PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA - SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 302 -- № 319 (1970)

302. THE JENSEN-STEFFENSEN INEQUALITY*

Ralph P. Boas, Jr.

1. Let φ be a continuous convex function over the range of the continuous function f with bounded domain [a, b]; then JENSEN's inequality, in a form that includes both the inequality for sums and the inequality for integrals ([2], Theorems 86, 206), states that

(1)
$$\varphi\left\{\frac{\int f(x) d\lambda(x)}{\int d\lambda(x)}\right\} \leq \frac{\int \varphi(f(x)) d\lambda(x)}{\int d\lambda(x)},$$

where all integrals are over [a, b], provided that λ is increasing (i.e., nondecreasing — I use this convention throughout), and bounded. The requirement that [a, b] is finite is not essential; the necessary modifications in the infinite case are easily supplied. The two familiar special cases come from taking λ to be a stepfunction with positive jumps at integers, or an absolutely continuous function with positive derivative. ("Jensen's inequality" of [2] is Theorem 19, a quite different inequality.)

It would be reasonable to ask whether the requirement that λ is increasing can be relaxed at the expense of restricting f more severely. An answer was given by STEFFENSEN [4]; see also [3], where many interesting special cases are discussed. In a slightly generalized form, it is as follows.

Jensen-Steffensen inequality. Inequality (1) holds if f is continuous and monotonic (in either sense) provided that λ is either continuous or of bounded variation, and satisfies

(2)
$$\lambda(a) \leq \lambda(x) \leq \lambda(b)$$
, all $x \in [a, b]$; $\lambda(b) - \lambda(a) > 0$.

We may regard (2) as a very weak version of monotonicity, namely that λ increases over every set of 3 points that contains both a and b; we might call this (3,2)-monotonicity (3 points, 2 prescribed). A natural generalization is (2n-1, n)-monotonicity; that is, λ increases over each set of 2n-1 points including n prescribed points (two of which are a and b), with the other n-1 points lying one in each of the n-1 intervals between the prescribed points (and $\lambda(b) > \lambda(a)$). If we strengthen the hypothesis on λ in this way, we can correspondingly weaken the hypothesis on f. The result is as follows.

^{*} Presented April 7, 1970 by D. S. MITRINOVIĆ.

Theorem 1. Inequality (1) holds if λ is continuous or of bounded variation and satisfies

$$\lambda(a) \leq \lambda(x_1) \leq \lambda(y_1) \leq \lambda(x_2) \leq \cdots \leq \lambda(y_{n-1}) \leq \lambda(x_n) \leq \lambda(b), \quad n \geq 2$$

for all x_k in (y_{k-1}, y_k) $(y_0 = a, y_n = b)$, and $\lambda(b) > \lambda(a)$, provided that f is continuous and monotonic (in either sense) in each of the n-1 intervals (y_{k-1}, y_k) .

Thus for example in the (5,3) case

$$\lambda(a) \leq \lambda(x) \leq \lambda(h) \leq \lambda(y) \leq \lambda(b)$$

provided a < x < h < y < b, and f could be (for example) decreasing on (a, h) and increasing on (h, b). In the limit as $n \to \infty$, λ would be increasing and f would be required only to be continuous, so that Jensen's inequality is a limiting case of the generalized Jensen-Steffensen inequality, Theorem 1.

The hypothesis on λ in the JENSEN-STEFFENSEN inequality is much weaker than that in JENSEN's inequality; if we try to weaken it still more, say to $\lambda(a) \le \lambda(x)$ for $a \le x \le b$ (and $\lambda(a) < \lambda(b)$), i.e. to (2,1) monotonicity, it can be shown by examples that (1) no longer holds when f is merely monotonic. However, there is a variant that does hold in this case; under additional assumptions on f and λ it provides a weaker conclusion than (1).

To see how this variant arises, let us consider (1) when φ is a power, $\varphi(u) = u^p$ with p > 1, and $f(x) \ge 0$. Then (1) says

$$\left\{\int_{a}^{b} f(x) d\lambda(x)\right\}^{p} \leq \left\{\int_{a}^{b} d\lambda(x)\right\}^{p-1} \int_{a}^{b} f(x)^{p} d\lambda(x).$$

Under either the JENSEN or JENSEN-STEFFENSEN hypotheses the last integral is positive (cf. § 3), so that replacing $\int_a^b d\lambda$ by a larger number preserves the inequality. This remains true whenever φ is continuous and convex and $\varphi(0) \leq 0$. For, suppose

$$\varphi\left\{y^{-1}\int_{a}^{b}f(x)\,d\lambda(x)\right\} \leq y^{-1}\int_{a}^{b}\varphi\left(f(x)\right)d\lambda(x)$$

for some number y, i.e.

$$\int_{a}^{b} \varphi(f(x)) d\lambda(x) \ge y \varphi \left\{ y^{-1} \int_{a}^{b} f(x) d\lambda(x) \right\}.$$

This inequality will be preserved for a larger y if the derivative of the right-hand side is negative, i.e.

$$\varphi\left\{y^{-1}\int_{a}^{b}f(x)\,d\lambda(x)\right\}-y^{-1}\varphi'\left\{y^{-1}\int_{a}^{b}f(x)\,d\lambda(x)\right\}\int_{a}^{b}f(x)\,d\lambda(x)\leq 0,$$

i.e., with $\int f d\lambda = z$, and w = z/y,

$$\varphi(w)-w\,\varphi'(w)\leq 0.$$

(Here φ' denotes either the right-hand or left-hand derivative of φ .) But (3) is true whenever φ is continuous and convex and $\varphi(0) \leq 0$ (cf. [2], Theorem 129). Indeed,

$$\frac{\varphi\left(w\right)}{w} \leq \frac{\varphi\left(w\right) - \varphi\left(0\right)}{w} \leq \sup_{0 \leq t \leq w} \varphi'\left(t\right) \leq \varphi'\left(w\right),$$

since φ' increases. Consequently we have the essentially trivial inequality

(4)
$$\varphi \left\{ \frac{\int\limits_{a}^{b} f(x) d\lambda(x)}{\int\limits_{a}^{b} d\mu(x)} \right\} \leq \frac{\int\limits_{a}^{b} \varphi(f(x)) d\lambda(x)}{\int\limits_{a}^{b} d\mu(x)}$$

whenever λ and f satisfy the hypotheses of either the JENSEN or JENSEN--STEF-FENSEN inequality, $f(x) \ge 0$, φ is convex and continuous, $\varphi(0) \le 0$, $\mu(b) - \mu(a) \ge \lambda(b) - \lambda(a)$, and $\mu(b) - \mu(a) > 0$.

Although (4) is trivial, it has as a consequence an inequality that applies when we assume only that $\lambda(a) \le \lambda(x)$ for $a \le x \le b$.

Theorem 2. If $\lambda(a) \leq \lambda(x)$ for $a \leq x \leq b$, $\lambda(a) < \lambda(b)$, and $\lambda(x) \leq \lambda(b) + \lambda^*$, where $\lambda^* > 0$; f decreases and $f(x) \geq 0$; φ is continuous and convex over (0, f(a)), and $\varphi(0) \leq 0$; and $\int_a^b d\mu(x) \geq \int_a^b d\lambda(x) + \lambda^*$, then (4) holds.

If $\lambda^* \leq 0$ we are back in the Jensen-Steffensen situation. If we choose $\lambda^* = \sup [\lambda(x) - \lambda(b)]$ we can take μ to be the total variation of λ . In this case (4) was proved by Ciesielski [1] under more restrictive hypotheses and by a different method.

It is interesting to note that the Jensen-Steffensen inequality and Theorem 2 provide verisions of Hölder's inequality when the measure $d\lambda$ is not necessarily positive. In particular,

$$\left\{\int_{a}^{b} f(x) d\lambda(x)\right\}^{p} \leq \left\{\int_{a}^{b} d\lambda(x)\right\}^{p-1} \int_{a}^{b} f(x)^{p} d\lambda(x), \qquad p > 1,$$

provided that f decreases, $f(x) \ge 0$, and $\lambda(a) \le \lambda(x) \le \lambda(b)$ for $a \le x \le b$; and

$$\left\{\int_{a}^{b} f(x) d\lambda(x)\right\}^{p} \leq \left\{\int_{a}^{b} |d\lambda(x)|\right\}^{p-1} \int_{a}^{b} f(x)^{p} d\lambda(x)$$

provided that f decreases, $f(x) \ge 0$, and $\lambda(a) \le \lambda(x)$ for $a \le x \le b$.

Steffensen's proof of the Jensen-Steffensen inequality depended on another inequality, now known as "Steffensen's inequality"; for a detailed discussion of this inequality and its applications see [3]. Here I shall give a

different proof which is easily adapted to prove Theorem 1. We have already seen that (4) is a corollary of the Jensen-Steffensen theorem, and Theorem 2 follows as a further corollary (see § 5).

2. We begin by reproducing ZYGMUND's proof of JENSEN's inequality ([6], vol. 1, p. 24). Put

$$M(g) = \frac{\int_{a}^{b} g(x) d\lambda(x)}{\lambda(b) - \lambda(a)},$$

the mean value of g, and note that M(z) = z for a constant z. Since λ increases but is not constant, M(f) is in the range of f, and so $\varphi(M(f))$ is defined. A convex φ is characterized by having a supporting line at each point, i.e.

$$\varphi(y) - \varphi(z) \ge k(y-z)$$

for all y and z (where k depends on z; in fact, $k = \varphi'(z)$ when $\varphi'(z)$ exists, and k is any number between $\varphi'_+(z)$ and $\varphi'_-(z)$ at the countable set where these are different). Take z = M(f) and y = f(x); then

(6)
$$\varphi(f(x)) - \varphi(M(f)) - k \{f(x) - M(f)\} \ge 0.$$

Since $d\lambda \ge 0$, taking mean values preserves the inequality in (6). Hence

(7)
$$M[\varphi(f(x))] - \varphi(M(f)) \ge k\{M(f) - M(M(f))\} = 0,$$

which is precisely what (1) says.

Note that this proof does not make full use of the convexity of φ : we need only that φ has a supporting line at M(f), so for each particular f and λ we could use some nonconvex functions φ . On the other hand, the proof of the Jensen-Steffensen inequality will make more essential use of the convexity of φ .

We shall make repeated use of the "second mean-value theorem" for STIELTJES integrals. This states ([5], p. 18) that if $f(x) \ge 0$ and f decreases and $\int_{a}^{b} f(x) d\lambda(x)$ exists then

(8)
$$f(a) \inf_{a \le c \le b} \int_{a}^{c} d\lambda(x) \le \int_{a}^{b} f(x) d\lambda(x) \le f(a) \sup_{a \le c \le b} \int_{a}^{c} d\lambda(x).$$

If f increases, the theorem reads

$$f(b) \inf_{a \le c \le b} \int_{c}^{b} d\lambda(x) \le \int_{a}^{b} f(x) d\lambda(x) \le f(b) \sup_{a \le c \le b} \int_{c}^{b} d\lambda(x);$$

thus in either case we "take out" f at its largest value.

Inequality (8) is not exactly what is stated in [5], but the proof given there establishes the more general result. For the convenience of the reader, we outline the proof of the right-hand side of (8):

$$\int_{a}^{b} f(x) d\lambda(x) = \int_{a}^{b} f(x) d[\lambda(x) - \lambda(a)]$$

$$= f(b) [\lambda(b) - \lambda(a)] - \int_{a}^{b} [\lambda(x) - \lambda(a)] df(x)$$

$$\leq f(b) \sup_{a \leq c \leq b} \int_{a}^{c} d\lambda(x) + \left\{ \sup_{a \leq c \leq b} \int_{a}^{c} d\lambda(x) \right\} \int_{a}^{b} |df(x)|$$

$$= f(a) \sup_{a \leq c \leq b} \int_{a}^{c} d\lambda(x);$$

the lower bound is obtained similarly.

3. We now establish the JENSEN-STEFFENSEN inequality. We first have to show that M(f) is in the range of f, i.e. that when f is (say) decreasing we have $f(b) \le M(f) \le f(a)$ under the hypothesis that $\lambda(a) \le \lambda(x) \le \lambda(b)$ if a < x < b.

We have f(x)-f(b) decreasing and positive, so by the second mean-value theorem

$$\int_{a}^{b} f(x) d\lambda(x) - f(b) \int_{a}^{b} d\lambda(x) = \int_{a}^{b} [f(x) - f(b)] d\lambda(x)$$

$$\leq [f(a) - f(b)] \sup_{a \leq c \leq b} [\lambda(c) - \lambda(a)] \leq [f(a) - f(b)] [\lambda(b) - \lambda(a)],$$
i.e. $M(f) \leq f(a)$. Similarly

$$[\lambda(b)-\lambda(a)][M(f)-f(b)] = \int_{a}^{b} [f(x)-f(b)] d\lambda(x) \ge 0,$$

and $M(f) \ge f(b)$.

Now we can repeat the proof of Jensen's inequality down to (6), and the proof of the Jensen-Steffensen inequality reduces to showing that inequality in (6) is preserved under taking mean values.

Although (5) says that the graph of φ is above its supporting line at each point, more than this is true. In fact $\varphi(y) - \varphi(z) - k(y-z)$ is the vertical distance between the graph of φ and the supporting line, and when z is fixed this distance is a decreasing function of y when y < z and an increasing function of y when y>z. Let $\Delta(x)$ be the left-hand side of (6); then I claim that whether f decreases or increases, $\Delta(x)$ decreases when $a < x < c = f^{-1}(M(f))$ and $\Delta(x)$ increases when b>x>c.

In fact, suppose for example that f decreases and $a < x_1 < x_2 < c$; then $f(x_1) \ge f(x_2) \ge M(f)$, and consequently $\Delta(x_1) \ge \Delta(x_2)$; i.e., Δ decreases on a < x < c. The proof is similar in the other cases.

We now have

$$\int_{a}^{b} \Delta(x) d\lambda(x) = \int_{a}^{c} \Delta(x) d\lambda(x) + \int_{c}^{b} \Delta(x) d\lambda(x).$$

Since $\Delta(x) \ge 0$, the second mean-value theorem now yields

$$\int_{a}^{b} \Delta(x) d\lambda(x) \ge \Delta(a) \inf_{a \le \xi \le c} \int_{a}^{\xi} d\lambda(x) + \Delta(b) \inf_{c \le \eta \le b} \int_{\eta}^{b} d\lambda(x) \ge 0$$

because of our hypothesis on λ . That is, (7) is true and this is equivalent to (1).

4. The proof of Theorem 1 follows the same lines. For simplicity, we outline the proof for the (5,3) case, when $\lambda(a) \le \lambda(x) \le \lambda(h) \le \lambda(y) \le \lambda(b)$ whenever a < x < h < y < b; here h is a prescribed point. If f is monotonic on (a, b) we have nothing new, so we assume (for definiteness) that f decreases on (a, h) and increases on (h, b). We again must begin by verifying that M(f) is in the range of f.

Let inf f(x) = m; then $f(x) - m \ge 0$ and again decreases on (a, h) and increases on (h, b). Then

$$[\lambda(b)-\lambda(a)][M(f)-m] = \int_{a}^{b} [f(x)-m] d\lambda(x) = \int_{a}^{h} + \int_{h}^{b}$$

$$\leq [f(a)-m] \sup_{a \leq \xi \leq h} \int_{a}^{\xi} d\lambda(x) + [f(b)-m] \sup_{h \leq \eta \leq b} \int_{\eta}^{b} d\lambda(x).$$

Now for any particular ξ , η we have

$$M(f)-m = \frac{[f(a)-m]\int\limits_a^\xi d\lambda(x) + [f(b)-m]\int\limits_\eta^b d\lambda(x)}{\lambda(b)-\lambda(a)}$$

$$\leq [f(a)-m]\frac{\lambda(b)-\lambda(a)}{\lambda(b)-\lambda(a)} + [f(b)-m]\frac{\lambda(b)-\lambda(a)}{\lambda(b)-\lambda(a)},$$

and the right-hand side is a convex linear combination of f(a)-m and f(b)-m, hence less than the larger of these two numbers; and this remains true after taking least upper bounds on the left. Therefore M(f) does not exceed the larger of f(a), f(b).

Similarly we can show that $M(f) \ge m = \inf_{a \le x \le b} f(x)$.

Thus M(f) is indeed in the range of f and we have (6) again. Our inequality will be established if we show that (6) still holds after we take mean values.

We are assuming that f decreases for a < x < h and increases for h < x < b. Since M(f) is in the range of f, there is at least one point c such that f(c) = M(f), and there may be two, say c_1 in (a, h) and c_2 in (h, b). We consider the latter case first. The situation on (a, h) is the same as it was on (a, b) in the Jensen-Steffensen case, with f decreasing, so that $\Delta(x)$ decreases on (a, c_1) and increases on (c_1, h) . The situation on (h, b) is the

same except that f increases; but this again leads to $\Delta(x)$ decreasing on (h, c_2) and increasing on (c_2, b) . Consequently by the second mean-value theorem

$$\int_{a}^{b} \Delta(x) d\lambda(x) = \int_{a}^{c_{1}} + \int_{h}^{h} + \int_{c_{2}}^{b}$$

$$\geq \Delta(a) \inf \int_{a}^{\xi_{1}} d\lambda(x) + \Delta(h) \inf \int_{\xi_{2}}^{h} + \Delta(h) \inf \int_{h}^{\xi_{3}} + \Delta(b) \inf \int_{\xi_{4}}^{b} \geq 0$$

by our hypotheses on λ .

Finally, if f(c) = M(f) only at one point c, suppose for definiteness that a < c < h. Then $\Delta(x)$ decreases on (a, c), increases on (c, h), and decreases on (h, h), and $\int_{a}^{b} \Delta(x) d\lambda(x) \ge 0$ as before.

5. We now deduce Theorem 2 from the fact, discussed at the end of § 1, that (4) holds trivially under the hypotheses of Theorem 2 strengthened so that λ satisfies the condition $\lambda(a) \le \lambda(x) \le \lambda(b)$.

Note first that we may suppose that f(b) = 0, instead of $f(b) \ge 0$. For, if f(b) > 0 we replace [a, b] by $[a, b + \varepsilon]$ with $\varepsilon > 0$, extend λ and μ to be constant on $[b, b + \varepsilon]$, and extend f so that f decreases from f(b) to 0 on $[b, b + \varepsilon]$. If we have proved (4) for $[a, b + \varepsilon]$ with $f(b + \varepsilon) = 0$, we have clearly proved (4) for [a, b] with f(b) > 0, since the integrals in (4) all reduce to integrals over [a, b].

Now let u be a step function whose only jump is unity at b, let λ^* be a positive number (as specified in Theorem 2) such that $\lambda(x) \le \lambda(b) + \lambda^*$ for $a \le x \le b$, and apply (4) with the Jensen-Steffensen hypotheses to φ ; f with f decreasing, $f(x) \ge 0$ and f(b) = 0; and $\lambda(x) + \lambda^* u(x)$. We then have

$$\int_{a}^{b} d\mu(x) \ge \int_{a}^{b} d[\lambda(x) + \lambda^{*} u(x)]$$

by hypothesis. We get

$$\varphi\left\{\begin{array}{l} \int\limits_{a}^{b} f(x) \, d\lambda(x) \\ \int\limits_{a}^{b} d\mu(x) \end{array}\right\} \leq \frac{\int\limits_{a}^{b} \varphi(f(x)) \, d\lambda(x) + \varphi(0) \, \lambda^{*}}{\int\limits_{a}^{b} d\mu(x)}.$$

Since $\varphi(0) \le 0$ and $\lambda^* \ge 0$, we obtain the conclusion of Theorem 2.

REFERENCES

- 1. Z. Ciesielski: A note on some inequalities of Jensen's type. Ann. Polon. Math. 4 (1958), 269-274.
- 2. G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA: Inequalities. Cambridge 1934.
- 3. D. S. Mitrinović: *The Steffensen inequality*. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. № 247 № 273 (1969), 1—14.
- 4. J. F. Steffensen: On certain inequalities and methods of approximation. J. Inst. Actuaries 51 (1919), 274—297.
- 5. D. V. WIDDER: The Laplace transform. Princeton 1941.
- 6. A. ZYGMUND: Trigonometric series, 2d ed. Cambridge 1959.

Northwestern University Evanston, Ill. 60201, USA