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302. THE JENSEN-STEFFENSEN INEQUALITY*
Ralph P. Boas, Jr.

1. Let ¢ be a continuous convex function over the range of the continuous
function f with bounded domain [a, b]; then JENSEN’s inequality, in a form
that includes both the inequality for sums and the inequality for integrals
([2], Theorems 86, 206), states that

(1

2
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where all integrals are over [a, b], provided that A is increasing (i.e., nondec-
reasing — I use this convention throughout), and bounded. The requirement
that [a, b] is finite is not essential; the necessary modifications in the infinite
case are easily supplied. The two familiar special cases come from taking A
to be a stepfunction with positive jumps at integers, or an absolutely conti-
nuous function with positive derivative. (“JENSEN’s inequality” of [2] is Theo-
rem 19, a quite different inequality.)

It would be reasonable to ask whether the requirement that A is increa-
sing can be relaxed at the expense of restricting f more severely. An answer
was given by STEFFENSEN [4]; see also [3], where many interesting special cases
are discussed. In a slightly generalized form, it is as follows.

Jensen-Steffensen inequality. Inequality (1) holds if f is continuous and monoto-
nic (in either sense) provided that \ is either continuous or of bounded variation,
and satisfies

2) A@=AX)EADB), all xE[a, bl; A(b)—A(a)>0.

We may regard (2) as a very weak version of monotonicity, namely that A
increases over every set of 3 points that contains both a and b; we might
call this (3,2)-monotonicity (3 points, 2 prescribed). A natural generalization
is (2n—1, n)-monotonicity; that is, A increases over each set of 2n—1 points
including »n prescribed points (two of which are a and b), with the other n—1
points lying one in each of the n—1 intervals between the prescribed points
(and A (d)>A (a)). If we strengthen the hypothesis on A in this way, we can
correspondingly weaken the hypothesis on f. The result is as follows.

* Presented April 7, 1970 by D. S. MITRINOVIC.
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2 R. P. Boas

Theorem 1. Inequality (1) holds if X\ is continuous or of bounded variation and
satisfies

AM@=Ax)SAPYSAE) S - - - SAp—) SN (xn) =2 (D), nzl,

for all x; in (Vp—y, Yu) Vo=a, Yu="0), and N (b)>A(a), provided that f is con-
tinuous and monotonic (in either sense) in each of the n—1 intervals (Vy_, Vi)

Thus for example in the (5,3) case
INOEYYCOEIN O RSN EIY ()
provided a<x<h<y<b, and f could be (for example) decreasing on (a, h)
and increasing on (h, b). In the limit as n—o0, A would be increasing and f

would be required only to be continuous, so that JENSEN’s inequality is a
limiting case of the generalized JENSEN-STEFFENSEN inequality, Theorem 1.

The hypothesis on A in the JENSEN-STEFFENSEN inequality is much weaker
than that in JENSEN’s inequality; if we try to weaken it still more, say to
AMa)sh(x) for a=x=b (and A(@<A(b)), i.e. to (2,1) monotonicity, it can
be shown by examples that (1) no longer holds when f is merely monotonic.
However, there is a variant that does hold in this case; under additional
assumptions on f and A it provides a weaker conclusion than (1).

To see how this variant arises, let us consider (1) when ¢ is a power,
¢ () =u? with p>1, and f(x)=0. Then (1) says

b b b
([r@ma@) s {[ae) ™ [rorde.

Under either the JENSEN or JENSEN-STEFFENSEN hypotheses the last integral is
b

positive (cf. § 3), so that replacing [dn by a larger number preserves the

inequality. This remains true whenever ¢ is continuous and convex and
9 (0)<0. For, suppose

b b
e{ 1 [rmam@} sy [o(f®))drE)
for some number y, i.e.
b . b
[e(F)ane) zyo {1 [r@dr@).

This inequality will be preserved for a larger y if the derivative of the right-
hand side is negative, i.e.

b b ,
¢ { y [ f @) dn (x)}——y_l ¢’ { y=1 [ f(x) dn (x)} [rxyar <o,

i.e., with [ fdA=z, and w=z/[y,
3 e(w)—we' W) =0.
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The Steffensen-Jensen Inequality 3

(Here ¢’ denotes either the right-hand or left-hand derivative of ¢.) But (3)
is true whenever ¢ is continuous and convex and ¢ (0) <0 (cf.[2], Theorem 129).

Indeed,
?w) < @ (w)—¢ (0) <

sup ¢’ (¢) < ¢’ (W),
w w 01w

since ¢’ increases. Consequently we have the essentially trivial inequality

b b
[r@aw | [e(f®)dr @)

O] *y —% 5
Jdu Jadve
whenever A and f satisfy the hypotheses of either the JENSEN or JENSEN--STEF-
FENSEN inequality, f(x)=0, ¢ is convex and continuous, ¢ (0) <0, w(b)—p (@) =
=Ar(b)—Ar(a), and @ (b)—w (@)>0.

Although (4) is trivial, it has as a consequence an inequality that applies
when we assume only that A(a) <A (x) for asx<b.

Theorem 2. If A(a)=i(x) for asx=<b, A(a)<A(b), and )\ (x) <A (b) + \*, where
A>0; f decreases and f(x)=0; ¢ is continuous and convex over (0, f(a)), and
b b

0(0)=<0; and [du(x)=[dr(x)+\*, then (4) holds.

If 2*<0 we are back in the JENSEN-STEFFENSEN situation. If we choose
A =sup [A(x)—A ()] we can take p to be the total variation of A. In this
case (4) was proved by CIESIELSKI [1] under more restrictive hypotheses and
by a different method.

It is interesting to note that the JENSEN-STEFFENSEN inequality and Theo-
rem 2 provide verisions of HOLDER’s inequality when the measure dA is not
necessarily positive. In particular,

b b b
([roawfs{[ac) [feraw, s>,

provided that f decreases, f(x)=0, and A(@)=A(x)<A(b) for a<x=<b; and

b b b
—1
{[r@afs{[la@(} [rmpdie
a a a
provided that f decreases, f(x)=0, and A(@) <A (x) for a<x<b.
STEFFENSEN’s proof of the JENSEN-STEFFENSEN inequality depended on
another inequality, now known as ‘STEFFENSEN’s inequality”’; for a detailed
discussion of this inequality and its applications see [3]. Here I shall give a
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different proof which is easily adapted to prove Theorem 1. We have already
seen that (4) is a corollary of the JENSEN-STEFFENSEN theorem, and Theorem 2
follows as a further corollary (see § 5).

2. We begin by reproducing ZYGMUND’s proof of JENSEN’s inequality
(6], vol. 1, p. 24). Put

b

[e @ drx

M@E@="————,
(8 A (B)— (@)

the mean value of g, and note that M (z) =z for a constant z. Since A increases

but is not constant, M (f) is in the range of f, and so ¢ (M (f)) is defined.

A convex ¢ is characterized by having a supporting line at each point, i.e.

&) e(M—e@zk(y—2)

for all y and z (where k& depends on z; in fact, k==¢'(z) when ¢ (z) exists,
and k is any number between ¢, (z) and ¢_ (z) at the countable set where
these are different). Take z=M (f) and y=f(x); then

(6) e (f())—o (M (f)—k{f(®)—M(/)}=0.
Since dA=0, taking mean values prescrves the inequality in (6). Hence
(7 Mo (fONI—o M () zk{M(/)—MM(f))}=0,

which is precisely what (1) says.

Note that this proof does not make full usc of the convexity of ¢: we
need only that ¢ has a supporting line at M (f), so for each particular f
and A we could use some nonconvex functions ¢. On the other hand, the
proof of the JENSEN-STEFFENSEN inequality will make more essential use of the
convexity of ¢.

We shall make repeated use of the ‘“‘second mean-value theorem” for
STIELTIES integrals. This states ([5], p. 18) that if f(x)=0 and f decreases and

b
[ f(x)dn(x) exists then
‘ c b c ,
(8) f@ inf [drne) =[f@drmsf@ sup [dr).
ascsbh a a ascsh a
If f increases, the theorem reads

b b b
f@) inf [dn@) =[f@dr0=f®) sup [ dh);

asc=b

thus in either case we “take out” f at its largest value.
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The Steffensen-Jensen Inequality 5

Incquality (8) is not exactly what is stated in [5], but the proof given
there establishes the more general result, For the convenience of the reader,
we outline the proof of the right-hand side of (8):

b b
[r@dr@) =[fE)d @) —nr(@)]
a a b
—F B LB =1 (@]— [ [A (x)—2 @] df ()

c c b
=f () aglclgb fd7\ x)+ { ailclspb fd)\ (x)}f[df(x)|

=f(@ sup. [ar);

the lower bound is obtained similarly.

3. We now establish the JENSEN-STEFFENSEN inequality. We first have to
show that M (f) is in the range of f, i.e. that when f is (say) decreasing we
have f(b)< M (f)<=f(a) under the hypothesis that A (@) = A (x) <A (b) if a<x<b.

We have f(x)—f (b) decreasing and positive, so by the second mean-value
theorem

b b b
Jr@ane)—f® [dre) = [ 1f(x)—f®1dr(x)

sl f@—f (b)]aiggb[k ©)—2r@]I=[f(@—F O] @)~ (@],
ie. M(f)=f(a). Similarly o

b
B —A @]IM (N)—F B = [ Lf )~ F (B (x) 20,
and M (f)=f(®). ’

Now we can repeat the proof of JENSEN’s inequality down to (6), and
the proof of the JENSEN-STEFFENSEN inequality reduces to showing that inequa-
lity in (6) is preserved under taking mean values.

Although (5) says that the graph of ¢ is above its supportlng line at
cach point, more than this is true. In fact ¢ (y)—¢ (2)—k (y—2) is the vertical
distance between the graph of ¢ and the supporting line, and when z is fixed
this distance is a decreasing function of y when y<z and an increasing func-
tion of y when y>z. Let A(x) be the left-hand side of (6); then I claim that
whether f decreases or increases, A (x) decreases when a<x<<c=f"1(M(f))
and A (x) increases when b>x>c.

In fact, suppose for example that f decreases and a<{x,<x,<c; then
S(x)2f(x,)=M(f), and consequently A (x)=A(x,); i.e., A decreases on
a<x<c. The proof is similar in the other cases.

We now have

b c b
JA@dAE) =[A@dr ) + [ A®drE).
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Since A (x)=0, the second mean-value theorem now yields

b E b
[A@dAx)2A @) iréf [ane) +A @) Sinfbfam(x)go

EN20 4
because of our hypothesis on A. That is, (7) is true and this is equivalent to (1).

4. The proof of Theorem 1 follows the same lines. For simplicity, we
outline the proof for the (5,3) case, when A(@)SAX)=AR)SAP)=A (D)
whenever a<x<<h<y<b; here h is a prescribed point. If f is monotonic on
(a, b) we have nothing new, so we assume (for definiteness) that f decreases
on (a, k) and increases on (h, b). We again must begin by verifying that M (f)
is in the range of f.

Let inf f(x)=m; then f(x)—m=0 and again decreases on (a, h) and
increases on (4, b). Then

b h b
@B =2 @M () —ml=[[f(x)—mldr @) =] + [
a a h

£ b
<[f(a)—m] sup fd)\(x)+[f(b)—m] sup fd)\(x).
agish , hEnsb

Now for any particular &, n we have

g b
[f@—m] [ d\@) +[f B)—m] [ d)(x)
M(f)—m= 2 "

Ab)—A(a)

A(—2 (@) AB)—r (k)
=[f(a)—m] N +[f(®)—m] O @
and the right-hand side is a convex linear combination of f(a@)—m and f(b)—m,
hence less than the larger of these two numbers; and this remains true after
taking least upper bounds on the left. Therefore M (f) does not exceed the
larger of f(a), f(b).
Similarly we can show that M (f)zm= 1SnfS bf (x).
asxs

Thus M (f) is indeed in the range of f and we have (6) again. Our
inequality will be established if we show that (6) still holds after we take
mean values.

We are assuming that f decreases for a<x<h and increases for A<x<b.
Since M (f) is in the range of f, there is at least one point ¢ such that
f(©)=M(f), and there may be two, say ¢, in (@, h) and ¢, in (h, b). We
consider the latter case first. The situation on (&, h) is the same as it was
on (a, b) in the JENSEN-STEFFENSEN case, with f decreasing, so that A (x)
decreases on (a, ¢;) and increases on (c;, h). The situation on (h, b) is the
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same except that f increases; but this again leads to A (x) decreasing on (4, ¢,)
and increasing on (c,, b). Consequently by the second mean-value theorem

b (4} h (4] b
[a@ar@=[+[+[+]
a a €1 h 73
& h &3 b
=A(a) inf [dA(x)+A () inf [+A ) inf [+A@®) inf [20
a Ez h 54

by our hypotheses on A.

Finally, if f(c)=M(f) only at one point ¢, suppose for definiteness

that a<c<h. Then A (x) decreases on (a, ¢), increases on (c, k), and decreases
b

on (h, b), and f A (x)dr(x)=0 as before.

5. We now deduce Theorem 2 from the fact, discussed at the end of § 1,
that (4) holds trivially under the hypotheses of Theorem 2 strengthened so
that A satisfies the condition A(a) <A (x) <A (d).

Note first that we may suppose that f(b)=0, instead of f(b)=0. For,
if f()>0 we replace [a, b] by [a, b+c] with >0, extend A and p to be
constant on [b, b+¢], and extend f so that f decreases from f(b) to 0 on
[b, b+¢]. If we have proved (4) for [a, b+e] with f(b+¢)=0, we have clearly
proved (4) for [a, b] with f(b)>0, since the integrals in (4) all reduce to
integrals over [a, b].

Now let u be a step function whose only jump is unity at b, let A* be
a positive number (as specified in Theorem 2) such that A(x) <A (b)) +A* for
a<x<b, and apply (4) with the JENSEN-STEFFENSEN hypotheses to ¢; f with f
decreasing, f(x)=0 and f(b)=0; and A(x)+2*u(x). We then have

b b
[dp@ 2 [dr@)+r*u@)
a a

by hypothesis. We get

b b
[rodi® | [e(f®)dr+e©0)r*

¢

b b
[du®) [dee

Since @ (0)<0 and A*=0, we obtain the conclusion of Theorem 2.



R. P. Boas

REFERENCES
1. Z. CieSIELSKL: A note on some inequalities of Jensen’s type. Ann. Polon, Math. 4
(1958), 269—274.
. G. H. Harpy, J. E. LirtLewooD and G. POLYA: Inequalities. Cambridge 1934.

. D. S. MrtriNoviC: The Steffensen inequality. Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. Fiz. Ne 247 — Ne 273 (1969), 1—14.

4. J. F. STEFFENSEN: On certain inequalities and methods of approximation. J. Inst.
Actuaries 51 (1919), 274—297.

. D. V. WipDER: The Laplace transform. Princeton 1941.

w N

L

6. A. ZYyGMUND: Trigonometric series, 2d ed. Cambridge 1959.

Northwestern University
Evanston, Ill. 60201, USA



