PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA — SĒRIE: MATHĒMATIQUES ET PHYSIQUE

№ 302 — № 319 (1970)

305. EXTREME PROPERTIES OF PROPER VALUES OF UNITARY TRANSFORMATIONS*

A. R. Amir-Moéz, N. E. Keyton and J. S. McMath

In a paper of A. Horn and R. Steinberg [2] a minimax principle concerning a unitary transformation on a unitary space has been stated without proof. In this article we supply a proof for a more general case of the proposition and give other generalizations.

1. Definitions and notations. We denote by E_n the unitary space of dimension n. The inner product of two vectors will be indicated by (ξ, η) . If ξ_1, \ldots, ξ_k are vectors, then $[\xi_1, \ldots, \xi_k]$ denotes the subspace spanned by them. If $\{\xi_1, \ldots, \xi_k\}$ is an orthonormal set of vectors in E_n , we write $\{\xi_i\}$ o.n. Two linear transformations A and B on E_n are said to be congruent if there exists a non-singular linear transformation X such that B = X*AX.

If A is a linear transformation on E_n and if M is a subspace of E_n , we define a transformation $A \mid M$ on M as follows: if $\xi \in M$, we let $(A \mid M) \xi = PAP\xi$, where P is the orthogonal projection on M.

We observe that if ξ and η are in M, then

$$((A \mid M) \xi, \eta) = (PAP\xi, \eta) = (A\xi, \eta).$$

We shall use the symbol (a_{ij}) for the *n*-by-*n* matrix whose elements are a_{ij} , $i, j = 1, \ldots, n$. The determinant of (a_{ij}) will be denoted by $\det(a_{ij})$; also $\det A$ denotes the determinant of the linear transformation A.

2. Theorem. Let A be a linear transformation on E_n . Then for any set of vectors $\{\xi_1, \ldots, \xi_n\}$ in E_n

$$\det ((A \xi_i, \xi_i)) = \det A \det ((\xi_i, \xi_i)).$$

Proof. Let $\{\alpha_1, \ldots, \alpha_n\}$ be any orthonormal basis in E_n . Then we note that

$$(A\xi_i, \xi_j) = \sum_{k=1}^n \left[\sum_{l=1}^n \left[(\xi_i, \alpha_l) \left(\overline{\xi_j, \alpha_k} \right) (A\alpha_l, \alpha_k) \right] \right].$$

This implies that

$$\det\left(\left(A\xi_{i}, \xi_{j}\right)\right) = \det\left(\sum_{k=1}^{n} \left[\left(\xi_{i}, \alpha_{l}\right)\left(\overline{\xi_{j}, \alpha_{k}}\right)\left(A\alpha_{l}, \alpha_{k}\right)\right]\right) = \det A \det\left(\left(\xi_{i}, \xi_{j}\right)\right).$$

^{*} Presented May 8, 1970 by D. S. MITRINOVIĆ.

3. Corollary. Let $\{\xi_i, \ldots, \xi_k\}$ be linearly independent and $M = [\xi_1, \ldots, \xi_k]$. Let A be the transformation in § 2. Then

$$\det ((A \xi_i, \xi_j)) = \det (A \mid M) \det ((\xi_i, \xi_j)).$$

Note that i and j run from 1 through k.

4. Theorem. If A is congruent to a unitary transformation U with proper values u_1, \ldots, u_n and if $0 < \arg u_1 \le \cdots \le \arg u_n < \pi$ then $(A\xi, \xi) \ne 0$ for all $\xi \ne 0$ and

$$\arg u_j = \inf_{\substack{\dim \xi \in S \\ S=j \ \xi \neq 0}} \arg (A\xi, \xi) = \sup_{\substack{\dim S \\ =n-j+1 \ \xi \neq 0}} \inf_{\xi \in S} \arg (A\xi, \xi),$$

where S ranges over subspaces of E_n .

Note that U is a congruent to itself. Therefore the above lemma is satisfied by replacing A with U. This theorem is due to A. Horn and R. Steinberg [2].

5. Theorem. Let U be a unitary transformation on E_n with proper values u_1, \ldots, u_n such that $0 < \arg u_1 \le \cdots \le \arg u_n < \pi$. Let $1 \le i_1 < \cdots < i_k \le n$ be a sequence of integers. Then

(1)
$$\arg u_{i_1} + \cdots + \arg u_{i_k} = \inf_{\substack{M_1 \subset \cdots \subset M_k \\ \dim M_p = i_p}} \sup_{\substack{\xi_p \in M_p \\ |\xi_p| \text{ o.n.}}} \det \big((U\xi_i, \, \xi_j) \big).$$

Proof. Let $\{\gamma_1, \ldots, \gamma_n\}$ be an orthonormal set such that $U\gamma_i = u_i \gamma_i$, $i = 1, \ldots, n$. Let $M_p = [\gamma_1, \ldots, \gamma_{i_p}]$ and let $\{\xi_1, \ldots, \xi_k\}$ be any orthonormal set with $\xi_p \in M_p$ for $p = 1, \ldots, k$. Let $M = [\xi_1, \ldots, \xi_k]$ and $B = U \mid M$. We observe that the rank od B is k. Thus B on M is non-singular. Let $B = \sqrt{BB^*} V$ be the polar decomposition of B, where V is a unitary transformation on M. Then we observe that

$$arg \det ((U\xi_i, \xi_j)) = arg \det B = arg \det V.$$

Let s_1, \ldots, s_k be proper values of V. Thus

$$\arg s_1 + \cdots + \arg s_k = \arg \det \begin{bmatrix} (U\xi_1, \xi_1) \cdots (U\xi_1, \xi_k) \\ \vdots \\ (U\xi_k, \xi_1) & (U\xi_k, \xi_k) \end{bmatrix}.$$

Let δ_i be a proper vector of V such that $V\delta_i = s_i \delta_i$, $i = 1, \ldots, k$. Then

$$((U \mid M) \delta_i, \delta_i) = (\sqrt{BB^*} V \delta_i, \delta_i) = s_i (\sqrt{BB^*} \delta_i, \delta_i), i = 1, \ldots, k.$$

Therefore

$$\arg s_i = \arg ((U \mid M) \delta_i, \delta_i) = \arg (U \delta_i, \delta_i).$$

By § 4 we have $\arg u_1 \leq \arg (U\delta_i, \delta_i) \leq \arg u_n$. Thus

$$\arg u_1 \leq \arg s_i \leq \arg u_n$$
,

where $i=1,\ldots,k$. So we can order s_1,\ldots,s_k in such a way that

$$0 < \arg s_1 \le \cdots \le \arg s_k < \pi$$
.

But

$$\arg s_{p} = \inf_{\substack{N_{p} \subset M \\ \dim N_{p} = p}} \sup_{\substack{\xi \in N_{p} \\ \xi \neq 0}} \arg (U\xi, \xi)$$

$$\leq \sup_{\substack{\xi \in [\xi_{1}, \dots, \xi_{p}] \\ \xi \neq 0}} \arg (U\xi, \xi) = \arg u_{i_{p}}, \ p = 1, \dots, k.$$

Therefore

$$\arg u_{i_1} + \cdots + \arg u_{i_k} \ge \arg s_1 + \cdots + \arg s_k$$
.

Thus the left side of (1) is no smaller than its right side.

Now let M_j , $1 \le j \le k$, be subspaces such that $M_1 \subset \cdots \subset M_k$ and $\dim M_p = i_p$, $p = 1, \ldots, k$. Let $N_p = [\gamma_{i_p}, \gamma_{i_p+1}, \ldots, \gamma_n], p = 1, \ldots, k$. Then $\dim N_p = n - i_p + 1$ and $N_1 \supset \cdots \supset N_k$. By Horn's theorem [1, § 2.2] there exists a subspace M spanned by an orthonormal set $\{\xi_1, \ldots, \xi_k\}$ where $\xi_p \in M_p$, and M is also spanned by another orthonormal set $\{\beta_1, \ldots, \beta_k\}$ where $\beta_p \in N_p$, $p = 1, \ldots, k$. Let $B = U \mid M$ and let $B = \sqrt{BB^*} V$ be the polar decomposition in B, where V is a unitary transformation on M. This implies that

$$\operatorname{arg} \det ((U\beta_i, \beta_j)) = \operatorname{arg} \det ((U\xi_i, \xi_j)) = \operatorname{arg} \det B = \operatorname{arg} \det V.$$

Let b_1, \ldots, b_k be proper values of V. Then

$$\operatorname{arg} \det ((U\xi_i, \xi_i)) = \operatorname{arg} b_1 + \cdots + \operatorname{arg} b_k.$$

But by § 4 we have

$$\arg b_{j} = \sup_{\substack{N \subset M \\ \dim N \\ = j-1}} \inf_{\substack{\xi \perp N \\ \xi \neq 0}} \arg(U\xi, \xi)$$

$$\geq \inf_{\substack{\xi \perp [\beta_{1}, \dots, \beta_{j-1}] \\ \xi \neq 0}} \arg(U\xi, \xi)$$

$$\geq \inf_{\substack{\xi \in N_{j} \\ \xi \neq 0}} \arg(U\xi, \xi) = \arg u_{ij}, j = 1, \dots, k.$$

Therefore

$$\operatorname{arg} u_{i_j} + \cdots + \operatorname{arg} u_{i_j} \leq \operatorname{arg} b_1 + \cdots + \operatorname{arg} b_k.$$

Thus the left side of (1) is no larger than its right side. Thus the proof is complete.

6. Theorem. Let U be a unitary transformation on E_n and A be a linear transformation congruent to U. Let u_1, \ldots, u_n be proper values of U such that $0 < \arg u_1 \le \cdots \le \arg u_n < \pi$ and $1 \le i_1 < \cdots < i_k \le n$ a sequence of integers. Then

$$\arg u_{i_1} + \cdots + \arg u_{i_k} = \inf_{\substack{M_1 \subset \cdots \subset M_k \\ \dim M_p = i_p}} \sup_{\xi_p \in M_p} (\arg a_1 + \cdots + \arg a_k),$$

where $\{\xi_1, \ldots, \xi_k\}$ ranges over linearly independent sets of vectors and a_1, \ldots, a_k are proper values of the matrix $((A\xi_i, \xi_j))$. Moreover the value $(\arg a_1 + \cdots + \arg a_k)$ depends only on $[\xi_1, \ldots, \xi_k]$.

Proof. If A is congruent to U, then there exists a non-singular linear transformation X such A = X*UX. This implies that

$$(X^*UX\xi_i, \xi_j) = (U\eta_i, \eta_j),$$

where, for example, $\eta_i = X \xi_i$. Therefore the set $\{\eta_1, \ldots, \eta_k\}$ is linearly independent, and we see that

$$\det ((A\xi_i, \xi_i)) = \det U \det ((\eta_i, \eta_i)).$$

Since the matrix $((\eta_i, \eta_i))$ is positive

$$arg \det ((A \xi_i, \xi_j)) = arg \det U.$$

Therefore by applying previous theorem the proof is complete.

7. Theorem. Let U be a unitary transformation on E_n and A be a linear transformation congruent to U. Let u_1, \ldots, u_n be proper values of U such that $0 < \arg u_1 \le \cdots \le \arg u_n < \pi$ and $1 \le i_1 < \cdots < i_k \le n$ a sequence of integers. Then

$$\arg u_{i_1} + \cdots + \arg u_{i_k} = \sup_{\substack{M_1 \supset \cdots \supset M_k \\ \dim M_p = n - i_p + 1}} \inf_{\xi_p \in M_p} (\arg a_1 + \cdots + \arg a_k)$$

where $\{\xi_1, \ldots, \xi_k\}$ is linearly independent and a_1, \ldots, a_k are proper values of the matrix $((A\xi_i, \xi_j))$. Moreover the value $(\arg a_1 + \cdots + \arg a_k)$ depends only on $[\xi_1, \ldots, \xi_k]$.

Proof. The proof of this theorem is similar to the proof of theorem 6.

- **8. Definition.** If $j_p \le i_p$ for $p = 1, \ldots, k$, we write $(j_1, \ldots, j_k) \le (i'_1, \ldots, i'_k)$. Given any sequence $i_1 \le \cdots \le i_k$ of integers such that $i_p \ge p$, $p = 1, \ldots, k$, let (i'_1, \ldots, i'_k) denote the *strictly increasing* sequence of positive integers such that
 - (a) $(i'_1, \ldots, i'_k) \leq (i_1, \ldots, i_k),$
 - (b) $(j_1, \ldots, j_k) \leq (i'_1, \ldots, i'_k)$

wherever (j_1, \ldots, j_k) is a strictly increasing sequence of positive integers which is less than or equal to (i_1, \ldots, i_k) . We observe that (i'_1, \ldots, i'_k) is given by the formula

$$i'_k = i_k$$

 $i'_p = \min(i_p, i_{p+1} - 1), p = k - 1, \dots, 1.$

9. Theorem. Let U be a unitary transformation on E_n with proper values u_1, \ldots, u_n such that $0 < \arg u_1 \le \cdots \le \arg u_n < \pi$. Let $i_1 \le \cdots \le i_k$ be a sequence of positive integers less than or equal to n such that $i_n \ge p$.

Then

$$\arg u_{i_1}' + \cdots + \arg u_{i_k}' = \inf_{\substack{M_1 \subset \cdots \subset M_k \\ \dim M_p = i_p}} \sup_{\substack{\xi_p \in M_p \\ \{\xi_p\} \text{ o.n.}}} \det \left((U\xi_i, \xi_j) \right)$$

where (i'_1, \ldots, i'_k) is the sequence defined in § 8.

Proof. For subspaces $M_1 \subset \cdots \subset M_k$ with $\dim M_p = i_p$, $p = 1, \ldots, k$ there exists subspaces $M_1' \subset \cdots \subset M_k'$ with $M_p' \subset M_p$ and $\dim M_p' = i_p'$. Thus by § 5

$$\sup_{\substack{\xi_p \in M_p \\ (\xi_p) \text{ o.n.}}} \arg \det \left((U\xi_i, \, \xi_j) \right) \ge \sup_{\substack{\xi_p \in M_p' \\ (\xi_p) \text{ o.n.}}} \arg \det \left((U\xi_i, \, \xi_j) \right)$$

Now let $N_r = [\alpha_1, \ldots, \alpha_r]$, $r = 1, \ldots, n$, where $\{\alpha_t\}$ is an orthonormal set of proper vectors of U corresponding to $\{u_t\}$. Choose an orthonormal set $\{\delta_1, \ldots, \delta_k\}$ with $\delta_p \in N_{i_p}$, $p = 1, \ldots, k$ such that

$$\arg \det ((U\delta_i, \delta_j)) = \sup_{\substack{\xi_p \in N_{i_p} \\ \langle \xi_n \rangle \text{ o.n.}}} \det ((U\xi_i, \xi_j)).$$

By lemma 2.8 [1] there exists an orthonormal set $\{\eta_1, \ldots, \eta_k\}$ such that $\eta_p \in N_{i_p}$ and

arg det
$$((U\delta_i, \delta_j))$$
 = arg det $((U\eta_i, \eta_j))$.

But in § 5 we have proved that

nave proved that
$$\sup_{\substack{\xi_p \in N_{i_p}' \\ \{\xi_p\} \text{ o.n.}}} \det \left((U\xi_i, \xi_j) \right) = \arg u_{i_1}' + \cdots + \arg u_{i_k}'.$$

Therefore

$$\inf_{\substack{M_1\subset \cdots \subset M_k\\ \dim M_p=i_p}} \sup_{\substack{\xi_p\in M_p\\ \{\xi_p\} \text{ o.n.}}} \det\left((U\xi_i,\ \xi_j)\right) \leq \arg \det\left((U\delta_i,\ \delta_j)\right)$$

= arg det
$$((U\eta_i, \eta_j)) \leq \arg u_{i_1}' + \cdots + \arg u_{i_k}'$$
.

Thus the proof is complete.

10. Corollary. Let U satisfy the hypothesis of § 9 and let A be congruent to U. Let $i_1 \le \cdots \le i_k$ be a sequence of positive integers less than or equal to n such that $i_p \ge p$. Then

$$\arg u_{i_1}' + \cdots + \arg u_{i_k}' = \inf_{\substack{M_1 \subset \cdots \subset M_k \\ \dim M_p = i_p}} \sup_{\xi_p \in M_p} (\arg a_1 + \cdots + \arg a_k),$$

where $\{\xi_1, \ldots, \xi_k\}$ ranges over linearly independent sets of vectors, a_i , $i = 1, \ldots, k$ are proper values of the matrix $((A\xi_i, \xi_j))$, and (i_1', \ldots, i_k') is the sequence described in § 8. Moreover the values of $(\arg a_1 + \cdots + \arg a_k)$ depends only on $[\xi_1, \ldots, \xi_k]$.

Proof. We obtain 10 from 9 the same way as 6 was obtained from 5.

11. Theorem. Let U be a unitary transformation on E_n and A be a linear transformation congruent to U. Let u_1, \ldots, u_n be proper values of U such that $0 < \arg u_1 \le \cdots \le \arg u_n < \pi$. Let i_1, \ldots, i_k be a non-decreasing sequence of positive integers such that $i_p \le n - k + p$, $p = 1, \ldots, k$. Then

$$\arg u_{i_1}^{"}+\cdots+\arg u_{i_k}^{"}=\sup_{\substack{M_i\supset\cdots\supset M_k\\\dim M_p=n-i_p+1}}\inf_{\xi_p\in M_p}(\arg a_1+\cdots+\arg a_k),$$

where $\{\xi_1,\ldots,\xi_k\}$ is linearly independent, a_1,\ldots,a_k are proper values of the matrix $((A\xi_i,\xi_j))$, and (i_1'',\ldots,i_k'') is the smallest strictly increasing sequence of integers which is $\geq (i_1,\ldots,i_k)$ in the sense of § 8.

12. Remarks. The above propositions will be true if the strict inequality $<\pi$ changes to $\le\pi$. Consider a unitary transformation U for which the condition $0<\arg u_1\le\cdots\le\arg u_n\le\pi$ is not satisfied. Here u_1,\ldots,u_n are proper values of U. Suppose U does not have a proper value equal to 1. Then one can consider the unitary transformation V with proper values of v_1,\ldots,v_n where some of the v's are the same as u's and other v's are the same as u's such that $0<\arg v_1\le\cdots\le\arg v_k\le\pi$. Then all the propositions may be stated and proved for V. Thus a set of theorems can be obtained for U. The case the $u_1=1$ can be studied separately. We shall omit it.

REFERENCES

- 1. A. R. AMIR-Moéz: Extreme properties of eigenvalues of a hermitian transformation and singular values of the sum and product of linear transformation. Duke Math. J. 23 (1956), 413-476.
- 2. Alfred Horn, Robert Steinberg: Eigenvalues of the unitary part of a matrix-Pacific J. of Math. 9 (1959), 541—550.
- 3. Alfred Horn: On singular values of a product of completely continuous operators. Proc. of Nat. Acad. of Sci. 36 No. 7 (1950), 374-375.
- 4. H. Wielandt: An extremum property of sums of eigenvalues. Proc. Amer. Math. Soc. 6 (1955), 106-110.

Texas Tech. University Lubbock, Texas, USA