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249, AN INEQUALITY DUE TO HENRICI*

Peter S. Bullen

1. The main purpose of this note is to show that an inequality due to
P. HeNrICI, {7, (5)] and several generalisations due to MITRINOVIC and VASIC,
[7], are consequences of a general inequality obtained in [4]. First we give a
more general form of the main result in [4]; the generalisation consists of allowing
different weights in the means involved.

In what follows b={b,, b,, ...}, p={py, pp, ...}. and g={q;, ¢5, ...}

will be sequences of positive numbers; write Q,= z q,- Functions will always

k=1

mean real valued functions of a real variable. If. f is a function a={a,, a,, ...}
any sequence of real numbers then f(4) will denote the sequence {f(a,),
f(a,), ...}. The following notations are standard;

, 1 n \1/r
M (a; q)=<—2qkak’) s r#0, |r|<oo,

On =1
Ay (3 9)=MV (a5 q),

m 4\ o
G (a; q)=<H ak ) =M:"(a; 9)
k=1

If possible a is allowed to take negative or zero values; this is essential

as we wish to apply our main result to sequences of the form f(a) which may
not be positive even if a is.

2. Theorem 1. Let F, G be two functions such (a) F is strictly monotonic, (b)
G is concave, (c¢) GoF is convex, then

O 0 {G(Am; q))—GoF(;";LIQﬂ A, (F (a); p )}

< Qi { G (A (@ q)—GoF(i”—“P—"“ Ay (F1 (@), p))} :

Pnv1¥n+1

* Presented January 5, 1969 by D. S. Mitrinovi¢ and P. M. Vasic.
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22 P. S. Bullen

Further if G is strictly concave and GoF strictly convex then inequality (1) is
strict unless

@) Gpi1 =4y (@ q),
ve . Gn+ — F q’IH-I Pn A F_]
(ii) 1 (p o An (P @ p))

If G is a linear and GoF is strictly convex then inequality (1) is strict unless (ii)
holds; whereas if G is strictly concave and GoF is linear, inequality (1) is strict
unless (i) holds. If convex and concave are interchanged the inequality (1) is
reversed.

Proof. Since the proof is essentially the same as the proof of Theorem 2
in [4] only a few details will be given.

P P
If B,=2"1" 4, (F-1(a); p) and By, —22157" 4 (F-1(a); p) then

Pn+1Yn Pnv1Yn+1
it is easily seen that
2) O (Bp—F(ap11)) = Qnt1 (Bpr1—F ' (ap+1)) -

Further the difference between the righthand side and the lefthand side
of (1) is equal to

3 On1G(4n1(a @) —0n G (4y(a: @) QniG - F(Byii) + QnG - F(By).

Since (2), and (3) are identical to the first two lines of the proof of
Theorem 2, [4], the rest follows as in that paper.

Remark. By saying a function is linear we mean that it is both convex and concave.
Corollary 2. [If F is strictly monotonic and convex then

o furern i )

o1 P
<Qn+1{ a1 (F(@); @)— F<qn1—1 Apsi (@ P))}
D1 @nti

P
and if F is strictly convex then inequality (4) is strict unless Q.= Int1 Q"’ A, (a; p).
Pp1n

If convex is replaced by concave inequality (4) is reversed.
In particular we have

() @  Quidn(b; =Gy (b p)inri/Pari%)
< Onii{Ans1(B; 9 —Grii(b; P)q"“P"“/P"“Q"“} >
with equality only when bn+fpn+1/"1n+1 =(G,(b; p) )Pn/o‘n;

R R

P
with equality only when bn+1=g—"i—ﬁAn (b; p),
DPn+1
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(c) ifL>1 or L <0 then
s s

N 0 {(ML” o Q) —("—P~)' M5 5 p)),]

Pn+1Yn

r P r/s S
<QM{MHNMqF{@1Jﬂ>(MﬂM@mY}
Pr+1 Qust

with equality only when r=s, r=0 or neither of these hold and

Py s
bn+1 — qn+1 n M}zl (b,. p)‘

DPnv1€n

Proof. If Theorem 1 is applied with G=1 and the sequence F-!(a),
inequality (1) reduces to inequality (5) and the cases of equality are those of
the second possibility in Theorem 1.

(a) follows by taking F(x)=e® and using the sequence a=Ilogb.

For (b) take F(x)=1logx and a=b».

Finally if F(x)=x"s, a=5bs then we get (c).

Remarks. Inequality (4) generalises an inequality in [4], and so is a generalisation of results
in [8]. Inequalities (5) and (6) are just (2.1) of [1] and (1.2) of [1], or (2.2) of [3], respect-
ively, where different proofs are given; inequality (6) is due to MrTriNOvVIC and VasiC, [5].
Finally (c) is the case A=1 of (3.1) in [2], which is due to MITRiNOVIC and Vasi¢é, [6].

Corollary 3. If G is strictly monotonic and concave then

® 0, {G (4n (& q))—fﬂ’i 4, (G (a); p)}
n+1 Ln P

< Oy {G (s (@ @))— T2 4 (G (a); p)} ;

D1 @un

and if G is strictly concave then inequality (8) is strict unless Gpi=A,(a; q).
If concave is replaced by convex inequality (8) is reversed.

In particular we have

(An (55 )41 _ (A (b 9)) 01l
o= P )

(Gn (b; p) )Pn/pn-}-l ((;”_'_1 (b; p)) ”+1/p”+1

% @
with equality only when a,.,= A, (a; q);

(10) (b) Qn{MAn(b; P)—Go (b q)]

Dp+1Yn

aP,
< Qn+1 {M Aps1 (b; P)—Grsy (b; Q)} >
Pan+1Qne+i

with equality only when by, =G,(b; q);
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(©) if ris<]1, then

an  on {(ME’(b; oy — 2P g ) ),}

DPu+1n

Ry P r
<O {(ME.L ®; @ y—Tafms il g p) )s} :

Pp+1%nn1
with equality only if r=s or r+#s and by, =M (b; p).

Proof. Take, in Theorem 1, GoF=1, then inequality (1) reduces to
inequality (8) and the cases of equality are those of the third possibility in
Theorem 1.

(@) then follows by taking G (x)=Ilog x, and a=b.

For (b) take G(x)=e* and a=logb, and for (c) let a=">0%5, G(x)=x"s.

Remarks. Again, inequality (8) generalises one in [4), and so also one in [8]. Inequality (9)
is the case A=0 of Theorem 5 in [1]. (There are two misprints in this theorem; firstly we
should have A>0 and secondly the case of equality should read 4»_, (a; q) =ax + A.) Inequality
(10) is the case A=1 of Theorem 4 of [1] and is due to MrrriNoviC and Vasié, [6]. (There
is a misprint in Theorem 4 of [1]; the case of equality should read A Gn_,(q; p)=an.) Finally
inequality (11) is the case A=1 of Theorem 4 of [2] and is due to MiTRINOVIC and VasiC, [6].

The inequalities above derive from (1) by only allowing one non-trivial
function to occur; there are many generalisations if we allow two functions in
(1). Thus if G(x)=x# GoF(x)=x" O<u<l1, A>1 or A<l and if we put
a=>b", v#£0 we get from (1) that

17

R RC q”"”‘(%)l(%{ﬂ @)}

uy
. P a - v
<Qn+1{<MLi1(b; gy (e (MU G p>) }
Pn+19n+1
with equality occcurring as follows; (a) if u#0, 1, 1541 then inequality (12)
is strict unless

A
O bua= M @) and (i) bpuy= (L72) w+d s
Pu+1¥n

By if u=0 or 1, A5£1 then inequality (12) is strict unless (iiy holds; (y) if
##0, 1, A=1 then inequality (12) is strict unless (i) holds.

If 2=1 this inequality (12) reduces to (11) and is typical of many pos-
sible generalisations of the inequalities (5)—(7), (9)—(11) that can be derived
from Theorem 1.

3. Corollary 4. If by >1 and G,(b; p)>1 then
9k On < " g . On

13y W=11+ by ISEL S e Uiy Pyl
1+ (G (b3 )Y L+ (G (b5 p))ne1 s
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qn.HPn
with equality iff by, =(Gy,(b; p))° ne1n In particular if bpy=>1, 1<k<n,
» 4,
n bPn% _p
(14) z 13 > On i n g, (b, 1’114),,

=11+ blc ‘ 1=
14(Ga (B3 D)% (L+b)(L+5,"")

Proof. Apply Theorem 1 to the sequence a=f(b), with G=1, F=fog
where f(x)=1/(1+x) and g(x)=¢®. Then if x>0, F is strictly convex and
Theorem 1 can be applied provided the function GoF is only used in this
range in the proof of Theorem 1 (i.e. if B,, B,:; and a,,, are non-negative).

Remarks. Inequality (13) is a generalisation of Proposition 2 of [7] and inequality (14) is a
generalisation of HeNricr’s inequality, {7, Proposition 3].

— sir _—
Corollary 5. If r, s#0, s/r>1, byl > o, (f’-ﬁﬂﬂ) MY & p)y>L,
S+r

S+1r \Ppu1Qn
then
(15) i Ix \grn }
S1l+b0 1 +(——qn+1P”) (ME{](b; D))
DPn s Cn
< {n+1 dg Onn1 }
= s P, 8r 1)
Pandl RN, 1 +(qn+1 n+1> (ME,r_,]_l (b, P)),g
PuiiQni
. . . _ qn+1Pn {71 ,4.. . . s S§—r
with equality iff byi=—"—" My (b; p). In particular if by > , 1 <k<n,
Ppr1¥%n s+r
(16) E Ul s> Qn + q1 — Ul .
=i l4be +(M)SIY(ML'](b; py 1t +(%)shbf
PnQn Pndy :
1
Proof. The same as Corollary 4 but with f (x)=ﬁ1§, g(x)=x".

In particular if p=q;=1, 1 <k<n, (16) reduces to
n 1 n
amn > ,
o ,Zl.ubk 1+ (M b))y
an inequality similar to HENRICI’S inequality.
A simple direct proof of HENRICI’s inequality and of (17) can be given
as follows.

Theorem 6. If f(x)=1/(1+a(x)) is convex for x in the set E, a>0, then |

k=11 +a(ak) 1+a(qn+1Pn An(a; P))
Puns1Un
il dx On+1

< _
n Pﬂ
k=1lta(a) 1,44 (q—ﬂ—L‘ Ay (3 p))

Pn+1¥n+1
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provided a,.,, B, and B,,, are in the set E. (Here B,, B,., are as in Theorem 1
with F=1.)

Proof. Simple calculations show that (18) is equivalent to
In+1 1 4 On 1 > 1 ]
One1 1+ a(@pn)  Qpit 1+a(By)  1+a(Byy)

But (19) is immediate from the convexity of f, provided a,,,, B, Bp+:
are in E.

Particular choices of a will give inequalities (13) and ( 15), and of course
inequality (18) can be deduced from Theorem 1.

(19)

4. Theorem 1 can be generalised further as follows; if 4 is any real number
then

) 0, {G (4 (@ q))—GoF(""—“Pﬁ A, (F-1 (@); p) 4+ %)}

Pnv1 n

Qn+1(G(An+1 (@ 9)—Go F(‘]—A (F (@); p)+z)}
Pn+1 Qns1

This in turn leads to generalisations of all the other inequalities above;
in particolar we can get Theorems 4 and 5 of [1], of which inequalities (8)
and (9) are particular cases.
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