PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA - SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 247 — № 273 (1969)

249. AN INEQUALITY DUE TO HENRICI*

Peter S. Bullen

1. The main purpose of this note is to show that an inequality due to P. HENRICI, [7, (5)] and several generalisations due to MITRINOVIĆ and VASIĆ, [7], are consequences of a general inequality obtained in [4]. First we give a more general form of the main result in [4]; the generalisation consists of allowing different weights in the means involved.

In what follows $b = \{b_1, b_2, \ldots\}$, $p = \{p_1, p_2, \ldots\}$, and $q = \{q_1, q_2, \ldots\}$ will be sequences of positive numbers; write $Q_n = \sum_{k=1}^n q_k$. Functions will always mean real valued functions of a real variable. If f is a function $a = \{a_1, a_2, \ldots\}$ any sequence of real numbers then f(a) will denote the sequence $\{f(a_1), f(a_2), \ldots\}$. The following notations are standard;

$$M_n^{[r]}(a; q) = \left(\frac{1}{Q_n} \sum_{k=1}^n q_k a_k^r\right)^{1/r}, \quad r \neq 0, \quad |r| < \infty,$$
 $A_n(a; q) = M_n^{[1]}(a; q),$
 $G_n(a; q) = \left(\prod_{k=1}^n a_k^{q_k}\right)^{1/Q_n} = M_n^{[0]}(a; q).$

If possible a is allowed to take negative or zero values; this is essential as we wish to apply our main result to sequences of the form f(a) which may not be positive even if a is.

2. Theorem 1. Let F, G be two functions such (a) F is strictly monotonic, (b) G is concave, (c) $G \circ F$ is convex, then

(1)
$$Q_{n}\left\{G(A_{n}(a;q))-G\circ F\left(\frac{q_{n+1}Q_{n}}{p_{n+1}Q_{n}}A_{n}(F^{-1}(a);p)\right)\right\}$$

$$\leq Q_{n+1}\left\{G(A_{n+1}(a;q)-G\circ F\left(\frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}}A_{n+1}(F^{-1}(a);p)\right)\right\}.$$

^{*} Presented January 5, 1969 by D. S. Mitrinović and P. M. Vasić.

Further if G is strictly concave and $G \circ F$ strictly convex then inequality (1) is strict unless

$$G_{n+1} = A_n (a; q),$$

(ii)
$$G_{n+1} = F\left(\frac{q_{n+1}P_n}{p_{n+1}Q_n}A_n(F^{-1}(a); p)\right).$$

If G is a linear and $G \circ F$ is strictly convex then inequality (1) is strict unless (ii) holds; whereas if G is strictly concave and $G \circ F$ is linear, inequality (1) is strict unless (i) holds. If convex and concave are interchanged the inequality (1) is reversed.

Proof. Since the proof is essentially the same as the proof of Theorem 2 in [4] only a few details will be given.

If
$$B_n = \frac{q_{n+1}P_n}{p_{n+1}Q_n} A_n(F^{-1}(a); p)$$
 and $B_{n+1} = \frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}} A_{n+1}(F^{-1}(a); p)$ then

it is easily seen that

(2)
$$Q_n(B_n-F^{-1}(a_{n+1}))=Q_{n+1}(B_{n+1}-F^{-1}(a_{n+1})).$$

Further the difference between the righthand side and the lefthand side of (1) is equal to

(3)
$$Q_{n+1}G(A_{n+1}(a;q)) - Q_nG(A_n(a;q)) - Q_{n+1}G \cdot F(B_{n+1}) + Q_nG \cdot F(B_n).$$

Since (2), and (3) are identical to the first two lines of the proof of Theorem 2, [4], the rest follows as in that paper.

Remark. By saying a function is linear we mean that it is both convex and concave.

Corollary 2. If F is strictly monotonic and convex then

(4)
$$Q_{n}\left\{A_{n}\left(F(a); q\right) - F\left(\frac{q_{n+1}P_{n}}{p_{n+1}Q_{n}}A_{n}(a; p)\right)\right\} \\ \leq Q_{n+1}\left\{A_{n+1}\left(F(a); q\right) - F\left(\frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}}A_{n+1}(a; p)\right)\right\},$$

and if F is strictly convex then inequality (4) is strict unless $a_{n+1} = \frac{q_{n+1}P_n}{p_{n+1}Q_n}A_n(a; p)$.

If convex is replaced by concave inequality (4) is reversed.

In particular we have

(5) (a)
$$Q_n \{ A_n(b; q) - G_n(b; p)^{q_{n+1}P_n/p_{n+1}Q_n} \}$$

$$\leq Q_{n+1} \{ A_{n+1}(b; q) - G_{n+1}(b; p)^{q_{n+1}P_{n+1}/p_{n+1}Q_{n+1}} \},$$

with equality only when $b_{n+1}^{p_{n+1}/q_{n+1}} = (G_n(b; p))^{p_n/Q_n}$;

(6) (b)
$$\left(\frac{A_n(b; p) P_n}{G_n(b; q) Q_n}\right)^{Q_n} \leq \left(\frac{q_{n+1}}{p_{n+1}}\right)^{q_{n+1}} \left(\frac{A_{n+1}(b; p) P_{n+1}}{G_{n+1}(b; q) Q_{n+1}}\right)^{Q_{n+1}},$$

with equality only when $b_{n+1} = \frac{q_{n+1}P_n}{p_{n+1}Q_n}A_n(b; p)$,

(c) if
$$\frac{r}{s} > 1$$
 or $\frac{r}{s} < 0$ then

$$(7) Q_{n} \left\{ (M_{n}^{[r]}(b;q))^{r} - \left(\frac{q_{n+1}P_{n}}{p_{n+1}Q_{n}} \right)^{r/s} (M_{n}^{[s]}(b;p))^{r} \right\}$$

$$\leq Q_{n+1} \left\{ M_{n+1}^{[r]}(b;q) - \left(\frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}} \right)^{r/s} (M_{n+1}^{[s]}(b;p))^{r} \right\},$$

with equality only when r = s, r = 0 or neither of these hold and

$$b_{n+1} = \frac{q_{n+1} P_n}{p_{n+1} Q_n} M_n^{[s]}(b; p).$$

Proof. If Theorem 1 is applied with G=1 and the sequence $F^{-1}(a)$, inequality (1) reduces to inequality (5) and the cases of equality are those of the second possibility in Theorem 1.

(a) follows by taking $F(x) = e^x$ and using the sequence $a = \log b$.

For (b) take $F(x) = \log x$ and a = b.

Finally if $F(x) = x^{r/s}$, $a = b^s$ then we get (c).

Remarks. Inequality (4) generalises an inequality in [4], and so is a generalisation of results in [8]. Inequalities (5) and (6) are just (2.1) of [1] and (1.2) of [1], or (2.2) of [3], respectively, where different proofs are given; inequality (6) is due to MITRINOVIĆ and VASIĆ, [5]. Finally (c) is the case $\lambda = 1$ of (3.1) in [2], which is due to MITRINOVIĆ and VASIĆ, [6].

Corollary 3. If G is strictly monotonic and concave then

(8)
$$Q_{n}\left\{G\left(A_{n}\left(a;q\right)\right) - \frac{q_{n+1}P_{n}}{p_{n+1}Q_{n}}A_{n}\left(G\left(a\right);p\right)\right\} \\ \leq Q_{n+1}\left\{G\left(A_{n+1}\left(a;q\right)\right) - \frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}}A_{n+1}\left(G\left(a\right);p\right)\right\};$$

and if G is strictly concave then inequality (8) is strict unless $G_{n+1} = A_n(a; q)$. If concave is replaced by convex inequality (8) is reversed.

In particular we have

$$(9) \quad (a) \quad \frac{\left(A_n\left(b;\,q\right)\right)^{Q_n/q_{n+1}}}{\left(G_n\left(b;\,p\right)\right)^{P_n/p_{n+1}}} \leq \frac{\left(A_{n+1}\left(b;\,q\right)\right)^{Q_{n+1}/q_{n+1}}}{\left(G_{n+1}\left(b;\,p\right)\right)^{P_{n+1}/p_{n+1}}},$$

with equality only when $a_{n+1} = A_n(a; q)$;

(10) (b)
$$Q_{n} \left\{ \frac{q_{n+1} P_{n}}{p_{n+1} Q_{n}} A_{n}(b; p) - G_{n}(b; q) \right\}$$

$$\leq Q_{n+1} \left\{ \frac{q_{n+1} P_{n+1}}{p_{n+1} Q_{n+1}} A_{n+1}(b; p) - G_{n+1}(b; q) \right\},$$

with equality only when $b_{n+1} = G_n(b; q)$;

(c) if $r/s \le 1$, then

$$(11) Q_{n} \left\{ (M_{n}^{[s]}(b; q))^{s} - \frac{q_{n+1}P_{n}}{p_{n+1}Q_{n}} (M_{n}^{[r]}(b; p))^{s} \right\}$$

$$\leq Q_{n+1} \left\{ (M_{n+1}^{[s]}(b; q))^{s} - \frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}} (M_{n+1}^{[r]}(b; p))^{s} \right\},$$

with equality only if r = s or $r \neq s$ and $b_{n+1} = M_n^{[r]}(b; p)$.

Proof. Take, in Theorem 1, $G \circ F = 1$, then inequality (1) reduces to inequality (8) and the cases of equality are those of the third possibility in Theorem 1.

(a) then follows by taking $G(x) = \log x$, and a = b.

For (b) take
$$G(x) = e^x$$
 and $a = \log b$, and for (c) let $a = b^s$, $G(x) = x^{r/s}$.

Remarks. Again, inequality (8) generalises one in [4], and so also one in [8]. Inequality (9) is the case $\lambda=0$ of Theorem 5 in [1]. (There are two misprints in this theorem; firstly we should have $\lambda\geqslant 0$ and secondly the case of equality should read $A_{n-1}(a;q)=a_n+\lambda$.) Inequality (10) is the case $\lambda=1$ of Theorem 4 of [1] and is due to Mitrinović and Vasić, [6]. (There is a misprint in Theorem 4 of [1]; the case of equality should read $\lambda G_{n-1}(a;p)=a_n$.) Finally inequality (11) is the case $\lambda=1$ of Theorem 4 of [2] and is due to Mitrinović and Vasić, [6].

The inequalities above derive from (1) by only allowing one non-trivial function to occur; there are many generalisations if we allow two functions in (1). Thus if $G(x) = x^{\mu}$, $G \circ F(x) = x^{\lambda}$, $0 < \mu < 1$, $\lambda > 1$ or $\lambda < 1$ and if we put $a = b^{\nu}$, $\nu \neq 0$ we get from (1) that

$$(12) Q_{n} \left\{ (M_{n}^{[\nu]}(b; q))^{\mu\nu} - \left(\frac{q_{n+1}P_{n}}{p_{n+1}Q_{n}}\right)^{\lambda} \left(M_{n}^{\left[\frac{\mu\nu}{\lambda}\right]}(b; p)\right)^{\mu\nu} \right\}$$

$$\leq Q_{n+1} \left\{ (M_{n+1}^{[\nu]}(b; q))^{\mu\nu} - \left(\frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}}\right)^{\lambda} \left(M_{n+1}^{\left[\frac{\mu\nu}{\lambda}\right]}(b; p)\right)^{\mu\nu} \right\},$$

with equality occurring as follows; (a) if $\mu \neq 0$, 1, $\lambda \neq 1$ then inequality (12) is strict unless

(i)
$$b_{n+1} = M_n^{[v]}(b; q)$$
 and (ii) $b_{n+1} = \left(\frac{q_{n+1}P_n}{p_{n+1}Q_n}\right)^{\frac{\lambda}{\mu\nu}} M_n^{\left[\frac{\mu\nu}{\nu}\right]}(b; p);$

(β) if $\mu = 0$ or 1, $\lambda \neq 1$ then inequality (12) is strict unless (ii) holds; (γ) if $\mu \neq 0$, 1, $\lambda = 1$ then inequality (12) is strict unless (i) holds.

If $\lambda = 1$ this inequality (12) reduces to (11) and is typical of many possible generalisations of the inequalities (5)—(7), (9)—(11) that can be derived from Theorem 1.

3. Corollary 4. If $b_{n+1} \ge 1$ and $G_n(b; p) \ge 1$ then

$$(13) \quad \left\{ \sum_{k=1}^{n} \frac{q_k}{1+b_k} - \frac{Q_n}{1+(G_n(b;p))^{\frac{q_{n+1}P_n}{p_{n+1}Q_n}}} \right\} < \left\{ \sum_{k=1}^{n+1} \frac{q_k}{1+b_k} - \frac{Q_n}{1+(G_{n+1}(b;p))^{\frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}}}} \right\},$$

$$q_{n+1}P_1$$

with equality iff $b_{n+1} = (G_n(b; p))^{\frac{q_{n+1}P_n}{p_{n+1}Q_n}}$. In particular if $b_k > 1$, 1 < k < n,

(14)
$$\sum_{k=1}^{n} \frac{q_k}{1+b_k} > \frac{Q_n}{1+(G_n(b;p))^{\frac{q_n P_n}{p_n Q_n}}} + \frac{q_1(b_1^{\frac{r_1 - n}{p_n q_1}} - b_1)}{(1+b_1)(1+b_1^{\frac{p_1 q_n}{p_n q_1}})}.$$

Proof. Apply Theorem 1 to the sequence a=f(b), with G=1, $F=f\circ g$ where f(x) = 1/(1+x) and $g(x) = e^x$. Then if $x \ge 0$, F is strictly convex and Theorem 1 can be applied provided the function $G \circ F$ is only used in this range in the proof of Theorem 1 (i.e. if B_n , B_{n+1} and a_{n+1} are non-negative).

Remarks. Inequality (13) is a generalisation of Proposition 2 of [7] and inequality (14) is a generalisation of Henrici's inequality, [7, Proposition 3].

Corollary 5. If $r, s \neq 0, s/r > 1, b_{n+1}^s > \frac{s-r}{s+r}, \left(\frac{q_{n+1}P_n}{p_{n+1}Q}\right)^{s/r} (M_n^{[r]}(b;p))^s > \frac{s-r}{s+r},$ then

(15)
$$\left\{ \sum_{k=1}^{n} \frac{q_{k}}{1 + b_{k}^{s}} - \frac{Q_{n}}{1 + \left(\frac{q_{n+1}P_{n}}{p_{n+1}Q_{n}}\right)^{s/r}} (M_{n}^{[r]}(b; p))^{s} \right\}$$

$$\leq \left\{ \sum_{k=1}^{n+1} \frac{q_{k}}{1 + b_{k}^{s}} - \frac{Q_{n+1}}{1 + \left(\frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}}\right)^{s/r}} (M_{n+1}^{[r]}(b; p))^{s} \right\},$$

with equality iff $b_{n+1} = \frac{q_{n+1}P_n}{p_{n+1}Q_n}M_n^{[r]}(b;p)$. In particular if $b_k^s > \frac{s-r}{s+r}$, 1 < k < n,

(16)
$$\sum_{k=1}^{n} \frac{q_k}{1+b_k^s} > \frac{Q_n}{1+\left(\frac{q_n P_n}{p_n Q_n}\right)^{s/r} (M_n^{[r]}(b;p))^s} + \frac{q_1}{1+b_1^s} - \frac{q_1}{1+\left(\frac{q_n p_1}{p_n q_1}\right)^{s/r} b_1^s} .$$

Proof. The same as Corollary 4 but with $f(x) = \frac{1}{1 + x^8}$, $g(x) = x^{\frac{1}{r}}$.

In particular if $p_k = q_k = 1$, $1 \le k \le n$, (16) reduces to

(17)
$$\sum_{k=1}^{n} \frac{1}{1+b_{k}^{s}} > \frac{n}{1+(M_{n}^{[r]}(b))^{s}},$$

an inequality similar to HENRICI's inequality.

A simple direct proof of HENRICI's inequality and of (17) can be given as follows.

Theorem 6. If f(x) = 1/(1 + a(x)) is convex for x in the set E, a > 0, then

(18)
$$\sum_{k=1}^{n} \frac{q_{k}}{1 + \alpha(a_{k})} - \frac{Q_{n}}{1 + \alpha\left(\frac{q_{n+1}P_{n}}{p_{n+1}Q_{n}}A_{n}(a; p)\right)}$$

$$\leq \sum_{k=1}^{n+1} \frac{q_{k}}{1 + \alpha(a_{k})} - \frac{Q_{n+1}}{1 + \alpha\left(\frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}}A_{n+1}(a; p)\right)}$$

provided a_{n+1} , B_n and B_{n+1} are in the set E. (Here B_n , B_{n+1} are as in Theorem 1 with F=1.)

Proof. Simple calculations show that (18) is equivalent to

(19)
$$\frac{q_{n+1}}{Q_{n+1}} \frac{1}{1+\alpha(a_{n+1})} + \frac{Q_n}{Q_{n+1}} \frac{1}{1+\alpha(B_n)} \geqslant \frac{1}{1+\alpha(B_{n+1})}.$$

But (19) is immediate from the convexity of f, provided a_{n+1} , B_n , B_{n+1} are in E.

Particular choices of α will give inequalities (13) and (15); and of course inequality (18) can be deduced from Theorem 1.

4. Theorem 1 can be generalised further as follows; if λ is any real number then

(20)
$$Q_{n}\left\{G\left(A_{n}\left(a;\,q\right)\right)-G\circ F\left(\frac{q_{n+1}P_{n}}{p_{n+1}Q_{n}}A_{n}\left(F^{-1}\left(a\right);\,p\right)+\lambda\frac{Q_{n+1}}{Q_{n}}\right)\right\}$$

$$\leqslant Q_{n+1}\left\{G\left(A_{n+1}\left(a;\,q\right)-G\circ F\left(\frac{q_{n+1}P_{n+1}}{p_{n+1}Q_{n+1}}A_{n+1}\left(F^{-1}\left(a\right);\,p\right)+\lambda\right)\right\}.$$

This in turn leads to generalisations of all the other inequalities above; in particular we can get Theorems 4 and 5 of [1], of which inequalities (8) and (9) are particular cases.

BIBLIOGRAPHY

- [1] P. S. BULLEN, Some more inequalities involving the arithmetic and geometric means, These Publications N 181 N 196 (1967), 61—66.
- [2] P. S. BULLEN, On some inequalities of Mitrinović and Vasić, These Publications № 210 № 228 (1968), 49—54.
- [3] P. S. BULLEN, On an inequality of Tchakaloff, to appear in Publ. Institut Math. (Beograd), N. S. 9 (1969).
 - [4] P. S. BULLEN, On some theorems of Popoviciu, to appear.
- [5] D. S. MITRINOVIĆ and P. M. VASIĆ, Nouvelles inegalités pour les moyennes d'ordre arbitraire, These Publications № 159 № 170 (1966), 1—8.
- [6] D. S. MITRINOVIĆ and P. M. VASIĆ, Une classe d'inégalités où interviennent les moyennes d'ordre arbitraire, These Publications № 159 № 170 (1966), 9—14.
- [7] D. S. MITRINOVIĆ and P. M. VASIĆ, Généralisation d'une inégalité de Henrici, These Publications № 210 № 228 (1968), 35—38.
- [8] T. Popoviciu, Asupra una inegălitati între medii, Studii si Cerc. Mat. (Cluj), 11 (1960), 344—354.