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330. NOTES ON INEQUALITIES INVOLVING TRIANGLES
OR TETRAHEDRONS.

Murray S. Klamkin

NoTEe I
TRIANGLE INEQUALITIES

Four inequalities of Oppenheim involving elements of two triangles
are extended to elements of n triangles.

In this note, we give extensions to four triangle inequalities of OPPEN-
HEIM which appeared in Problem 5092 (Amer. Math. Monthly, 71 (1964),
444-—445). Our derivation is similar to the published solution (loc. cit.)
by NoOLAN.

Suppose that 4;, By, C; (i=0,1,..., n—1) are n triangles with sides
a;, b;, ¢;, area A;, and altitudes p;, ¢;, r;. If a,, b,, c, are defined by the
equations

n—-1 n—1
an2= z 0129 bn2= 2 blz, cn2= 2 ci2s
0 0
then we will show that A
(i) a,, by, c, are the sides of a triangle,
. n—1 . n—1 n—1
() pa*= 3 PP @z D a Pz Y ord
0 o 0

equality occurring in all three if and only if the original n triangles are
similar,
n—1
(iii) Ay= 3 A, with equality if and only if the original n triangles
)
are similar,

n—1
(iv) Ay=nn I1A: with equality if and only if the original n triangles
0

are congruent.

* Presented June 30, 1970 by R. R. JANIC.
1
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(i) follows immediately from the MINKOWSKI -inequality
o+ XM e XM () )l
Z{(x+p)™+ (X F Y - - k(X ) m

where x;, 420, m>1.
(ii) From the law of cosines, we get

n—1
Cnly €OS By= 3 cia;cos B;.
0

Squaring and applying CAUCHY’s inequality gives

n—1 n—1

cytcost B, = [ S af/a,,z] { > ¢ cos? Bi}.
0 0
Whence,
n-1
¢ sin? B, = Z ¢s?sin? B,
0
or that

n—1
pi*2 > p and similarly for g,? and r,2
0

Equality holds for p,* if and only if
GcosBi_ (i=0,1,..., n—1).
>

Therefore for equality for one altitude, similarity is sufficient but not ncce:-
sary. Equality for two or three altitudes holds if and only if the original » trian-
gles are similar.

n—1

n—1 n—1 n—1 -l— l
@ 25 A="3 pacs('S p2) ('3 0] Spuan= 280
0 0 0 0

Again, we have equality if and only if the original n triangles are similar.

(iv) By the arithmetic-geometric mean inequality,

Az Ag+ A+ -+ Ay Z(AA, - - - Ay_tn

or
n—1
A: gn” II Ai
0
with equality if and only if the original n triangles are congruent.
It also follows from (i) that
{Samim  {ShmYlim (3 cmylim (m>1)

are the sides of a triangle.
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NorTEe II
INEQUALITIES FOR A TRIANGLE ASSOCIATED WITH 7 GIVEN TRIANGLES

Various inequalities concerning the clements of a triangle associated
with n given triangles are derived. Two of tlese inecuulities include, as spe-
cial cases, two known inequalities for a pair of associated triangles.

1. Introduction
For any triangle ABC it is known [1, p. 12] that
(N abcz(@+b—c)(b+c—a)(c+a—b) {E}

where for convenience the symbol {E} will denote “with equality if and only
if triangle ABC is equilateral.”” A simple proof follows by noting that
a?zaz—(b—c)?, etc. By interpreting (1) geometrically, we are led to several
generalizations by an averaging process over the sides of the triangle. Dually,
wz are led to other inequalities by an averaging process over the angles of
the triangle.

2. Area Inequality for Two Related Triangles

We consider another triangle 4’B’C’ where

b+c , c¢c+a a+b
) e , b="—"—2", =—=

2 2 2
Since s=s5" and AA'B’'C’ is ““closer” to an equilateral triangle than A ABC,
1
we should expect that A’=A {E}. Since here, A’=(abcs)?, the latter ine-
quality is equivalent to (1). :
More generally, we should expect the same area inequality for any

reasonable averaging transformation which makes A A'B'C’ ,,more equateral“
than A ABC. More precisely, if

a =ua+vb+we,
b =va+wb+uc,

¢ =wat+ub+ve,

where

u+v+w:—l, u, v, w=0,
then v
2 Cs'=s and A'=A {E}.

This triangle inequality is equivalent to
(3) (xa+yb+ze)y(ya+zb+xc)y(za+xb+yc)z(@+b—c)(c+a—b)(b+c—a)

where
x+y+z=1 —l=x,p,2z=1

Expanding out and using ]
Ya-2s, Zab=s2+4Rr+r2, abc=4Rrs,
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(3) can be rewritten as
@) (1 + xyz)(253—65r2) + 12 Rrs (5 xyz—2Z xy)
2(1—2x2y)Zazb+(1—2Zxy)Xab.

For the special case when x—1=y=z=0 which corresponds to (1), (4) redu-
ces to the well known inequality R=2r.

A proof of (2) will follow from the next section.

3. Area Inequality for » Triangles

Let a;, b;, ¢; denote the sides of the n triangles 4;B;C; (i=1,2, ..., n).
Then the three numbers

a=2w¢a¢, b=Zw,b¢, c= Z Wi ¢y
where Tw;=1, w;=0, are possible lengths of sides for a triangle ABC. Then,
5= Z Wy S;
and l ‘
A= Z Wy 8¢ Z wi(s;—ay) Z wy (Ss—by) IZ wi(s;—cp)-
Using CAUCHY’s inequality twice,

(5) \/K = IZ Wi \/E {Sn}

where the symbol {S,} denotes “with equality if and only if the n triangles
are directly similar”. Also, since
r2s=(s—a)(s—b)(s—c) and 4RA=abc,

we obtain by applying HOLDER’s inequality that

(©) ()32 2w (s {Sa},

) (ARWS = 2wy (AR {Sy}.

If we now let

® n=3, (a,, b, c;)=(by, ¢, @), (a5, by, ¢;)=(cy, a1, by),

then (5) reduces to (2), (6) reduces to r=r, and (7) reduces to AR= AR, or
equivalently Rr=R,r, (all {E}).

4. More Inequalities for n Triangles

We now consider an averaging process over the angles of the n triangles
AB;C;. Let the angles of A ABC be given by

A= wid;, B=2wB, C=2wGC
i i i
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where the w;’s are weights as before. Since A ABC is again in some sense
more equilateral than the set of n triangles 4;8;C;, we should expect some
inequality pertaining to the isoperimetric ratio s2/A. More precisely, we will
show that

2 2
©) T=2my S}

Since cot 0/2 is convex for 0<6=<xn and

2 A B,
L—cot D> w —‘+cot2wi—‘+cotzw¢9,
A i 2 i 2 i 2

we get
sz A‘ B‘ Ct
—=2W cot——+cot—+cot—}
A Z ’{ 2 2 2
which is equivalent to (9).
In a similar fashion, using the concavity of sinx, we give extensions

for the following known result [1, p. 90], [2, p. 326]:

If A',B’,C’ denote the second points of intersection of the angle-bisec-
tors and the circumcircle of a triangle ABC, then

(10) area A'B'C' zarea ABC  {E}.

5. Imequality Involving Circumradius and Inradius

. A . B, . C . A . .
I —sino w2 sin 2, wy =% stw;—‘ng, sin 24 > w, smﬂzm sin &t.
4R i 2 i 2 i 2 i 27 25 2

Then by HOLDER’s inequality,

1
L;{Zw, (sinésin—% sing)3}3
2 2 2

4R i
or

(11) {%}%z Z W, {ﬁ}% {Sa}.

Ry

Then trivially, r/Rzmin (ri/R;).

6. Inequality Involving Semi-Perimeter and Circumradius

—;;=sin > Wy A; + sin >, wyB; + sin > wiCi= Dowy (sin A; + sin B; + sin Cy)
i i i i
or

(12) =2 w = S

3
R
Then trivially, s/R = min (s;/R;).
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7. Inequality Involving Area and Circumradius

Since 4AR=abc,
1
13
2;:2 =sin z wyA; sin D, wyB; sin SwiCi= {Z w; (sin A4; sin B; sin C;)?)
i i i . i

or

(13) {%}%;Zwi {RA}% (S.).

Then trivially, A/R?= min (Ay/R?).

8. Special Cases

We now specialize inequalities (9), (11), (12) and (13) by subjecting them
to conditions (8). These then become

oy S= (B,
1y 225 B
2y 222 (E),
13y Rﬁglf_ (E).

If additionally, A ABC is constrained to have the same circumcircle as A 4,B,C,,
then

an” rzr, {E},
(12)” szs {E},
(13)” AzA, {E}.

It is to be noted that (10) is a special case of (13)".

We conclude with some trigonometric versions of the latter inequalities
by specializing conditions (8) still further, i.e., w,=w,=1/2, w;=0 and drop-
ping all subscripts. Since, .

2s? _ (sinA+sin B+sinC)?
"A sindsinBsinC

(9)’ becomes
A A B B
1 4 B . Ci cos?sin?+cos—£sin7+cos?sin—i—
o)’ {fi}z ={25in?sin?sin?}2 <

A B
COS-— +COS— + COS —
2 2 2

or equivalently

" cot%+cotn—;§+cot n—zggcotg+cot§+cot§ {E}.
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Similarly, we obtain
’ . n—A . n—B . a— . . .
an” sin 2= sin =2 5in Z=C > sin 4 sjn Z 5in £ {E},
4 4 4 2 2 2

(12)"" cos§+cos§+cos%gsinA+sinB+sinC {E}.

In a subsequent paper, we will give a more direct derivation of the last
three inequalities.

REFERENCES
1. O. BotteMA, R. Z. PorpEVIE, R. R. JANIE, D. S. MiTRINOVIG, P. M. Vasié: Geo-

metric Inequalities, Groningen, 1969.
2. M. S. KLAMKIN: On some geometrical inequalities. Math. Teacher 60 (1967), 323-327.

NOTE I

INEQUALITIES INVOLVING THE ELEMENTS OF TWO TRIANGLES

An inequality involving the elements of two triangles is given. This inequa-
lity includes, as special cases, the ones of Barrow and Tomescu as
well as other well known ones.

The inequality
¢)) a?+b2+ 2 2(—1)"*1 {246 cosnC+2b'¢’ cosnd +2c'a cosnB}

(n-integral), relating to the elements of two triangles ABC and A'B'C’ follows
immediately by expanding out

2 {a’ +(—1)» (b’ cosnC + ¢’ cosnB)}? + {b’ sinnC—c’sinnB}?> 2 0.
There is equality, if and only if,

sin4’” sinB sinC’

(3)
And (3) implies that

sinnd sinnB sinnC

nA=mn+A', nB=mn+B', nC=mn+C'
if n=3m+1 and that
nA=(m+1)n—A', nB=(m+1)n—B', nC=m+ )a—C’
if n=3m+2. For if n=3m+1, let nd=mn+ 4,, etc., then

sind’ sinB’ sinC’

sind4, sinB; sinC,

Since also 4,+ B, +C,=n, NA'B'C'~AA4,B,C, and the rest follows (and simi-
larly for the case n=3m+ 2).
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The case when n=1 had been established by BarrOw [1, p. 24] and
used by MORDELL {2] in his proof of the ERDOS-MORDELL inequality.
Equivalently, it can be rewritten in the form

@) ’2+b’2+c'22 (a2+b2 c2)+ (b2+c2 a2)+ (c2+a2—b2)

If also a’'=b"=¢', then
a*+b3+c34+-5Sabcz(a+b)(b+c)(c+a) {E}.

The symbol {E} is to mean *with equality if and only if the triangle is equi-
lateral.” Since a3+ b3+ c3=3abe, this is a stronger inequality then
8@+b+c3)=3(@+b)(b+c)(c+a), [1, p. 12].
The case n=2 is equivalent to
2 2 ’ ’ 0
5) a_+b_+_ci§Rz(a +b' +c')?
a b ¢ abce

and corresponds to problem E 2221 proposed by ToMescu [2]. The latter
inequality is a rather “rich” one since it includes the following well known
inequalities as special cases:

If ¢ =b"=c', then

5.1) a*+b>+c2<9R> {E}, [1, p. 52),
or equivalently

sin2A+sin2B+sin2C§% {E}, [1, p. 18].

Since,
Z sinzA=2+42cosA cosB cosC,

we also have
cos A cosB cong% {E}, [1,p. 25].

If d=a, b'=0b, ¢'=c, then

5.2) R2(a+b+c)zabc {E}

or

sin 4 +sinB+sinC=4sindsinBsinC=sin24+sin2B+sin2C {E}, [1, p. 18].
Since also abc =4 Rrs,
| R=2r {E}, [1, p. 48].

If @ =a, b'=02, ¢'=c2 (AABC is acute), then

(5.3) R(@+b+c?)=+/3abc {E}

or
sin2 4 + sin2 B + sin2 C = 2/3sin A sin Bsin C

~ Y3 (sin24+sin2B-+sin2C) {E}.
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Since also abc=4RA,
a2 +b2+c2z24~/3A {E}, [1,p.42].
If a’=b, b'=c, ¢'=a, then
5.9 R(a+b+cyzaic+bla+c3b {E},

and similarly
R*(a+b+c)lzac+ba*+ch® {E}.

2R 20 2(26) (2.0} -2 et {E}.

Letting @’ =b"=c" (n#%3m) in (1), we get

Then by adding,

(6) % =(—1)»*1{cosnd +cosnB +cosnC} {E}.

Since
z cos2nA=4(—1)"cosnA cosnB cosnC—1,

Zcos(2n+1)A=4(—1)"s1n2"+1As 2"“Bs 2""'IC+1,
we also have
6.1) 1=8(—1)**cosndcosnBcosnC (2n#3m) {E},
(6.2) 1=8(—1)sin 2"+1Asin2n2+lBs' 28+l o (an11#3m) {(E).
Additionally, it is easy to show that
V) 1=(—1)"cos3mA cos3mB cos3mC,
® lg(—l)msin6m2+3A sin6m2+3Bsin6m2+3C.

(1) becomes rather complicated if we express the trigonometric functions
in terms of the sides for large n. Consequently, we conclude with the case
n=4, ie.,

R@+b +cpabic

(9) abc - Z
If a=b"=¢, then

[a?(b? + cz—az)] 2

9atbict

(9.1) IR@b === F[@*(b*+*—a)f {E}.

(9.1) is stronger than 3\/3 (abc)*=(4A)® 1, p. 46] since by CAUCHY’s ine-
quality

27a*bct = D [4Aa2 (B + 2 —a)| 2, 12 [640%F {E}.
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If @ =a, b'=0b, ¢’=c, then

9.2) RYa+b+c)abcz D, a(b*+ct—a?)? {E).
If @ =a? b =02 ¢'=c*> (AABC — acute), then

(9.3)  R(@+ b2+ cd) = D a? (B2 + 2 —a?)?

o (@ + 5+ c»)?

=cos?4 +cos?B+cos’C {E}.
64 A2

The latter is stronger than (5.3) since [1, p. 24]

2 cos?A=3/4.
If o' =a*(b%+c2—a?), etc., (AABC — acute), then
9-4) (@be)t z(a® + b2 —cH) (b2 + 2 —a?) (c*+a*—b?) ({E}.

The inequality is also valid for non-acute triangles since then the r.h.s.

becomes negative. This is a weaker inequality than [1, p. 12]
abcz(a+b—c)(b+c—a)(c+a—>b)

for

TIa+b—c2= ] (a*+b2*—c?)

32A4
(@a+b+0)?

implies that
=a2b%c?cos A cosB cosC

or

"> cosA cosB cosC =———IH? [1, p. 50]
2R? 2R2

and conversely. Also (9.4) is a weaker inequality than either
(10) 34/3(abe)?=(4A) {E}, [1, p. 46]
or
(11)  (4A)°=27(a*+ b*—c?)*(b?+ c*—a?)?(c*+a?—b*)? (E}, [1, p. 42].
For coupling (10) and (11), we obtain
27(abey* 2 (48)° 2 27(a* + > — ) (B* + *—a?)* (¢ + a>—b?)*  {E}.

In a subsequent paper, we will consider related trigonometric inequalities.

REFERENCES

1. O. BortemMa, R. Z. PorbEVIE, R. R. JaNIG, D. S. Mitrinovié, P. M. Vasi¢#
Geometric Inequalities. Groningen 1969.

2. L. J. MoRDELL: On geometric problems of Erdos and Oppenheim. Math. Gaz. 46
(1962), 213-215.



Notes on inequalities involving triangles or tetrahedrons 11

NoTE IV

INEQUALITIES INVOLVING TWO TRIANGLES OR TETRAHEDRONS

An inequality of Zivanovié relating to the area of a triangle associated
with a given equilateral triangle is extended in several different ways.

0. Introduction

In this note, we extend the following result of ZIVANOVIC [1, 2] in several ways:

If P denotes any point within or on an equilateral triangle ABC and if
A',B',C’ denote points symmetrically situated to P with respect to the sides
BC, CA, AB, then

) area A'B'C’' <area ABC
with equality if and only if P is the centroid of ABC.

1. An affine equivalent

The first extension is rather simple.
We start with an arbitrary triangle ABC
and instead of taking mirror images of
P across the sides, we ‘reflect” P along
rays parallel to the respective medians as
in Fig. 1. Inequality (1) is still valid. A
proof follows immediately by affinely tran-
sforming ABC into an equilateral triangle
(which always can be done). Since paral-
lelism, ratio of areas and ratio of lengths
of segments are preserved, the result is equi-
valent to that of ZIVANOVIC.

2. Mirror reflections in an arbitrary triangle

We now show that (1) is also valid for arbitrary non-obtuse triangles.

Here,
ary+bry+cry=2A,

A'=2[r,rysinA+ryrsinB+r;r,sinC]
=4A['_z_*s+w+n_'z
bc ca ab

where A and A’ denote the areas of triangles 4ABC and A'B'C’, respectively.
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Changing to areal coordinates (except for a factor of 2)

x=ar,, y=br,, Z=Cr,,
we wish to maximize .
g A & AN 8
=22 2 —2xy+atyz+ bizx V
4 A .
subject to the constraint Pl
x+y+z=2A. L
At this stage, we first obtain the maxi- & ¢
mum by standard calculus techniques. g
Then from a knowledge of the result, we
p

give a more elementary derivation by esta-
blishing the suggested extension of the well
known inequality

Fig. 2

x+y+22{xy+yz+zx}1/2
3 3 )
Eliminating z,

I=2Abp?x+2Aa%y +(c*—a?—b?) xy —b*x2—a?y?

subject to
x+y<2A, x,y=0.

For an interior point maximum, it is necessary that

Z—I= 0=2Ab2+(c2—a2—b?) y—2b*x,
X

g_l=0=2Ay2+(c2—-a2—b2)x—2a2y.

P

Solving:

(2) BAx=da*(b*+c*—a?), 8Ay=>b*(c>+a>—b?), 8Az=c?*(a®+b*—c?).

Using the 2-nd derivative test, we show that the latter point corresponds to a

maximum.
—_ 2 — 2 ——p2 2 2
Ig=—2b% I,,=—2a% I =c*—a*—b?

L1, —I,* = 4a*b*—(c?—a*>—b%)? = 16 A2>0.
Corresponding to (2), we obtain

atbic: N a*b*c?

2 (B2 +c2—ad) (e + a*—b?)

or
Alpax=A.
To complete the proof, we now check the endpoint extrema. For x=0,
I=a*y(2A—y). Thus, Iy.,—=a?A% Similarly for y=0, I,,.=5*A% and for
x+y=2A or z=0, Iz=c2A2 Thus on the boundary of ABC,
Nmay  4A?

N max{a?, b?, 2} = max {sin?4, sin?B, sinC}.
asbc



Notes on inequalities involving triangles or tetrahedrons 13

For the case when one angle of ABC is a right angle, the maximizing point
P occurs in the interior of the hypotenuse, i.e., if C=m/2, then a2+ b%=c? and

P(x, y, z)=P(ab/2, ab/2, 0).
The previously established inequality suggests the following inequality
3) wﬁz{ﬂ.;.?l_,_'ﬂ}m
4A lab bc ca

where a,b,c are sides of a non-obtuse triangle, p,q,r=0, and with equality
if and only if
a*+c2—a?) b(c?+a*—b?) c(a®+b*—c?H) )

To establish (3) (which also implies (1)) in an elementary fashion, let
p=a®*+ct—adHu, q=>b(c>+a*—b¥)v, r=c(@®+b*—cHw.
(3) now follows since it can be rewritten as
(b?+ c*—a?) (c* + a*>—b?) (8 A2—a?b?) (u—v)?
+ (¢ + a?—b?) (a* + b2 —c?) (B A2—b2c?) (v—w)?
+(@?+ b2 —c? (b2 + c2—a®) (8 A2—c2a?) (w—u)*>= 0

(note that 16A%= D, (2a%b*—a)).

3. A perimeter inequality

Referring again to Figure 2 and assuming ABC is equilateral, we will
show that

4 25/\/3z5zs
(where as usual s denotes the semi-perimeter).
Since

B C?= 4,.22 +4 r32__8 r,r; €OS 27!/3,
s'= Z {722 Il + r32}1/2‘
Since also,

{(x2+xy+y12<x+y (with equality if and only if xy=0),

{x2+xy+ yz}mg\/—z—3 (x+y) (with equality if and only if x=y),
we get _
2(r, +ry k) =8’ =/3(r, 41+ 1)
which is equivalent to (4). The 1.h.s. equality occurs if and only if the point

P is located at one of the vertices of ABC. The r.h.s. equality occurs if and
only if P is located at the centroid of A ABC.
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4. Extension of (1) to tetrahedra

If P denotes any point within or on a regular tetrahedron ABCD and if
A, B, C', D’ denote points symmetrically situated to P with respect to the faces
BCD, CDA, DAB, ABC, then

4 volume A'B'C'D’' < (%)3 volume ABCD

with equality if and only if P is the centroid of ABCD.

Assuming that ABCD has edge length 2, its volume is given by
V(ABCD)=2+/2/3.
Also

V(A'B'C'D'y=V(PA'B'CY+V(PB'C'D'Y+ V(PC'D'A"Y+V(PD'A'B").
We now use the volume formula for a tetrahedron as a function of the lengths
of three coterminal edges and the angles between them [3]:

1 cos®, cosf, |12

e,e,e,
=——=1cosb, 1 cos 0,,

cos B, cos 0, 1
If 6 denotes a dihedral angle of ABCD, then cosf=1/3 and

S A'PB' = <B'PC'=<C'PA" =n—0.
Now letting
PA'=2r,, PB'=2r,, PC'=2r,, PD=2r,,
we obtain
4r, r2 ry

V(PAB'C')= {1—cos20—2cos*6}1/2= ]6\/3;‘”’3

and that
V(4BCD)= 16\/— {Firals ol sTy -+ Fyrgry 141 1o}
The r;’s satisfy
3 _2y/8
3

ntrtrtrg=p=

where F is the face area of A ABC. Inequality (5) now follows immediatcly
from the known inequality [4] for symmetric functions

PIPsry Pl + Pl F 4 rr e, ) 13
rl+r2+r3+r4g{) 3 2344341 412}

with equality if and only if r, =r,=r;=r, or equivalently that P is the centroid
of ABCD.

If instead of reflecting P an equal distance across the faces, we reflect
twice the distance across the faces (so that PA’ is now 3r, instead of 2r;, etc.),

(5) becomes
V(A'B'C'DY< V(ABCD).
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5. An affine equivalent for the tetrahedron

By an affine transformation 4. extends analogously to 1. (the affine equi-
valent of (1)).

6. A perimeter inequality for regular tetrahedrons

Here we obtain the 3-dimensional version of 3. where we are reflecting
P twice the distance across the faces. If E denotes the sum of the lengths of
all the edges of ABCD, then
(6) E+/3]22E'zE.

The L h.s. equality occurs if and only if P coincides with a vertex of ABCD
whereas the r. h.s. equality occurs if and only if P is the centroid of ABCD.

Here,
2
AB' =3 {rlz +200 r;rz + rlz} K
and thus B
3(ri+r)=AB =/6(r +1,).
Whence,

32(’1+r2)3E12\/82("1+’2)

Oy +r+r+r)2E' 23/6(r,+r,+r,+1)

or

which is equivalent to (6).
In a subsequent paper, we will give further extensions to simplices and
also consider geometric properties other than length and content.
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