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322. THE GENERATING FUNCTION FOR VARIATIONS WITH
RESTRICTIONS AND PATHS OF THE GRAPH AND
SELF-COMPLEMENTARY GRAPHS *

Dragos M. Cvetkovié

In this paper the generating function for the numbers of variations with repeti-
tions and a certain type of restrictions is determined. The variations in question
are connected with paths in correspondent graph, so that the generating fun-
ction for the numbers of paths in a graph is also given. Theorem 2. gives
this function for complementary graph and for the sum and product of graphs.
Finally, a spectral characteristic of self-complementary graph is given.

1. Variations with restrictions

Variation of the k-th class (also called: permutations k£ at a time) with
repetitions of the set X={x,,..., x,} is every ordered k-tuple (xi,..., xi)
where it need not be xi;#xi. The number of such variations is V’,‘, = nk.

During the formation of variations with repetitions it is possible to impose
certain restrictions. In this article we shall consider variations with restrictions
of the following type. For every x; © X, set X is decomposed into two dis-
joint sets X;; and X;,. In permitted variations there can appear after element
x;, which is not the last in that variation, only an element from the set Xj,.
The first element is subjected to no restrictions.

A pair x;, x; of adjacent elements of a variation is called a permitted
pair if and only if x; © X;,. The square matrix A= ||ay||?, where ay=1 if
xi, X; is a permitted pair and a;=0 otherwice, is caled the matrix of
permitted pairs. A will denote the matrix obtained from A by interchanging 0

and 1. 4 is the matrix of restrictions.
We shall determine the number ¥*(4) of variations with repetitions of

k-th class of a set with »n elements, with a given matrix of permitted pairs.
If 4 is interpreted as the adjacency matrix of giaph G with vertices

Xiy..., X, it can easily be seen that the number I_/ff (4) is equal to the num-
ber of all paths of length k—1 in G. (Under ,,path of length k* we understand

a sequence #,...,u#, of the lines of the graph, where it is not necessary that
w;7w; and where for i=2, 3,..., k the line u; starts from that vertex in which
* Presented February 5, 1970 by H. SacHs (Germany).
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Uy :terminates. A line can be a loop. In case of undirected graphs every edge
is- to be replaced  with two -lines with- mutuyally opposed orientations.)

It is known that the number of patsh of length k is determined by the
use’ of the matix A* Namesly, the elem:nt from the i-th row and j-th co-
lumn of this matrix is equal to the number of paths of length k, which lead
from the vertex x; to the vertex x; (see, for example, [1], p. 143)

If {Y} denotes | the sum of all elements of the matrix Y then

ey Vi (4)={4¥1} k=1, 2,...).

This, at least in principle, solves the question of the number of varia-
tions. However, when the order of A is high, expression (1) is unsuitable for
practical calculations. We shall, therefore, starting from (1), deduce expressions
which are more suitable in applications.

It is possible to deduce an explicit expression for Vi (A).

Let 9(A)=b,A™+bAm 14+ ... 4+ b, be minimal polynomial of A. Then

) by A™E 4 . . . 4 b, AE=0,
Introducing the notation N;={4%}, (2) yields
(3) bo mikt 0o+ by Ng= 0.

Let 4,,..., 4, be the zeros of the minimal polynomial ¢(4). If we consi-
der undirected graphs (4 is, in that case, a symmetric matrix) these zeros are
real and simple (see, for example, [2], p. 222). The solution of the difference
equation (3) is, in that case, of the form

(4) Nk=C1 Alk + .. +Cm )'mk=I_/ﬁ+l(A).

Constants C,,..., Cy can be determined if m quantities Ng=n, N,,. .
N, are known.

As can be seen, lengthy calculations are here also necessary. Formula (4)
is not useful if we are determining N, for k<<m. Besides, quantities C; and 4,
are often irrational numbers (N, is, of course, a natuaral number), which can imply
numerical difficulties.

In connection with (4) we give a definition of the main part of the
spectrum of the graph. The set of all the eigenvalues of adjacency matrix is
called the spectrum of graph.

For the undirected graphs we define the main part of the spectrum of
the graph. The main part of the spectrum contains all the eigenvalues
A (i=1,..., m) of the matrix 4, which appear in the expression (4) and for
which C;0. In the main part of the spectrum all the cigenvalues are mutually
distinct.

The other way of transforming the expression (1) uses the following formula
from complex analysis (see, for example, [3], p. 119.)

®) SWy= == f@ (4—2Dy dz.
C

A

This formula holds if the function f(z) and necessary number of its
derivatives are defined on the spectrum of matrix 4, where C is a simple
contour containing the mentioned spectrum, and I is the unit matrix.
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According to (1) and (5) we have

) Ve ()= — § 1 {(d—zD d
J |

Let Py(4) be the characteristic polynomial of matrix ¥, ie., Pyp(d)=
det (Y—AI). ‘
The following formula holds (see, for example, [4], p. 84):

@) det Y+tJ)=det Y +t{adj Y}
where ¢ is a scalar and J is a square matrix whose elements are 1.
From (7), for Y=A—zI and f=-—1, we get
{adj (A—zI)} =det (4—zl)—det (4—z[—J) =det (4—=zI)
(8) —(—1)ndet (J— A+ zI)=det (A—zI)—(— )" det (A +z])
=P4(2)—(—1)*P5(—2).
According to (6) and (8) we have

VE () = —2—;—1, § z";z') {adj (A—zD)} dz = _Z%i § e PG Pin)
. ‘
Loy C

P Py(2)
i. e.,

VrEay =D £ e PACD 10y
©) ey 2m,g£z o 4 (k=120

Calculation of integral (9) by the theorem of residues again yields re-
lation (4). In this way we obtain at the same time coefficients C; from (4).

However, it is possible to avoid calculating an integer by the use of ir-
rational numbers.

The function P‘*i:;) =R (z) can be developed in the vicinity of z= o into
AZ
. i* B . . . .
a series of the form R(z)= 2 - This expression holds outside every circle
i=0 Z

|z =r, which contains the spectrum of matrix 4. (9) now becomes

(1) Piay- S0 f (5 2 dem (-1 B
C .

2ni i=0 -kl

This actually proves the following

Theorem 1. The function

(11) Gty =(—1yr —
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is generating function for the numbers Vs (A) of the variations o f k-th class with
repetitions and with the matrix of permitted pairs A, where the following rela-
tion holds

(12) vk (A)=%G<k> ©) hk=1,2,..).

For k=0 one obtains _172 (A)=1.

The MACLAURIN series of a rational function can be obtained by dividing
the polynomial in numerator by the polynomial in denominator, where one
always divides the lowest powers of these polynomials. Since the coefficients
of the mentioned polynomials are integers, the process of calculating the num-
ber of variations does not lead outside the set of integers. In certain cases cal-
culating by use of the generating function is more economic than the direct
application of formula (1).

2. Paths in the graph

+ oo
From (1) and (12) it follows, that the generating function Hg(t)= 5 Njt*
k=0

for the numbers N; of the paths of the lengths k, of the graph G, with the
adjacency matrix A, is given by the expression

)

(1)

This expression holds in the most general case, i.e.. G can have loops
and multiple edges. In the further text we shall understand, that G is an undi-
rected graph without loops and multiple edges. G denotes the graph comple-
mentary to the graph G, and G’ the graph, which can be obtained, if to each
of the vertices of G one loop is added. The adjacency matrix of the graph
G is A-I, and of G’ is A+1

We consider also the following type of sum and product of two undi-
rected graphs G, and G,, without loops and multiple edges.

The graph G, + G, contains all the vertices and all the edges of the
graphs G, and G,, and only them.

The graph G, x G, one obtains from the graph G, +G,, if each of the
vertices of G, is joined by one edge with each of the vertices of G,.

This sum and product were considered in [5]. According to this paper,
a graph is called elementary if it is connected and cannot be represented as
the product of two disjoint graphs, Clearly,

(13 Ho(t)=—| (—1)"

(14) G, x G, =G, +G,.
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From the obvious relation
(15) Pxiy(A)=Px(A—1)

and from (13) one obtains the following form of the generating function:

(16)

Ho )= | (=D

P—( t+1)
S\

1
Po(

t

)

Theorem 2. For the generating function Hy(t) for the numbers of paths of

the graph G the following formulas hold:

a7

(18)

19
(20)

HG,sz(t)=

HG’(’)=1—_1‘_7HG(—I“) ,

HGH-Gz(t) = HGl(t) + ng(t),

1—12 Hg,(t) HG,(t)

Proof. According to (13) and (15) we have

1
HG'(‘)=—,‘

I
-¢|l—‘

which proves (17).

1
Pyoa-1 )

(=" ——1
PA+1(T)

. -
PJ_A(—-+1)
(=D Ll

PA(T—I) |
P f_ 1
t
1 1—t¢
e
1—t A
11—t

Ho,(t) + HG,(t) + 2t H, (t) Ho,(t)

1=t

t
Hg (m)
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(18) can be directly verified if one uses (16) and the folowing, its ana-
logous, formula:

t+1
Ha ()=~ (—1)"'P—G('_i)——1

1
re( )
The relation (19) is obvious.

For the proof of the relation (20), one uses the relations (14), (18) and
(19):

—t+l

t
t+1-—1¢ Hé‘]—l-az(—- )

oy
HG1XGz(t) = HE|+-62=

t+1
H ( t H t
_ (PNt
G t+1) GZ( t+1)
1 He t t ’
it s (= 5) + e (=)

From (18) one obtains

) =

t ) (t+1yH @)
T l+tHgM

(22) Ha( —L

t+1
Using (22) from (21) one obtains (20).

ExaMpLES. According to Theorem 2, the generating function for every graph can be obtai-
ned if we know the generating functions for the elementary graphs. A regular graph of the
degree m, with n vertices, has, obviously Ny =nm* paths of the lengths k, and therefore

n

+ o0
23 Hg(t)= kgk )
ey PR T

For m=n—1 one obtains the complete graphs and for m=0 the graph, which con-
tains only isolated vertices. The graph, which has only one vertex without edges and loops,
has the generating fuction of the form Hg(¢)=1.

The bicomplete graph K, ., can be represented as the product of graphs
G, and G,, both of which contain only isolated vertices. We then have
Hg (t)=n, and Hg, (¢!)=n,, and according to (20), for the bicomplete graph
we have

2n, n,t
24 H f)= Tt timnt
24 ) LA 1—n,n,t?
Specially, for n,=n and n,=1 the concidered graph represents a star and
corresponding generating function is
n+1+2nt
1—nr>

(25) Hg,, ()=
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3. Self- complementary graphs

The graph G is called self-complementary, if it is isomorphic to its com-
plementary graph G. Then we have Pg(t)=Pq(¢) and the generating function
of the numbers of paths reads

(26) Ho()=¢ | (= ——— 21

From this expression the spectral characteristic of the self-complemen-
tary graphs can be derived, given by the following theorem.

Theorem 3. Let G be a self-complementary graph and A; an eigenvalue from
its spetcrum, of the multiplicity p,(>1), (if it exists). Then to eigenvalue 2
corresponds another eigenvalue 2;, whose multiplicity is not less than p;—1,
where A;+2;= —1.

Proof. Let the spectrum of the graph G be formed by the eigenvalues
Ay ..., Ap. Putting it=u, we have

@7 Hg(t)=u[("”'“)“'("”"“)—1].

w—Aa) - (u—iy)

According to the definition of the generating function and according to (4)
we have

@+, 4D (i, +1) N
@) Y@= gy N 2wl 2

We see that y(u) must be a rational function having only simple poles. The
set of these poles is equal to the main part of the spectrum of the graph.
Thus, multiple factors in expression (28) denominator have to be cancelled,
so that, after all possible cancellations, the zeros of the polynomial in the denomi-
nator represent the main part of the spectrum.

The statement of Theorem 3 follows from this fact.

Remark. In [6] an analogous theorem for the regular self-complementary graphs is proved.
That theorem can be proved analogously to Theorem 3 from th's paper, if one has in mind,
that the main part of the spectrum of a regular graph contains only the greatest number
from the spectrum.
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