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277. IMPROVEMENTS OF STIRLING'S FORMULA
BY ELEMENTARY METHODS*

Paul R. Beesack

Since STIRLING'S time (1764) it has been known that n!""C.J1i(n/e)n,
with C= y2n, that is

I
. n!
1m I.

y2nn (n/e)1'

Formula (1) is known as Stirling's formula, and a great many elementary proofs
of it have been given. Most such proofs use WALLIS' formula

. 2.2.4.4. . . 2n . 2n 'JT,
hm .

1.3.3.5.. .(2n-I)(2n+l) 2

to show that C= v2n. However, one of the most recent elementary proofs,
by W. FELLER [2, 3], avoids any appeal to WALLIS' formula. Since completely
elementary proofs of (2) are well known (see, for example [9]) this does not
seem to be essential.

In addition, a number of upper and lower bounds for n! (most of which
imply (1» have been obtained by various authors, also by elementary methods.
One of the most elementary of these is the estimate ellJ12 yn (n/e)n< n! <

<e .J1i (n/e)n obtained by HUMMEL[4] in 1940. Most bounds are of the form
(3) y2nn (n/e)n eUn<n! < y2nn (n/e)n efin,
where an and fJn tend to zero through positive values. For example, fJn= (12n)-1
was proved in each of [1, 5, 7, 8, 10], while the successively better values

an= 1/(12n+6), 1/(12n+ I), I/
i

(12n+~
)

, 1
/( 12n+ --~

)
and 1/(12n)-

4 2(2n+ 1)
-1/(360n3) were obtained in [10], [8], [1], [5] and [7] respectively. The method
of proof is essentially the same in all of the3e cases and appears to be due to
CESARO[1]; in particular, WALLIS' formula is used. (Cf. also MITRINOVIC[6]
where a more extensive bibliography is given.) In this note we give a further
refinement of CESARO'Smethod to prove (3) with

1 I I I(4) an =~~--, fJn=-- ,
12n 360n3 12n (360+Yn)n3

(I)

(2)

- 30
7n(n+l)+1

Yn -
n2(n+ 1)2

~
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18 P. R. Beesack

for n> 1. We thus obtain the best lower bound (for n > 2) of those noted above.
~nd a substantially improved upper bound. . .

In view of (1) we begin with the sequence {an} defined by
.1 ;

n> 1,

for which

(5)

1
an 1 1

n+-2

-=- (1 +-
)

1.
an+1 e n

We shall prove - in accordance with (1) - that lim an exists and has the
value y2n, at the same time obtaining the bounds (3), (4). To this end, we
shall obtain bounds for

log
(I +~ rl~(n ++)10g( 1+~)

From the well-known expansion

(I +X )
00 X2k-1

log - =2L -, /xl<l,
I-x k=12k-1

we obtain on setting x = (2n + I)-I,

(n + I)
00 1 1 1 00 1 1

log ---;;- = 2
k~1 (2k-l) (2n + 1)2k-l

- ~ k~ 2k + 1 (2 n + l)2k'
n+2

or

IOg
{
~ (1 +~ )

n+{

} = ~ 1 1

e n k=1 2k+ 1 (2n+
I)2k.

Note that (5) and (6) show that an>an+1 for all n> 1. The idea of the proof
is now to find positive sequences {fen)}, {g(n)} both of which tend to zero,
such that

(6)

00 1 1
f(n)-f(n+ 1)< L <g(n)-g(n+ I)

k=1 2k+ 1 (2n+ I)2k

holds at least for all sufficiently large n, say n > N. For then it follows from (5)
and (6) that

(7)

exp{f(n)-f(n+ I)}<~<exp{g(n)-g(n+ I)},
an+1

and hence both

(8)

(9)

an+1exp {- fen + I)}<an exp {- f(n)}=xn,

an+l exp {-g(n + I)}>an exp {-g(n)}-Yn
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for n:;;.N. The sequence {xn} is thus monotone decreasing and bounded below
by zero so that tim Xn=a exists with a:;;'O. Since f(n) O+, it also follows that

lim an = lim Xn exp {fen)} = a. 1 = a

also exists. Similarly, by (9), the sequence {Yn} is monotone increasing with
Yn+l<an+l<an<' . . <ai' so that limYn=P exists with P>O. Hence,

a= lim an =limYn exp {g(n)} =P>O.

Using WALLIS' formula (2), and the fact that n!=(nje)nynan, we have

. {2zn(n!)z}2 . 1 {2zn(n!)z}2
n=2hm hm ,

{(2n)!}2(2n+l)
1+~

{(2n)!}2n
2n

whence
- . 2zn(n!)2 . 2zn(nje)znnanZ . anz ayn=hm--==hm - -11m - = =,(2n!)yn (2nje)zny2nazn y2azn y2

since a>O. Hence, liman=limxn=limYn=a= y2n so, using the monotone
character of {xn} and {Yn}, it follows that

y~=an exp {-g(n)}<a= y2n<an exp {-fen)} =Xn,

n'en - n'en
'y- exp{-g(n)}<y2n<

.
- exp{-f(n)},

nn n nn -J n
so that
(10) y2nn (nje)n exp {fen)} <n! < y2nn (nje)n exp {g (n)}

for all n:;;.N, provided f and g satisfy (7) as specified.
Turning now to (7), we proceed as in CESARO[1], but carry

term in each case to obtain
one extra

co 1 1 1 1 co I

k~1 2k+l (2n+ I)Zk<3(2n+ I)Z +5 k~Z (2n + I)Zk

I 1 (2n+ 1)-4
+-

3 (2n + I)Z 5 1-(2n + 1)-Z

1 1
+ ,

3 (2n+ I)Z 20n(n+ 1)(2n+ 1)2
and similarly,

co 1

k~1 2k+ 1

1 1 1 co

(
5
)
k-2 1

(2n + l)Zk> 3 (2n + 1)z +
5 k~ -::;- (2n+ I)Zk

1 1 (2n + 1)-4
+-

3(2n+l)Z 5
1-2(2n+l)-Z

7
I 7

+
3 (2n + I)Z 10 (2n + 1)2(14nz + 14n + 1)

2*
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since ~ (~ )
k-2

<
1

for all k> 3 is easily verified. In order to obtain (7),
5 7 2k + 1

and with it the desired estimates (3) and (4), we now show that

(11) 1 7
+

3 (2n+ 1)2 10(2n+ 1)2(14n2+ 14n+ 1)

1 (1 1
)

1
(

1 1
)>12 ;;-

n + 1
--:;4 n3-

(n+ 1)3'
n > 1,

1 1
+

3 (2n+ 1)2 20n (n+ 1) (2n + 1)2

1 (1 1 ) 1
(

1 1
)<12 ;;-

n + 1 -Ii -;;;~(n +1)3 '

both hold, provided O<A, 360 and B;> 360 + YN' It will then follow that (7)
. 1 1 1 1

holds with !(n)= =un. and g(n)= . Hence (10)
l2n 360n3 12n (360+YN)n3

will also hold for such! and g (and n;>N). But then, on setting n = N> 1
in (10), we obtain the estimates (3), (4) and the proof will be complete.

Now, (11) holds if and only if

(12)

n>N> 1,

1 3n2 + 3n + 1

A n3(n + 1)3
1

12n(n+1)

1

3 (2n + 1)2
7

10(2n+ 1)2(14n2+ 14n+ 1)

28n2 + 28n + 5

60n(n+ 1)(4n2+4n+ 1)(14n2+14n+ 1)

or

A,
60 (3n2 + 3n+ 1)(4n2 + 4n + 1)(14n2 + 14n+ 1).

n2 (n + 1)2(28n2 + 28n + 5)

It is easy to verify that the quotient on the right exceeds 360 for all n> 1
(set y=n(n+ 1) to simplify!), so that (11) holds as asserted if 0<A,360.
Similarly, (12) is equivalent to

1 3n2+3n+l

B n2(n + 1)3
1,

30n(n+ 1)(2n+ 1)2
or

B>
30 (3n2+ 3n+ 1)(4n2 +-4n + 1)

= 30
12n4+ 24n3 + 19n2+ 7n+ 1

n2(n+1)2 n2(n+1)2

=30
12n2 (n+ 1)2+ 7n2+ 7n+ 1

= 360+ 30
7n (n+ 1)+ 1- 360+Yn.

n2(n+1)2 n2(n+1)2

For any B> 360 this inequality will be satisfied for all sufficiently large n.
Since Yn = 30 {7 [n(n+ 1)]-1+ [n (n + 1)]-2} is a decreasing function of n, we have
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360+YN> 360+Yn for all n>N> I, so that (12) holds as asserted provided
B> 360+YN'

By retaining additional terms in the expansion (6), the estimates (3), (4),
can, of course, be improved. For example by retaining one more term - and
with considerably more algebra - one obtains (3) with

1 I 1
an=---+ ,

12n 360n3 1260 (1 +-~
)

n5
n (n + 1)

1 1 1
{3n=---+-.

12n 360n3 1260n5
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