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327. SOME INEQUALITIES CONCERNING A TETRAHEDRON¥*
Gojko Kalajdzi¢

Notations

Let P be a point inside the tetrahedron A4,4,4,4, and let

H,, H,, H,, H, be the heights of the tetrahedron which correspond to vertices A4,, 4,, 4, A;
R, R,, Ry, R, be the distances from P to A,, 4,, A;, A, respectively;

Fi, Py, P, Iy be the distances from P to the faces opposite to A4,, 4,, 4;, 4,;

b, b,, b;, b, be the arcas of the faces of the tetrahedron which are opposite to
Ay, Ay, Ay, Ay

1 1 1 1
Vi, Vs Vi, Vs be the volumes —3~bl re, ?bz [ ?bs rs, ?b4 r, respectively;

01, 015 035 04 be the radii of the escribed spheres of the tetrahedron A,4,4;4,;
V be the volume of the tetrahedron A4,4,4;4,.

Other notations will be given in the text.

We shall prove a number of inequalities concerning the tetrahedron
which we have not found in literature.

Theorem 1. For a tetrahedron we have

(1) RyR R Risg

H, H, H; H,
Proof. Since

V— V;

Rig % Hi (l=1, 2’ 31 4)5

we have

only if the tetrahedron is regular and if P

N
Q-A mlx
IIV

Equality holds in (1) if a
is its centre.

*) Presented May 18, 1970 by D. S. MitriNovi¢ and R. R. JANIC.
4% 51



52 G. Kalajd#i¢

Theorem 2. Let P be an arbitrary point inside the regular tetrahedron A,A,A,A,,
P, (i=1, 2, 3, 4) its projections on the corresponding sides of the tetrahedron,
and B; points on PP; such that PB;=APP; (i=1, 2, 3, 4; 1>0).

Then, if V and V' denote the volumes of tetrahedra A A,A,A, and
B,B,B;B, we have

b 3
2 V's(?) V.
Proof. Let H be the height of A A,4,4, and PP,=r; (i=1, 2, 3, 4).
Then
V3
3 H=r+r,+ry+r, and V=~8—H.

If ¥ is the volume of the tetrahedron P,P,P,P,, then
( 4) VI — AS VII’
since tetrahedrons B, B, B, B, and P, P,P,P, are homothetic with respect to ho-

mothety (P, 4).
"~ Since

sin 4(?;,7,5):2—*3[3, cos % T x e, 1) =VE Gk =1,2,3,4 iR,

we have

— - — 2./3 &
fres risas ri+2]=_2’,"]" Z Fgliv1 Fig2 (riga=ry).
i=1

ﬂ

65 V=

VR

1
6

Suppose that r,=maxr; (i=1, 2, 3, 4) and r,=const. Then, according
to (3) we hawe that r,+r,+ry;=const., and therefore the product r, r,r; is
the greatest when r,=r,=r;=r.

On the other hand

2
2(r ry 1y py -1y r)=(r 1+ )2 —(r2+r2 4157 g? (1 + r,+r5)2=const.,
equality holding if and only if ri=r,=r;=r.
. 1 1 .
Furthermore, since r, ;: H, r,+3r=H, we have r §2~ H, and according

to (5) we find

17 2 3
V"= x—(ro,("lrz‘*‘r2r3+r3r1)+"1’2r3)’

v §g—2\/7—§r2(3r4+r)=2—%/7—3-r2(3H-—8r),

or, owing to r2(3H—8r)§éH3,

2

5

V”_ﬁ_ Iia
16

27
whence, by (3) and (4) we get (2).
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Equality holds in (2) if and only if P is the centre of the tetrahedron.

Theorem 3. Let points Ay (i, k=1.2,3,4; i#k; Ay=Ay) divide the edges
A; A, of the tetrahedron A A,A A, in ratio 1:2, or 221 (A>0). If V' is the
volume of the polyhedron with vertices Ay, (i, k=1, 2, 3, 4; i#k; Ay = Ay,), then

(6) ' V< (1 —M) v,
1+
Proof. Let
1
(7) AiAk=aik, AiAik=aki. a,q:a,-k=pk,;=l (OI’—Z),

G, k=1,2,3,4; i#k; pupp=1; ki=1, ..., 12). If ¥; denotes the volume
of the tetrahedron A;4y; Ay Ay (i, j, k, I==1, 2, 3,4 and mutually different),
then clearly

(8) K£= aji akl. ali

V. ayagay
Taking into account (7) and (8), and using the arithmetic-geometric ine-
quality, we have

V' =V—(V,+V,+V,+ V)

4 ajaa
=(1~ S ﬂ) V' G, jkJI=1,2,3,4and different)

i—1 Q% Ayt

4
= (1 — 1 ) |1 4
=1 (A+pyy) U +pu) A +py)

(1 (ﬁ (14 pi)) (1 + P (1 +pu>)‘%) v,

V'g(1_“‘“)V
(1+4y

A

a “}W G k=1,2,3, 4 i£k).

This proves inequality (6). Equality holds in (6) if and only if A=1,
i.e., if Ay are midpoints of edges A;Ay.

since @, +a, =ag, (1+py) (1+pp)=

Theorem 4. For a tetrahedron we have

4
©9) R+R,+R,+R,22 > ~rir.

1=i<k

Proof. Let the plane determined by P and the edge A4;A4; of the tetra-
hedron meet its opposite edge in A4y, (i, k=1, 2, 3, 4; istk; Ay =Aw). '

Let A, P meet the plane 4,4,4, in Ay; the line A;A; meets the cor-
responding side of the triangle 4;4,4, in A (i=1, 2, 3); furthermore, let
the line which passes through A4; and is parallel to A,P meet the plane
PA; A, (i,j, k=1, 2, 3 and are mutually different) in A7
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Then

L MP  Asdy A P AL A . .
(10). B . Al . (i,j, k=1, 2, 3 and different),
_ A AT A A AL A

If we add all the three equalities of the first set, and then all th equ-
alities of the second set, and divide the obtained equalities we obtain

A,,I” _ A Ay, +A4 Ay AJAy, (Aik — Aki):
) PA4 A23 Al A;u Az Alz A3

where it is taken into account that in the triangle A4, 4,4, holds
A A AL A, A, A

2 7 ,=1.
AA A, A, A A,

Therefore, we hawe
A Ay | Ay Alk+AiAkj)

LS (i, J, k, 1=1,2,3,4 and are mutually different),

Rizr; (
Ap A A Ay Ay A

i.e.,

R +R,+Ry+R,= i ( re iy g A"A"> i it
1t R+ Ry + Ry = i Th-
1<7%k Yt A4 1<%k

Equality holds in (9) if and only if the tetrahedron is regular and P is
its centre.

Theorem 5. For a tetrahedron we have
(11 B B B By
@ 2 45} Qs

Proof. Let by (i=1, 2, 3, 4) be the areas of the corresponding faces of

the tetrabedron A,A4,A4;4,. Then
3V =bi+1 04+ bis 04+ bisy 01 —bi 0 (i=1,2,3,4 by,=by),

i.e., .
: : : v
12 ‘ 0= .
( ): . ¥ biyitbyy,+ by 3—by

~ On the orther hand ) L
(13) Hi= e (i= 1‘9 2’ 3: 4)'

bg
From (12) and (13) we get : ’
H1+H +H3+___= Z4bl+1+b£+2+b¢+3—bi
D - 02 . 0 Qs i=1 by
i.e., '

\ 1

. .
by +b;,+b
24 E ( i+1 +2 i+3) '—428,

i
= by b, b, b,

where we have twice used the arithmetic-geometric-mean inequality.
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Equality holds in (11) if and only if b, =b,=b,=5,, i.e., if the tetra-
hedron is equifacial. ‘

Theorem 6. If o is the radius of the inscribed sphere of the tetrahedron
A A,A,A,, then
(14) | 01 +0,+0;+0,280.

Proof. Since

v 14

—mz’ Qi—bi+1+bi+z+bi+3_bi’

we have
2 1 1 1 1
e ——,
e 0 0 O
and, using the arithmetic-harmonic mean inequality, we obtain (14).

Equality holds in (14) if and only if the tetrahedron is equifacial.

Theorem 7. For a tetrahedron we have

4

4
(15) D —=6 Z

1

1<i<k 2@ ie Hiz
Proof. We have
4 4
L1 _3 &1
1<iek G0 2 5 o
_3 54* (b‘+1+b‘+2+b¢+,—b¢)2
2 .5 3V

_2(b2+ b2+ b2 +b,Y)
3p?

65 L
- i=leiz,

which proves inequality (15).
Equality holds in (15) if and only if the tetrahedron is equ1fa01a1

Theorem 8. If G is the centroid, O the centre and R the radius _of the circum-
scribed sphere and d=GO, we have
1

(16) AG+ 4,6+ 4,G+ A,G=4(R—d)*,

Proof. STEINER’s theorem reads: if G is ‘the centroid of the points
A, ..., A, and O is arbitrary then

j 4G +1n-0G

'lM=

~
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In virtue of the above theorem, we have
an A, G*+ 4,G*+ A;G*+ A,G* = 04> + OA4> + 04, + 042 —4 GO?
=4 (R>—d?).
Using (17) and the arithmetic-quadratic mean inequality, we find
1
A,G+A,G+A,G+A,G=2(A,G*+ 4,G*+ A4,G?+ 4,G*)*
1
<4(R2—d?)>.
Equality holds in (16) if an only if the tetrahedron is equifacial.
Remark. A more general proposition also holds: if G is the ccntroid of the polyhedron
A A,...A,, R radius of the smallest circumscribed sphere, d the distance from G to the

centre O of that sphere, we have
1

A,G=n(Re—d?)2.

M=

In this case identity (17) reads

2 A, G = 2 A,0°—n-0G2.
i=1

Theorem 9. If L is the sum of the edges and R the radius of the circumscribed
sphere of the tetrahedron A A, A A,, then

(18) L=4+/6R.

Proof. Let G; (i=1, 2, 3, 4) be the centroids of the corresponding faces,
O the centre of the circumscribed sphere and G the centroid of tetrahedron
AA,A;A,. Then, by STEINER’s theorem we have

3 3
(19) > Aidinit= Y GiAinir+34;,G2, (i=1,2,3,4; Ai,=4)
k=1 k=1

wherefrom we obtain

4 1 4
(20) ZAiG2=-4—( > A,A,g),
- i=1

1Si<k
since A,G=%A¢G¢ (=1, 2, 3, 4).
On the other hand again by STEINER’s theorem,
4 4
S 042=3 4,G+4GO0?,

i=1 i=1

i.e., owing to (20)

4
(1) 16R= S A A42+16GO

1<i<k
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Since
GO =0 and z AiAk 2—— L2

1gi<k

from (21) follows (18).
Equality holds in (18) if and only if the-tetrahedron is regular.

Theorem 10. If ¢ (i=1, 2, 3, 4) are medians of tetrahedron A A,A,A, and
R radius of the circumscribed Sphere, then

22) z,+t2+t3+t4gl—36k.

Proof. If we replace 4;G by %A;Gi (i=1,2,3,4) in (20) we get

4 2 4 4
23) SAGI=5 5 Adf,
=1 9 1gi<
e., by 21)
4
16R =2 S A4,G+16G0?
4 i=1
9
gE(’l"‘tz‘l‘fs"'t4)2
which implies (22).
Equality holds in (22) if and only if the tetrahedron is equifacial.

Theorem 11. If R is the radius of the circums-ribed sphere of the tetrahedron
A A, A A, and AjAy=ay, (b k=1, 2, 3, 4; i#k; ap=ay), then

3

6
24 V< %‘; (@14 @33+ 405, + a3, ay,) 2 s
Vi( & a7
25) Vg—( S a,-k2)2,
216 1<%k
(26) Vgszém.

Proof. Let Q be the area of the triangle whose sides are a@,,a,;, a,,4;,
dy, a;,5 then, by the CRELLE—von STAUDT formula, we have
Qo
27 =—
27) 6 R
Since

12 \/3 0 = (a14 453 + a3, a5 + a3, a1))%,
and, according to (21)
3
4

1
(28) 4R= ( S a,-,f) 2 24(ay, 0, + re 03y + A34a,) %,
1=i<k
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using (27), we have
3

\/ 6 7
Vs 108 (@403 + Apsay +as4a;5) "

10

This proves inequality (24).
Since
2aiap<ai’ +ap’ G, J, k, I=1,2, 3, 4 and different),

(25) follows immediately from (24).
Inequality (26) follows from (25), by virtue of (28).
Equality holds in all inequalities (24), (25) and (26) if and only if the

tetrahedron is regular.
&

* %
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