PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA - SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 302 — № 319 (1970)

311. A NOTE ON PATHS IN THE p-SUM OF GRAPHS*

Dragoš M. Cvetković

The number of the paths of length k in the p-sum of graphs is determined in this paper.

In this note we consider undirected graphs without loops or multiple edges.

In [1] the p-sum $(p=1,\ldots,n)$ of graphs G_1,\ldots,G_n is defined. The set of vertices of the p-sum is the Cartesian product of the sets of vertices of graphs G_1,\ldots,G_n . If x_i and y_i are vertices of graphs G_i $(i=1,\ldots,n)$, the vertices of the p-sum (x_1,\ldots,x_n) and (y_1,\ldots,y_n) are adjacent if, and only if, exactly p of n pairs (x_i,y_i) $(i=1,\ldots,n)$ are the pairs of the adjacent vertices in corresponding graphs and if for the other n-p pairs holds $x_i=y_i$. If p=n the p-sum is called the product of graphs and in the case p=1 the sum of graphs.

The adjacency matrix $A = \|a_{ij}\|_1^m$ of graph G with m vertices, is the matrix whose element a_{ij} is equal to 1 if the vertex i is adjacent to the vertex j and is equal to zero in the opposite case. The spectrum of the graph G is the set of solutions $\{\lambda_1, \ldots, \lambda_m\}$ of the characteristic equation $\det (A - \lambda I) = 0$ of the matrix A, i.e. the set of the eigenvalues of A.

It was noticed in [2], that the adjacency matrix of the product $G_1 \times G_2$ of graphs G_1 and G_2 is equal to the Kronecker's product $A_1 \otimes A_2$ of the adjacency matrices A_1 and A_2 of the graphs G_1 and G_2 . In [3] the adjacency matrix of the sum $G_1 + G_2$ was determined; it is of the form $A_1 \otimes I_2 + I_1 \otimes A_2$, where I_1 and I_2 are the unit matrices of the same order as A_1 and A_2 respectively.

Let A_1, \ldots, A_n be the adjacency matrices and $\{\lambda_1 s_1\}, \ldots, \{\lambda_n s_n\}$ the spectrums of the graphs G_1, \ldots, G_n .

We have noticed in [4], that the adjacency matrix of the p-sum of graphs G_1, \ldots, G_n is given by the expression

(1)
$$\mathcal{A} = A_1 \otimes \cdots \otimes A_p \otimes I_{p+1} \otimes \cdots \otimes I_n$$

$$+ A_1 \otimes \cdots \otimes A_{p-1} \otimes I_p \otimes A_{p+1} \otimes I_{p+2} \otimes \cdots \otimes I_n + \cdots$$

$$+ I_1 \otimes \cdots \otimes I_{n-p} \otimes A_{n-p+1} \otimes \cdots \otimes A_n .$$

^{*} Presented February 5, 1970 by H. Sachs (Germany).

⁴ Publikacije

In this note we determine the number of paths of the p-sum of graphs. The result is similar to the one which appears in Lemma in [5].

We denote with $\{X\}$ the sum of all the elements of the matrix X, with \mathcal{N}_k the number of the paths of length k in the p-sum and with N_k^1, \ldots, N_k^n the numbers of the paths of length k in the graphs G_1, \ldots, G_n .

It is known, that the number of paths of length k in a given graph can be determined by the use of the k-th power of the adjacency matrix of the graph (see, for example, [1] p. 127), so that the following formula holds:

$$\mathcal{N}_k = \{\mathcal{A}^k\}.$$

Matrix (1) represents the sum of $q = \binom{n}{p}$ summands (we denote them by B_1, \ldots, B_q), which are, according to [5], called the normal summands. With each normal summand B_r we associate the expression S_r . S_r contains as a factor the expression λ_{i,s_i} if and only if B_r contains A_i as a factor of the Kronecker's product. S_r has no other factors.

In the same way as in [4] we have

(3)
$$\mathcal{A}^{k} = (B_{1} + \cdots + B_{q})^{k} = \sum_{j_{1}, \dots, j_{q}} \frac{k!}{j_{1}! \cdots j_{q}!} B_{1}^{j_{1}} \cdots B_{q}^{j_{q}}$$

$$= \sum_{j_{1}, \dots, j_{q}} \frac{k!}{j_{1}! \cdots j_{q}!} A_{1}^{l_{1}} \otimes \cdots \otimes A_{n}^{l_{n}} \quad (j_{1} + \cdots + j_{q} = k),$$

where l_i is the sum of those numbers j_1, \ldots, j_q which are in the expression $B_1^{j_1} \cdots B_q^{j_q}$ exponents of those normal summands which contain A_i $(i=1,\ldots,n)$.

One may easily verify that $\{X \otimes Y\} = \{X\} \cdot \{Y\}$ holds and from (3) we obtain

$$\{\mathcal{A}^k\} = \sum_{l_1,\ldots,l_n} \frac{k!}{j_1!\cdots j_n!} \{A_1^{l_1}\}\cdots \{A_n^{l_n}\}$$

i.e.

In the special cases n=2, p=1 (sum of graphs) and n=2, p=2 (product of graphs) we have

(5)
$$\mathscr{N}_{k} = \sum_{j=0}^{k} {k \choose j} N_{j}^{1} N_{k-j}^{2}, \ \mathscr{N}_{k} = N_{k}^{1} N_{k}^{2}.$$

The number of paths of length k in a graph can always be represented in the form $N_k = \sum_{s} C_s \lambda_s^k$, where C_s are constants and λ_s are eigenvalues o

the adjacency matrix A. Let $N_k^i = \sum_{s_i} C_{is_i} \lambda_{is_i}^k$, (i = 1, ..., n) be the numbers of paths of length k in the graphs G_1, \ldots, G_n . Then (4) becomes

$$\mathcal{N}_{k} = \sum_{j_{1}, \dots, j_{q}} \frac{k!}{j_{1}! \cdots j_{q}!} \sum_{s_{1}} C_{1s_{1}} \lambda_{1s_{1}}^{l_{1}} \cdots \sum_{s_{n}} C_{ns_{n}} \lambda_{ns_{n}}^{l_{n}}$$

$$= \sum_{s_{1}, \dots, s_{n}} C_{1s_{1}} \cdots C_{ns_{n}} \sum_{j_{1}, \dots, j_{q}} \frac{k!}{j_{1}! \cdots j_{q}!} \lambda_{1s_{1}}^{l_{1}} \cdots \lambda_{ns_{n}}^{l_{n}}$$

$$= \sum_{s_{1}, \dots, s_{n}} C_{1s_{1}} \cdots C_{ns_{n}} \sum_{j_{1}, \dots, j_{q}} \frac{k!}{j_{1}! \cdots j_{q}!} S_{1}^{j_{1}} \cdots S_{q}^{j_{q}}$$

$$= \sum_{s_{1}, \dots, s_{n}} C_{1s_{1}} \cdots C_{ns_{n}} (S_{1} + \cdots + S_{q})^{k}$$

i.e.

$$(6) \qquad \mathcal{N}_k = \sum_{s_1,\ldots,s_n} C_{1s_1} \cdots C_{ns_n} (\lambda_{1s_1} \cdots \lambda_{ps_p} + \cdots + \lambda_{n-p+1} s_{n-p+1} \cdots \lambda_{ns_n})^k,$$

where the bracket contains the elementary symmetric function of n variables $\lambda_{1s_1}, \ldots, \lambda_{ns_n}$.

Some of these results can be easily extended to a larger class of graphs or to some operations on the graphs, which are not contained in the *p*-sum of graphs, but corresponding adjacency matrices can be expressed in terms of normal summands.

REFERENCES

- 1. C. Berge: Théorie des graphes et ses applications. Paris 1958.
- P. M. WEICHSEL: The Kronecker product of graphs. Proc. Amer. Math. Soc., 13 (1962), № 1, 47—52.
- O. ABERTH: On the sum of graphs. Rev. Franç. Rech. Operat. 8 (1964) № 33, 353—358.
- D. CVETKOVIĆ: Connectedness of the p-sum of graphs. These Publications № 274 № 301 (1969) 96—99.
- D. CVETKOVIĆ: Spectrum of the graph of n-tuples. These Publications № 274 № 301 (1969), 91—96.

Katedra za matematiku Elektrotehnički fakultet Beograd, Jugoslavija

4*