PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA - SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 302 — № 319 (1970)

304. AN APPLICATION OF LAGRANGE'S FORMULA FOR THE INVERSION OF POWER SERIES*

Michael Skalsky

Applying a limiting process to the identity

$$\sum_{k=1}^{n} (-1)^{k} A_{k}(c, tb) A_{n-k}(a+bk-k, (1-t)b) = A_{n}(a-c, (1-t)b),$$

where

$$A_k(a, b) = \frac{a}{a+bk} {a+bk \choose k},$$

H. W. GOULD [2] proved the following identity

(1)
$$\sum_{k=0}^{n} (-1)^{k} B_{k}(c, tb) B_{n-k}(a+bk, (1-t)b) = B_{n}(a-c, (1-t)b),$$

where

$$B_k(a, b) = \frac{a}{a+bk} \frac{(a+bk)^k}{k!}.$$

The identity (1) is valid for any numbers a, b, c, t, and for a=c and t=1 reduces to an orthogonality relation

$$\sum_{k=0}^{n} B_{k}(a, b) B_{n-k}(a+bk, 0) = {0 \choose n}.$$

The purpose of this note is to derive (1) directly by use of Lagrange's formula for the inversion of power series. We state without proof Lagrange's formula [1].

If $w = f(z) = \sum_{n=1}^{\infty} a_n z^n$ is an analytic function, regular in a neighbor-

hood of the point z=0, and satisfying the condition $a_1=f'(0)\neq 0$, then the

^{*} Presented April 1, 1970 by D. S. MITRINOVIĆ.

equation f(z) = w has a unique solution, regular in a neighborhood of the point w = 0 of the form

$$z = g(w) = \sum_{n=1}^{\infty} \frac{w^n}{n!} \left[\frac{d^{n-1}}{dz^{n-1}} (\Phi(z))^n \right]_{z=0}.$$

More generally, if F(z) is an analytic function regular in a neighborhood of the point z=0, then there is a neighborhood of the point w=0 in which

(2)
$$F(z) = F(0) + \sum_{n=1}^{\infty} \frac{w^n}{n!} \left[\frac{d^{n-1}}{dz^{n-1}} \left(F'(z) \left\{ \Phi(z) \right\}^n \right) \right]_{z=0}.$$

With (2) given, the proof of (1) becomes simple. Chosing $\Phi(z) = e^{tbz}$ and $F(z) = e^{cz}$, we obtain

(3)
$$e^{cz} = 1 + \sum_{k=1}^{\infty} \frac{w^k}{k!} \left[\frac{d^{k-1}}{dz^{k-1}} (ce^{cz} e^{tbkz}) \right]_{z=0}$$
$$= 1 + \sum_{k=1}^{\infty} \frac{w^k}{k!} c (c + tbk)^{k-1} = \sum_{k=0}^{\infty} w^k B_k (c, tb)$$

where $w = ze^{-tbz}$.

Replacing in (3) z by -z, we obtain

(4)
$$e^{-cz} = (e^{-z})^c = \sum_{k=0}^{\infty} (-1)^k B_k(c, tb) z^k e^{tbkz},$$

which upon the multiplication of both sides by e^{az} yields

(5)
$$e^{az-cz} = \sum_{k=0}^{\infty} (-1)^k B_k(c, tb) z^k e^{az+tbkz}$$
$$= \sum_{k=0}^{\infty} (-1)^k B_k(c, tb) \left(\frac{z}{e^{(b-tb)z}}\right)^k e^{az+bzk}$$

Using (2) once more with $F(z) = e^{az+bzk}$ and $\Phi(z) = e^{(b-tb)z}$, we get from (5)

(6)
$$e^{az-cz} = \sum_{k=0}^{\infty} (-1)^k B_k(c, tb) v^k \sum_{j=0}^{\infty} v^j B_j(a+bk, (1-t)b)$$
$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (-1)^k B_k(c, tb) B_j(a+bk, (1-t)b) v^{k+j},$$

where $v = \frac{z}{e^{(b-tb)z}}$.

Letting k+j=v, we find from (6)

(7)
$$e^{az-cz} = \sum_{n=0}^{\infty} v^n \sum_{k=0}^{\infty} (-1)^k B_k(c, tb) B_{n-k}(a+bk, (1-t)b).$$

On the other hand, the application of (2) with $F(z) = e^{az-cz}$ and $\Phi(z) = e^{(b-tb)z}$ yields

(8)
$$e^{az-cz} = \sum_{n=0}^{\infty} v^n B_n (a-c, (1-t)b).$$

Equating the coefficients of v^n in (7) and (8), we obtain

$$\sum_{k=0}^{n} (-1)^{k} B_{k}(c, tb) B_{n-k}(a+bk, (1-t)b) = B_{n}(a-c, (1-t)b).$$

REFERENCES

- E. T. COPSON: An Introduction to the Theory of Functions of a Complex Variable. Oxford 1935, pp. 121—125.
- H. W. Gould: A new convolution formula and some new orthogonal relations for inversion of series. Duke Math. J. 29 (1962), 393—404.

Southern Illinois University Carbondale, Illinois, USA