-I
qn2;;;; 2: q,z,

o

n-I
rn2;;;;

2:
Tj2,

o

equality occurring in all three if and only if the original n triangles are
sImilar,

n-I
(iii) An;;;; 2: Ai, with equality if and only if the original n triangles

o
are similar,

n-I
(iv) A:;;;;nn TIAi, with equality if and only if the original n triangles

o
are congruent.

. Pres~nted June 30, 1970 by R. R. JANr<::.
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(i) follows immediately from the MINKOWSKI inequality

(Xlm + x2m + . . . +xnm)l/m + (Ylm + Y2m + . . . + Ynm)l/m

where Xi, Yi~O, m>l.

(ii) From the law of cosines, we get

,,-1
cnan cosBn= 2: ci~cosBi.

o

Squaring and applying CAUCHY'Sinequality' gives

Whence,
,,-1

Cn2sin2 Bn ~ 2: Ci2sin2 Bt
o

or that
n-I

Pn2 ~ 2: Pi2 and similarly for qn2 and rn2.
o

Equality holds for Pn2 if and only if

Cj CDS Bj
= k

'Qj

(i=O, I,..., n-I).

Therefore for equality for one altitude, similarity is sufficient but not nccc,-
sary. Equality for two or three altitudes holds if and only if the original n trian-
gles are similar.

1 1

(iii) 2 "~I ~i = n~1
Piai ~ C~1 Pi2? C~1 ai2? ~Pnan= 2~n'

Again, we have equality if and only if the original n triangles are similar.

(iv) By the arithmetic-geometric mean inequality,

or
n-I

~~~nn II ~i
o

with equality if and only if the onginal n triangles are congruent.
It also follows from (i) that

(m> I)

are the sides of a triangle.
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NOTE II

INEQUALITIES FOR A TRIANGLE ASSOCIATED WITH n GIVEN TRIANGLES

Various inequalities concerning the dements of a triangle associated
with n given triangles are derived. Two of Rose inec.ullities include, as spe-
cial cases, two known inequalities for a pair of associated triangIes.

1. Introduction

For any triangle ABC it is known [1, p. 12] that

(I) abc;;;,(a+b-c)(b+c-a)(c+a-b) {E}

where for convenience the symbol {E} will denote "with equality if and only
if triangle ABC is equilateral." A simple proof follows by noting that
a2;;;,a2-(b-c)2, etc. By interpreting (1) geometrically, we are led to several
generalizations by an averaging process over the sides of the triangle. Dually,
W~ are led to other inequalitie3 by an averaging process over the angles of
the triangle.

2. Area Inequality for Two Re]ated Triang]es

We consider another triangle A'B'C' where

b ' ---
c+a

- ,
2

, a+b
c=-.

2

equilateralSince s = s' and!::, A' B' C' is "closer" to an triangle than!::, ABC",
I

we ~hould expect that ~';;;, ~ {E}. Since here, ~' = (abcsf2:, the latter ine-:
quality is equivalent to (I).

More generally, we should expect the same area inequality for any
reasonable averaging transformation which makes!::, A'B'C' "more equilateral"
than!::, ABC. More precisely, if

..

a' =ua +vb + wc,

b' = va + wb + uc,

c' = watub +vc,
where

u + v + IV=~ I, u, v, w;;;'0,
then
(2) s'=s and ~';;;,~ {E}.

This triangle inequality is equivalent to

(3) (xa + yb + zc)(ya + zb + xc)(za + xb + yc);;;' (a + b-c)(c + a-b)(b + c-a)

where
x+y+z=l, -I ~ x, y, z ~ I

Expanding out and u~ing

La=2s, Lab=s2+4Rr+r2, abc=4Rrs,
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(3) can be rewritten as

(4) (1 +xyz)(2$3-6sr2) + 12Rrs(5xyz-~xy)

~ (1- ~ X2y) ~ a2b + (1- ~ xy2) ~ ab2.

For the special case when x-I = y = z = 0 which corresponds to (1),
ces to the well known inequality R ~ 2 r.

A proof of (2) will follow from the next section.

(4) redu-

3. Area Inequality for n Triangles

Let tlt, bt, Ct denote the sides of the n triangles AtBtC! (i= 1,2,
'"

, n).
Then the three numbers

a=LWtat, b=LWtb!, c=LWtCt

where ~Wt = 1, Wt~ 0, are possible lengths of sides for a triangle ABC. Then,

s= LWtSt
i

.and

Using CAUCHY'S inequality twice,

(5)

where the symbol {Sn} denotes "with equality if and only if the n triangles
.are directly similar". Also, since

r2s=(s-a)(s-b)(s-c) and 4Rfl;;'abc,

we obtain by applying HOLDER'S inequality that

(6) (r2s)1/3~ LWt (rt2st)1/3
i

(7)

If we now let

(flR)1/3 ~ LWt (fltRt)1/3
i

(8)

then (5) reduces to (2), (6) reduces to r~r1 and (7) reduces to flR~fl1R1 or
equivalently Rr~R1r1 (all {E}).

4. More Inequalities for n Triangles

We now consider an averaging process over the angles of the n triangles
..AcBtCt. Let the angles of t:J.ABC be given by

A=LWtAt, B=LWtBt, C=LWtCt
i i i



Notes on inequalities involving triangles or tetrahedrons s

where the wt's are weights as before. Since 6. ABC is again in some sense
more equilateral than the set of n triangles AiBiCi, we should expect some
inequality pertaining to the isoperimetric ratio S2/1:1. More precisely, we will
show that

(9)

Since cot ()12 is convex for 0 ~ ()~ 7T,and

S2 "Ai" Bi "C,
- = cot L..Wi - + cot L..Wi- + cot L..Wi-,
.:l j 2 j 2 i 2

we get
~

" {
~ ~ ~

}-~L.. Wi cot-+cot-+cot-
.:l i 2 2 2

which is equivalent to (9).
In a similar fashion, using the concavity of sin x,

for the following known result [1, p. 90], [2, p. 326]:
If A',B', C' denote the second points of intersection

tors and the circumcircle of a triangle ABC, then

we give extensions

of the angle-bisec-

(10) area A' B' C' ;:;;area ABC {E}.

5. Inequality Involving Circumradius and Inradius

r ." A,." Bi .
"

C,,, . Ai" . B,,, . C,
- = SIn L..Wi - SIn L..Wi - SIn L..Wi -;:;; L.. Wi SIn - L.. Wi SIn - L..Wi SIn -.
4R i 2 j 2 j 2 j 2 j 2 j 2

Then by HOLDER'S inequality,
1

~ ;:;;
{ L: Wi (sin

Ai sin
B,

sin
Ci )3 }

3

4R i 2 2 2

or
1 1

{~}3;:;;fWi{~J3

Then trivially, r/R;:;;min (rtlR,).
i

(11)

6. Inequality Involving Semi-Perimeter and Circumradius

or

(12)

Then trivially, siR;:;;min (stiR,).j



(9)'
t1 t11

{E},-~-S2 S,2

(11)' !-.~!i {E},
R R1

(12)' ~~~{E},
R RI

(13)' ~~t11 {E}.
R2 R12
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7. Inequality Involving Area and Circumradius

Since 4t:J.R=abc,
I 3~

= sin L: WtAt sin L: WtBt sin L: WtCt ~ {L: Wi (sin At sin Bi sin Ci) 3)
2R2 i i i. i

or

(13) {t1 }+ ~ L: W: {~ }+R2 i
I

Ri2

Then trivially, t:J./R2 ~ min (t:J.t!Ri2).
i

8. Special Cases

We now specialize inequalities (9), (11), (12)
to conditions (8). These then become

and (13) by subjecting them

If additionally, I':::..ABC is constrained to have the same circumcircle as 6 AIB]C],
then

(11 )"

(12)"

(13)"

r~r] {E},

s~s] {E},

t:J.~ t:J.] {E} .

It is to be noted that (10) is a special case of (13)".
We conclude with some trigonometric versions of the latter inequalities

by specializing conditions (8) still further, i.e., WI= W2= 1/2, W3= 0 and drop-
ping all subscripts. Since,

282
=

(sinA+sinB+sinC)2

t1 sinAsinBsin C
(9)' becomes

A A B B C C
I I cos-sin-+cos-sin-+cos-sin--

{
r

.

}-z {2 '
A . B . C

}
-z 2 2 2 2 2 2

- = Slll-Sln-Slll- ~. -
2R 2 2 2 ABC

cos-+cos-+cos-
222

(9)"

or equivalently

(9)'"
:n-A :n-B n-C ABC { }cot-+cot-+cot-~cot-+cot-+cot- E.

4 4 4 2 2 2
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Similarly, we obtain

(11)'"
. n-A . n-B . n-C . A . B . C

sm - sm - sm - 2: sm - sm - sm-
4 4 4- 222

{E},

ABC . A
.

B
. C{}cos - + cos - + cos - ~ sm + sm + sm E .

222

In a subsequent paper, we will give a more direct derivation of the last
three inequalities.

(12)'''
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NOTE III

INEQUALmES INVOLVING THE ELEMENTS OF TWO TRIANGLES

An inequality involving the elements of two triangles is given. This inequa-
lity includes, as special cases, the ones of Barrow and Tomescu as
well as other well known ones.

(1)

The inequality

a'2 +b'2 +C'2 ~(_1)n+1 {2db' cosnC+ 2b'c' cosnA + 2c'd cosnB}

(n-integral), relating to the elements of two triangles ABC and A'B'C' follows
immediately by expanding out

(2) {a' + (-I)1~(b' cosnC+c' cosnB)}2 + {b' sinnC-c' sinnB}2 ~ O.

There is equality, if and only if,

(3)

And (3) implies that

sin A' sinB' sinC'
-=-=-.
sinnA sinnB sinnC

nA=mn+A', nB=mn+B', nC=mn+C'

if n = 3 m + 1 and that

nA =(m+ I)n-A', nB=(m+ I)n-B', nC=(m+ I)n-C'

if n = 3 m + 2. For if n = 3 m + 1, let nA = mn + AI, etc., then

sinA' sinB' sinC'

Since also Al +BI +C1 =n, 6A'B'C'",!:.A1B1C1 and the rest follows (and simi-
larly for the case n = 3 m + 2).
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The case when n = 1 had been established by BARROW[1, p. 24] and
used by MORDELL[2] in his proof of the ERDOS-MoRDELLinequality.
Equivalently, it can be rewritten in the form

(4) a'2+b'2+c'2~a'b' (a2+b2-c2)+b'c' (b2+c2-a2)+c'a' (C2+a2-b2).
d ~ .. ~

If also a' = b' = c', then

a3 +b3+C3+ 5abc ~ (a + b)(b + c)(c+a) {E}.

The symbol {E} is to mean "with equality if and only if the triangle is equi-
lateral." Since a3+ b3+ C3~ 3 abc, this is a stronger inequality then

8(a3+b3+c3)~3(a+b)(b+c)(c+a), [1, p. 12].

The case n = 2 is equivalent to

(5)
a2 b2 c2 R2 (a' + b' + C')2
-+-+-~
a' b' c' a' b' c'

and corresponds to problem E 2221 proposed by TOMESCU[2]. The latter
inequality is a rather "rich" one since it includes the following well known
inequalities as special cases:

If a'... b' = c', then

(5.1)
or equivalently

{E}, [1, p. 52],

Since,

2 sin2A = 2+ 2cosA cosB cosC,
we also have

1cosAcosBcosC~- {E}, [1, p. 25].
8

If a' =a, b' =b, c' =c, then

(5.2) R2(a+b+c)~abc {E}

or

sinA+sinB+sinC~4sinAsinBsinC=sin2A+sin2B+sin2C {E}, [1, p. 18].

Since also abc=4Rrs,

R~2r {E}, [1, p. 48].

(5.3)

If a' =a2, b' =b2, C'=c2 (,6,ABC is acute), then

R(a2+b2+c2)~-J3abc {E}

or
sin2 A + sin2 B + sin2 C ~ 2 -J3 sin A sinBsin C

= V; (sin2A+sin2B+sin2C){E}.
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Since also abc= 4Ril,

a2+ b2+ c2;:;;4 y'3il {E}, [1, p. 42].

If a' = b, b' = c, c' =a, then

(5.4)

and similarly

Then by adding,

Letting a'=b'=c' (n:;i:3m) in (1), we get

(6) 3-;:;; (_1)1Hl{cosnA +cosnB+cosnC} {E}.
2

Since

2: cos2nA = 4 (-I)ncosnA cosnB cosnC-I,

" . 2n+l . 2n+l . 2n+l
£..cos(2n + I)A = 4( -I)nsm -A sm -B sm -C + I,

2 2 2

we also have

(6.1)

(6.2)

I;:;; 8 (-I)1H1cosnA cosnB cosnC (2n:;63m) {E},

1::o:8(-1)nsin 2n+l Asin2n+l Bsin2n+l C (2n+I:;i:3m) {E}.
- 2 2 2

Additionally, it is easy to show that

(7)

(8)

1 ;:;;(-1)mcos3mA cos3mBcos3mC,

1 ::0:(_l)m sin
6m + 3

A sin
6 m + 3

B sin
6m + 3

C.- 222

(I) becomes rather complicated if we express the trigonometric functions
in terms of the sides for large n. Consequently, we conclude with the case
n = 4, i.e.,

(9)

If a' = b' = c', then

(9.1)

(9.1) is stronger than 3y'3(abc)2;:;;(4il)3 [1, p. 46] since by CAUCHY'S ine-
quality
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If a'=a, b'=b, c'=c, then

(9.2) R2(a + b + c)2abc ~ L: a3(b2+ c2-a2)2 {E}.

If a'=a2, b'=b2, c'=c2 (LABC- acute), then

R2(a2+ b2+ C2)~ L: a2(b2 + c2--a2)2(9.3)

or

The latter is stronger than (5.3) since [1, p.. 24]

L: cos2 A ~ 3/4.

If a'=a2(b2+c2-a2), etc., (LABC - acute), then

(abc)Z~ (a2 +b2-C2)(b2 +c2-a2)(c2+ a2-b2) {E}.(9.4)

The inequality is also valid for non-acute triangles since then the r.h.s.
becomes negative. This is a weaker inequality than [1, p. 12]

abc~ (a+b-c)(b +c-a)(c+a-b)
for

implies that

or
r r2

-~cosA cosB cosC =--IH2 [1, p. 50]
2 R2 2 R2

and conversely. Also (9.4) is a weaker inequality than either

(10) 3 V3 (abc)2~ (4~)3 {E}, [1, p. 46]

or

(11)

For coupling (10) and (11), we obtain

27 (abC)4~ (4~)6 ~ 27 (a2+ b2-C2)2 (b2+ c2-a2)2(c2 + a2-b2)2 {E}.

In a subsequent paper, we will consider related trigonometric inequalities.
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NOT E IV

INEQUALITIES INVOLVING TWO TRIANGLES OR TETRAHEDRONS

An inequality of Zivanovic relating to the area of a triangle associated
with a given equilateral triangle is extended in several different ways.

o. Introduction

In this note, we extend the following result of ZIVANOVIC[1, 2] in several ways:
If P denotes any point within or on an equilateral triangle ABC and if

A', B', C' denote points symmetrically situated to P with respect to the sides
BC, CA, AB, then

(1) area A'B'C';£: area ABC

with equality if and only if P is the centroid of ABC.

1. An affine equivalent

The first extension is rather simple.
We start with an arbitrary triangle ABC
and instead of taking mirror images of
P across the sides, we "reflect" P along
rays parallel to the respective medians as
in Fig. 1. Inequality (I) is still valid. A
proof follows immediately by affinely tran-
sforming ABC into an equilateral triangle
(which always can be done). Since paral-
lelism, ratio of areas and ratio of lengths
of segments are preserved, the result is equi-
valent to that of ZIVANOVIC.

A

c'
B'

c

A'
Fig. 1

2. Mirror reflections in an arbitrary triangle

We now show that (1) is also valid for arbitrary non-obtuse triangles.
Here,

where ~ and ~' denote the areas of triangles ABC and A'B'C', respectively.
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Changing to areal coordinates (except for a factor of 2)

x=arl' y=br2,
we wish to maximize

a2b2c2 !::!:
1=- -=c2xy+a2yz+b2zx

4 /1
subject to the constraint

x+y+z=2~.

At this stage, we first obtain the maxi-
mum by standard calculus techniques.
Then from a knowledge of the result, we
give a more elementary derivation by esta-
blishing the suggested extension of the well
known inequality

A

c'

c

A'
Fig. 2

Eliminating z,

1 = 2 ~b2x + 2 ~a2y + (c2-a2-b2) xy-b2x2-a2y2
subject to

x+y;;;;;2~, x,y~o.

For an interior point maximum, it is necessary that

iH
ox = 0 = 2~b2 + (c2-a2-b2)y-2b2x,

Solving:

(2) 8~x=a2(b2+c2-a2), 8~y=b2(c2+a2-b2), 8~z=c2(a2+b2-c2).

Using the 2-nd derivative test, we show that the latter point corresponds to a
maximum.

Corresponding

l:c:c= -2b2, 11111=-2a2, 1:rIl=c2-a2-b2,

I:c:cIIlIl-I:cl = 4a2b2-(c2-a2-b2)2= 16~2>0.

to (2), we obtain

a2 b2 c2 AI 2b2 2

I
_a _a c

2:(b2 + 2 2 .)( 2 + 2 b2)c-a c a-max
4 /1 64/12

or

~'max=~'

To complete the proof, we now check the endpoint extrema. For x = 0,
l=a2y(2~-y). Thus, Imax=a2~2. Similarly for y=O, Imax=b2~2 and for
x+y=2~ or z=O, Imax=c2~2. Thus on the boundary of ABC,

/1/max=~max{a2 b2 c2}=max{sin2A sin2B sin2C}.
/1 a2b2c2 " "
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For the case when one angle of ABC is a right angle, the maximizing point
P occurs in the interior of the hypotenuse, i.e., if C = n12, then a2+ b2= c2 and

P(x, y, z) = P(abI2, abl2, 0).

(3)

The previously established inequality suggests the following inequality

ap+bq+er
~ {

pq
+

qr
+

rp

}

1/2

4~ ab be ea

where a,b,c are sides of a non-obtuse triangle, p, q, r ~ 0, and with equality
if and only if

p

a(b2+e2-a2)

q

b(e2+a2-b2)

r

To establish (3) (which also implies (1)) in an elementary fashion, let

p=a(b2+c2-a2)u, q=b(c2+a2-b2)v, r=c(a2+b2-c2)w.

(3) now follows since it can be rewritten as

(b2+ c2-a2)(c2+a2-b2) (8~2-a2b2)(u-v)2

+(C2 + a2-b2) (a2+ b2-C2) (8 ~2-b2c2) (V-W)2

+ (a2+ b2-C2) (b2+ c2-a2) (8 ~2-c2a2) (W-U)2 ~ 0

(note that 16~2=L:(2a2b2-a4)).

3. A perimeter inequality

Referring again to Figure 2 and assuming ABC is equilateral, we will
show that

(4)

(where as usual s denotes the semi-perimeter).
Since

B'C'2= 4r22 +4r/-8r2r3 cos2nl3,

s' = L: {r22+ r2r3+ r/}1/2.
Since also,

{x2 + xy + y2}1/2~ X + Y (with equality if and only if xy = 0),

{X2+xy+y2}1/2~ V; (x+y) (with equality if and only if x=y),

we get
2(r) + r2+r3) ~s' ~ .J3(rt + r2 +r3)

which is equivalent to (4). The 1. h. s. equality occurs if and only if the point
P is located at one of the vertices of ABC. The r. h. s. equality occurs if and
only if P is located at the centroid of !:::,ABC.
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4. Extension of (1) to tetrahedra

If P denotes any point within or on a regular tetrahedron ABCD and if
A', B', C/, D' denote points symmetrically situated to P with respect to the faces
BCD, CDA, DAB, ABC, then

(5) vOlumeA'B'C'D/~(~rvolume ABCD

with equality if and only if P is the centroid of ABCD.
Assuming that ABCD has edge length 2, its volume is

V(ABCD) = 2y2/3.
Also

given by

V(A'B'C'D') = V (PA'B'C/) + V(PB'C'D') + V (PC'D'A') + V(PD'A'B').

We now use the volume formula for a tetrahedron as a function of the lengths
of three coterminal edges and the angles between them [3]:

COS (]'2

cos (]13

cos (]13 1/2

cos (]23

If () denotes a dihedral angle of ABCD, then cos() = 1/3 and

<;:.A'PB'= <;:'B'PC'= <;:'C'PA'=n-().
Now letting

we obtain

and that

V(A'B'C'D') = 1~~ {rlr2r3 + r2r3r4 +-r3r4rl + r4r1r2}.

satisfyThe r/s

where F is the face area of ~ABC. Inequality (5) now follows immediatdy
from the known inequality [4] for symmetric functions

with equality if and only if rl = r2= r3= r4 or equivalently that P is the centroid
of ABCD.

If instead of reflecting P an equal distance across the faces, we refkct
twice the distance across the faces (so that PA' is now 3 rl instead of 2 rl, etc.),
(5) becomes

V(A'B'CD'):5 V(ABCD).
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5. An affine equivalent for the tetrahedron

By an affine transformation 4. extends analogously to 1. (the affine equi-
valent of (1)).

6. A perimeter inequality for regular tetrahedrons

Here we obtain the 3-dimensional version of 3. where we are reflecting
P twice the distance across the faces. If E denotes the sum of the lengths of
all the edges of ABCD, then

(6)

The 1.h. s. equality occurs if and only if P coincides with a vertex of ABCD
whereas the r. h. s. equality occurs if and only if P is the centroid of ABCD.

Here,

A'B' = 3 {
r 2+

2r,r2
+r 2

}

1!2
1

3
1

and thus

Whence,
3 (rl + r2) ~ A'B' ~ .)6 (rl + r2)'

32: (rl + r2)~ E' ~.)6 2: (rl + r2)
or

9 (rl + r2+ r3+ r4)~ E' ~ 3.)6 (r1+ r2+ r3+ r4)

which is equivalent to (6).
In a subsequent paper, we will give further extensions to simplices and

also consider geometric properties other than length and content.
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