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THE STEFFENSEN INEQUALITY*
Dragoslav S. Mitrinovi¢

This paper concerns a general inequality due to J. F. Steffensen [1],
published in 1918. The Steffensen inequality does not appear in the work
Inequalities by G. H. Hardy, J. Littlewood and G. Poélya (Cambridge —
first edition 1934, second edition 1952), which assembled almost all important
inequalities.

In the Jahrbuch iiber die Fortschritte der Mathematik Steffensen’s paper
[1]1 has not been reviewed, but G. Szegé quoted the Steffensen inequality in
his review of papers [2] and [4] by Hayashi.

J. F. Steffensen returned to his inequality a number of times and gave
some generalizations, but only in 1959 did his article [7] from 1947 attract
the attention of R. Bellman, who in his paper [8] pointed out that Steffensen’s
inequality is very gemeral and implies many other inequalities which were
established during the period 1950—1959.

This paper gives a history of the Steffensen inequality and some critical
analyses, connects numerous isolated results, completes some proofs, and cor-
rects a number of mistakes found in articles related to this inequality. It is
interesting to note that some of these results have been rediscovered a number
of times.

One can hope that this review of Steffensen’s inequality will also initiate
some new contributions.

The author wishes to thank Dr Roy O. Davies, Dr D. C. B. MARsH,
Dr M. MawriaNovi¢ and Dr D. Z. Diokovié for valuable discussions held
and suggestions made during the preparation of parts of this paper.

While collecting material for this article, the author encountered some
difficulties. Kobenhavns Universitets Matematiske Institut in Denmark, through
its secretary, Madame MARINA DE VERSMANN, was of great help to the author,
sending him the necessary copies of articles published in Denmark and other
countries. It is a pleasure for the author to be able to thank the afore-mentioned
Institute.

We shall present the subject chronologically.
The following result and its proof were given by STEFFENSEN [1].

Assume that two integrable functions f(t) and g(t) are defined on

the interval (a, b), that f(t) never increases and that 0<g(t)<1 in (a, b). Then

(1

where

@

a+a

b b
[r®ya < [fiyg@ydr < [ £(o)dr,
b—2 a a

b
2.=fg(t)dt.

* Received January 20, 1969.
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2 D. S. Mitrinovié

Proof. The second inequality of (1) may be derived as follows:
a+i b

[ rat—[fyg@)de

a+i

b

=f [1—g®1f()dt — ff(t)g(t)dt
a a+24

a4

b
>fla+d) [ [l—g®)]dt— [f()g(t)dr
a a+-i

a4

b
~fla+n|a—[ gwdt]— [rtyg®ar
a a+i
a+a

b b
—f@+b[[g@ydi—[g@ydt]—[F()g 0y dt

a a+-i

b b
—fa+d) [g@)dt—[f(g @) dr

b a+i a+i
— [e®fa+H—r©)Nde
at+i
>0.
The first inequality of (1) can be proved similarly. However, the second
inequalty of (1) implies the first.
b
Indeed, let G(f)=1—g(f) and A= [G()dr. Note that 0<G()<1 if
0<g(@)<! in (a, b). Then
3) b—a=2+A.

Suppose the second inequality of (1) holds. Then
a4-A

b
[rG@ydr < [ftyar,

ie.,
b b—4
Jron—gwide < [f@)dt,
i.e., ) ¢
b b—2 b
[r@ya— [f(yde< ff(t)g(t) dt,
i.e.,

b b
[r@ydi < [f@yg@ar,
b—A4 a

which is the first inequality of (1).
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T. HAYASHI, in [2], generalizes inequality (1) slightly by taking the con-
dition
O<g(t)<4 (A a constant >0)
nstead of 0<g(®) <1, and proves that
at+i

b b
A [fydi< [f(g@)ydi<a [f(t)ar,
b—A4 a a

where

b
1
A=—0 Hdt.
; fg()

Some slight generalizations of the STEFFENSEN inequality are given in
MEIDELL [3].

In [4], J. F. STEFFENSEN uses the second inequality -of (1) to derive a
generalization of JENSEN’s inequality for continuous, convex functions. He pro-
ves the following:

Theorem 2. [f f(x) is a continuous, convex function and x, (k=1, ..., n) never
decrease, and if ¢, (k=1, ..., n) satisfy the conditions

0<§ ck<i Cx v=1,...,n), with zn: >0,
k= k= k=1

then
z CrXg Z xS (%)
“ f1s <=
2, 2,
k=1 k=1

This inequality is evidently more general than JENSEN’s inequality [5] since
the numbers ¢, (k=1, ..., n) need not necessarly be positive.

A corresponding inequality for integrals is given as well:
Theorem 3. If f(x) is a continuous, convex function, g(x) never increases and

h(x) satisfies
1 1 1

0<[h@)dx<[h(x)dx, with 0<0<1, and [h(x)dx>0,
] 0 0

then

1 1
[hxygyax) [h)flgx)dx
®) 7|2 <? .

1 1
[ h(x)dx [ h(x)adx
0 0

T. HavasHl in [6] obtains an upper bound for the right-hand sides in
(4) and (5).
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Assuming that f(z) -0, for -+ o0, and that f(¢) is integrable in
(0, + o), J. F. STEFFENSEN [7] applies (1) to deduce the following inequalities:

~+ o0

> (—1)kf(kn)<7wf(t) cos tdt < +f (— 1D f(kn),
0 k=0

k=

—

2(—1)"f<(k +%> n) < jwf(t) sin 1 di < f(0)+;§(—1)"f((k +%) a> .

J. F. STEFFENSEN also gives more precise inequalities in terms of
x+1

g = [ f(t)dr.

It should be noticed that R. BELLMAN, in [8], refers to the STEFFENSEN’s
paper [7] from 1947, as a source of inequality (1) but not to paper [1] from
1918, nor [4] from 1919, though this inequality was published for the first
time in 1918. This is probably the reason why R. BELLMAN does not mention
Theorems 2 and 3, in his paper {8], or monograph [9], published in cooperation
with E. F. BECKENBACH.

R. BeLLMAN [8] gives the following proof of STEFFENSEN’s inequality (1)
requiring f(¢) to be nonnegative.

Assuming that there does not exist an interval on which f(#)=0, define
the function u(s) by the equality

K u(s
(6) [regwar= [ f(yar,
whence u(a)=a, and ’ ’
s-+h u(s+h)
(7) [ rogwydi= [ f@)yde (a<s+h<b).

Let A> 0. Then (6) and (7) yield
s4-h u(s+h)

[ foewdi= [ f@ydr

u (s

This equality is valid only if u(s+4h) > u(s), i.e., if u(s) is monotone
increasing. .
Since 0<g(#)<1 and f(£)>0 (0 <t <<d), we have

(8) 0< [fg@®ydi< [f(t)ar (a<s<b).

From (6) and (8) it follows that
u(s)

[ rydi< [ fayar,

whence u (s) <s.
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Starting from (6) and (7), we obtain

u(s+h) u(s

[ r@ydi— [ f(eyar

= u(s+B)—u(s)|-p

s+h s

[ fg@ar— [f(t)g @)t

s+h

[ rogwa

<|h|f(a),

where
inf f()<pu<supf(s) for t&[s,s+h] if h>0 or t&[s+h, s] if A<O.

This proves the continuity of u(s).
By differentiation equality (6) gives

FAO) ‘;—u =f(s)g(s) (almost everywhere),
s
whence
du_1(s)
& F) g(s)<g (),

taking account of the .fact that u(s)<s and that f(s) is monotone decreasing.
Hence

[au< [g(s)ds,

ie.,
9 u(s)<a+fg(s)ds.

(6) and (9) yield the right-hand inequality of (1).

Using the same procedure, R. BELLMAN, in [8], also establishes one of,
as he points out, many possible generalizations of STEFFENSEN’s inequality. His
generalization reads:

Theorem 4. Let f(t) be a nonnegative and monotone decreasing function in [a, b]
b

and f& L? [a, b, and let g(¢£)>0 in [a, b] and fg(t)th<1, where p>1 and
11 ’

—+—=1. Then

p 9 o

b
([roygwa) < [ r@ey»ar,

where

b
/1=(fg(t) dt)p.
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Proof. Consider the function u(s) defined in [a, b] by the equation
u(s)

(10) ([rwgwar =] reywar.

By HOLDER’s inequality, taking in to consideration the assumptions of
Theorem 4, we have

s

Jraygwar<(frawar)” ([ g@n)”

a

)1/1)

<(frapa

b

i.e.,
) ([rogwar)<[rapar

Starting from (10) and (11), we can prove that u(s) exists and satisfies
u(s)<s in [a, b], with u(a)=a. The function u(s) is monotone increasing and
satisfies the differential equation

£y j—'; —pf()g(s) ( f o dt)p_l

almost everywhere.
The monotonic nature of f(s) and u(s) yields the inequality

g:—kpg (s) (fg (1) at )p_l,

a
whence

u(sy<a+([g@ydi)
which completes the proof.

Remark. We shall prove that the restriction f(¢#) >0 made in the above
proof by BELLMAN of STEFFENSEN’s inequality can be removed. Indeed, let f(¢)
be an arbitrary decreasing function on [a, b]. Then the function F defined by
F(t)=f()—f(b) is nonnegative and decreasing. Now, following R. BELLMAN [8],
the STEFFENSEN inequality can be applied to F(¢), namely

b b
fl(f(t)—f(b))dt <[UFO—f®) gt
b— a

a+a

<[ GO—f®)dt,
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ie.,
a2

b b
Trodi < [fmygwyar <[ fayar.
b4 a h

This proves the above assertion that the restriction f(¢) >0 in BELLMAN’s
proof is not essential.

BELLMAN’s paper [8] of 1959 was preceded by a series of notes in which
various inequalities, actually all of the STEFFENSEN type, are established. These
were given in what follows.

G. SzeGO [10] proved in 1950 the following result:

Theorem 5. If a,>a,> ++* > ay, >0 and f(x) is a continuous, convex
function in [0, a;], then

2m—1 2m—1
S (—l)k-lf(ak»f( S (—l)k—lak).
k=1 k=1

In 1952, H. F. WEINBERGER [11] proved Theorem 5 for the function
f(x)=x" (r>1), namely

Theorem 6. If a,> -+ >a,>0, then
> (—l)k—lakf>(z (—1>k-1ak) r>1).
k=1 k=1

In 1953, R. BELLMMN [12] proved a generalized version of Theorem 6:

Theorem 7. Let a;>--- >a,>0 and let f(x) be a continuous convex function
in [0, a;], with f(0)<O0. Then

S (=111 (ap) >f< S (— 1yt ak) .
k=1 k=1

We note that the condition f(0)<0 cannot be relaxed if there is an
even number of terms, but may be omitted if »n is odd, as given in Theorem 5.

E. M. WRIGHT [13] in 1954 points out that Theorem 7 is a consequence
of Theorem 108 in [14], p. 89, wich reads:

Theorem 8. (Majorization theorem). The conditions

Xy BXe, Y>>V,

x; <
i

y; for k=1,..., n—1,

LM
LM

and

n n

Z Xi = Z Yi

=1 i=1

are necessary and sufficient in order that for every continuous, convex function f,

S Flx) < 21 7).
i=1 i=
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M. BIERNACKI [15] in 1954 proved:

Theorem 9. If a,>-::>a,>0, b;>---2b,>0,..., y>++->h,;>0 and
p>1, then

@?+bP+ -+ +h?)—(a,?+bP+ - _|_h2p)_|_ cort(a,P+b, P+ .- _|_hn2’)
S(a—a,+ - £a,)P+(by—by+ - - £b)P+ - - -+ (hy—hy+ - - - £h)P.
The inequality is reversed for 0<<p<1.

This theorem is an immediate consequence of Theorem 6.

Theorem 10. Let f(x) be a continuous, convex function for x>0 and let f(0)=0.
Further, let

0<a <bi<a,,
O<a,<b,<a,,

0<ay<b,,<a,,
0<b,,
b+ +bhy<a+ 0 tay.
(fla)+ -+ +f(@))—(fB)+ - - +1(ba))
>f((a;+ - -+ +ag)—(b;+ - -+ +by)).
H. D. BRUNK [16] proved in 1956 a general result having as a corollary

Then

Theorem 11. Let f(x) be a continuous, convex function on [a, b], with f(0)<0
Let b>a,>a,> -+ >a,>0, and let 1 >h >h,> -+ >h,;>0. Then

(12) 5 D f@)>f( 3 (-0 ay).
k=1 =1
If hy="+--=h,=1, Theorem 11 reduces to Theorem 7.

I. OLkIN [17] in 1959 proved

Theorem 12. Let 1>h, >+ >hy,>0 and a;> -+ >a,>0. Let F(x) be .
continuous, convex function on [0, a;]. Then

(13) (1_ » (—l)k-lhk)F(O)+ » (—1)k—1hkF(ak)>F(§ (—l)k—lh,,ak>.
k=1 k=1 k=1

This theorem can be obtained from Theorem 11. Indeed, put f(x)=
F(x)—F(0). Then (12) becomes

> (D (Fa)—F @) >F( 3 <—1)k-1hkak)—F(0),
k=1 k=1

which is_precisely inequality (13).
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Now, we shall prove that inequality (13) can be derived from the second
inequality of (1). First, for ¢ <€[0, a,], put

gW)=4; for ap.,.<t<ag k=1, ..., n), with a,,,=0,
where
M=h, l=h—hy,..., An=h1—h2+ s+ (1),

whence 0<g(¥)<1 in [0, a,).
Since

A=fg(t)dt=(al'—a2) }'1+(az""a3) )‘2'*‘ ctt +(an—1_an) z'n—l+an}'n
[

=ah—ah,+ - - - +(—1)azh,,
we have

I= 5 (—1Pthyay.
k=1

Now, if F(t) is a function with increasing first derivative F’(¢), then
f(@)=-—F'(t) is a decreasing function.

The functions g(z) and f(¢), defined above, satisfy all the conditions
necessary and sufficient for application of STEFFENSEN’s inequality

b a+a
[roeg@di< [ f@o)d.
Thus we have ‘ ‘
a; A
[F@g@ydt>[F () dr,
4] 0

ie.,
S (F (@) —F (@) (hy—hy+ - + - +(—1)¥=1hy) > F (H—F (0)-

k=1

This inequality is equivalent to BRUNK-OLKIN’s inequality
F(0) (1 +3 (—1)k~1hk) + 3 (=11 (a) > F (Z (—l)"—lhkak) .
k=1 k=1 k=1

To the best of our knowledge, the following theorem was also proved
for the first time by J. F. STEFFENSEN (see: p. 141 of [18]):

Theorem 13. Let g, and g, be functions defined in [a, b] such that
[a@ar> [g)ar
Jor all x € [a, b] and

b b
[e@ydt=[g@)dr.
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Let f be an increasing function on [a, b], then

b b
[ g (x)dx< [ f(x) 2, (x) dx.

If [ is a decreasing function on la, b}, then

b b
[1®) g x> [ £(x) g, (x) dx.

Proof. Put g(x)=g,(x)—g,(x) and G(x)= f g(t)dt. Then, under the

above hypothesis,
G(x)>0 (a<x<b) and G@=G(H)=0.

Using the STIELTIJES integral, we get

b b
[ryg@ydi=[f)dG (1)
a a b
—/ 60| —[e@ @)

b
——[G @ dr@).

This proves Theorem 13.

M. MARrIANOVIC, in [19], considers the above inequality as a special case
of a general inequality due to K. FAN and G. G. LORENTZ [20] and uses it
to give the following short proof.

b
Let g,(x)=g(x), lzfg(x)dx and g, (x)=1 for x<[a, a+ 2} and g, (x)=0

for xE[a+4, b].
Then, we have
a+ti b b

[reydx=[7x) ) dx> [ 1) g () dx,

which proves the second inequality in (1). One similarly derives the first ine-
quality in (1).

P. VEREss, in [21], uses the technique of the STIELTJES integration tc
obtain an inequality containing the inequality in Theorem 13, as well as it
discrete form.

Now, we shall state some results of Z. CIESIELSKI [22], related to Theo
rems 2 and 3 of STEFFENSEN. Apparently CIESIELSKI was unaware of STEFFENSEN:
results.
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Theorem 14. Let (p;) denote a sequence of real numbers such that

p>0 for k=1,...,nand 3 |p;|>0.

i=1

Gy

13

Let x, < [0, a] (where a is a positive constant) for i=1, ... ,nand let x,> - - - >x,.
Further, let f(x) and f’(x) be continuous and convex functions in [0, a] and let
f(0)<0. Then

M=

i Pixq . pif(xy)
f t=n1 <1

Sint] Sl

i=1 i=1

1

I

Theorem 15. Let the function g(t) be nonincreasing in [a, f] and let a >g (t) >0
in [a, B} Let f(x) and f'(x) be continuous and convex in [0, a] and let f(0)<O.
Further, let p(t) be a function integrable in the Lebesgue sense in [a, B);, such
that

x B
fp(t)dt>0for x € [a, B] andf[p(t)[dt>0.
Then : :

B B
[pg@yd) [p@)flg() ae

<

f

] ]
[lp@yia ) [ip@|ar

In the same paper analogous results are given for functions of two varia-
bles and applications are made to establishing of generalizations of CEBYSEV’s
and BIERNACKI’s inequalities [15].

It would be interesting to find interconnections between STEFFENSEN’s and
CIESIELSKT’s generalizations of JENSEN’s inequality.

R. APERY in his short note [23], which contains no references, proved
a varinat of STEFFENSEN’s inequality. His result reads:

Theorem 16. Let f(x) be a monotone decreasing function in (0, 4 o). Let

g(x) be a measurable function in [0, + o) such that 0<g(x)<A (4 is a
constant #0). Then

+ A

[ f@g@ dx<4 [fx)dx,
0 0

where
+

1
/'L=—ng(x)dx.

0
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APERY, in his elegant proof, starts from the identity

+ A A
[ 708 dx=4 [ f(x)dx— [ [A—g MILf()—f (D] dx
(4] 0 0

+ o0
—[ e®LFD—F ()] dx.
a

STEFFENSEN’s inequalities (1) follow immediately if we use APERY’s idea,
namely if we start from the identities

a+a b

[r@ya—[r@)g @) dt

a+i b
= [ Lf@®)—fla+M][1—g @O)]dt+ f [f(a+D—f(D)g (1) dt
a a4

and R ,
[r@yg @) di— fl f(rat
a b—

b—2 b

= [ Lf(t)—f(b—N]g(r)dt+ fl[f(b—l)—f(t)][l—g(t)] dt.
a b—

Finally we notice that E. K. GopuNovA and V. I. LEVIN [24] have re-
cently obtained a general result which contains STEFFENSEN’s inequality [1].
This, once again, affirms the importance of this inequality which arises from
various other inequalities.

In his very interesting and instructive paper [25] G. H. HARDY says:

— The really fundamental inequalities are strictly elementary ... (p. 63);

— An elementary inequality ... carries with it a whole set of analogues
and extensions ... (p. 64).

In our opinion the STEFFENSEN inequality is ,.,elementary*‘ in HARDY’s
sense, and in articles such as [24] it would be more adequate to speak of a
generalization of STEFFENSEN’s inequality, rather than a general inequality which
contains STEFFENSEN’s inequalty as a particular case.

Also related to the STEFFNSEN inequality are references [26] and [27].

Added in proof. 1. Though the STEFFENSEN inequality is not included in the source
book for inequalities [14], in recent time it is cited even in books dedicated
to University studies, as for example, in [28], p. 83, and [29], p. 50. It should
be noted that STEFFENSEN’s inequality can be found in BouUrBakI [30]. J, Die-
UDONNE [29], p. 50, gives the STEFFENSEN inequality in the following form:

»Soient f, g deux fonctions continues par morceaux dans [a, b], telles que f
soit décroissante et 0<g(f)<1 dans [a, b]. Si on pose

b
Ai=[ewar,
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a+i

b b
[r@ydi<[f)yg@yde<[f(r)dt,
b—2 a a

Pégalité ne pouvant avoir lieu que si f est constante dans [a, b] ou si g est
égale 4 0 sauf en ses points de discontinuité, ou a 1 sauf en ses points de
discontinuité«.

2. Roy O. Davies has communicated to us the following interesting proof
of the second inequality of (1).

The function H, defined by

X
at Jgwat
a

Hx= [ f@d—[f@t)g@ad,

is zero when x=0 and has positive derivative:

H @) =fla+ [g@dt) g()—f(x) g (x)>0

X

since a+ f g () dt <x, because of the hypothesis 0<g(#)< 1, and thus
a

f<a+ fg(t) dt>>f(x)

as f is decreasing.
This holds for smooth functions, and can be extended to others by the
usual approximations.

REFERENCES

[1]1 J. F. STEFFENSEN, On certain inequalities between mean values, and their application
to actuarial problems, Skandinavisk Aktuarietidskrift, 1918, pp. 82—97.

[2] T. HavasHi, On curves with monotonous curvature, The To6hoku Math. Journal
15 (1919), 236—239.

[3] B. MepELL, Note sur quelques inégalités et formules d’approximation, Skandinavisk
Aktuarietidskrift, 1918, pp. 180—198.

[4] J. F. STEFFENSEN, On certain inequalities and methods of approximation, Journal of
the Institute of Actuaries, 51 (1919), 274—297.

[51 J. L. W. V. JENSEN, Sur les fonctions convexes et inégalités entre les valeurs moyen-
nes, Acta Math. 30 (1906), 180.

[6] T. HaYASHI, On certain inequalities, The Tohoku Math. Journal, 18 (1920), 75—89.

[71 J. F. STEFFENSEN, Bounds of certain trigonometrical integrals, C. R. Dixiéme Con-
grés Math. Scandinaves 1946, pp. 181—186, Copenhagen 1947.

[8] R. BELLMAN, Or inequalities with alternating signs, Proc. Amer. Math. Soc. 10 (1959),
807—809.

[9] E. F. BeckenBaCH and R. BELLMAN, Inequalities, second revised printing, Berlin-
-Heidelberg-New York 1965.



14 D. S. Mitrioovié¢

[10] G. Szecd, Uber eine Verallgemeinerung des Dirichletetschen Integrals, Math. Z.
52 (1950), 676—68S5.

[11] H. F. WEINBERGER, An inequaliy with alternating signs, Proc. Nat. Acad. Sci. USA,
38 (1952), 611—613.

[12] R. BELLMAN, On an inequality of Weinberger, Amer. Math. Monthly, 60 (1953), 402.

[13] E. M. WRIGHT, An inequality for convex functions, Amer. Math. Monthly, 61 (1954),
620—622.

[14] G. H. HarDY, J. E. LittLEwoop and G. POLYA, Inequalities, Cambridge 1934.

[15] M. BiERNACK1, Sur les inégalités remplies par des expressions dont les termes ont
des signes alternés, Ann. Univ. Mariae Curie-Sklodowska, 7A (1953), 89—102.

[16] H. D. BRUNK, On an inequality for convex functions, Proc. Amer. Math. Soc.
7 (1956), 817—824.

[17]1 I. OLKIN, On inequalities of Szego and Bellman, Proc. Nat. Acad. Sci. USA,
45 (1959), 230—231.

[18] J. F. STEFFENSEN, On a generalization of certain inequalities by Tchebychef and
Jensen, Skandinavisk Aktuarietidskrift, 1925, pp. 137—147.

[19] M. MawrIaNOVIC, Some inequalities with convex functions, Publ. Inst. Math. Beo-
grad, 8 (22) (1968), 66—68.

{20] K. FaN and G. G. LoReNTZ, An integral inequalty, Amer. Math. Monthly, 61 (1954),
626—631.

[21]) P. VERESS, On certain inequalities of Steffensen, Skandinavisk Aktuarietidskrift
9 (1926), 113—119.

[22] Z. CiesieLski, A note on some inequalities of Jensen's type, Ann. Polon. Math.
4 (1958), 269—274.

[23] R. APERY, Une inégalité sur les fonctions de variable réelle, Atti del Quarto Con-
gresso dell’Unione Matematica Italiana 1951, vol. 2 (1953), 3—4, Roma.

[24] E. K. Gopunova and V. L. LevIN, General class of inequalities containing the
inequality of Steffensen, (Russian), Mat. Zametki, 3 (1968), 339—344,

[25] G. H. HaRrDY, Prolegomena to a Chapter on inequalities, J. London Math. Soc.
4 (1929), 61—78.

[26] T. BoGagio and F. Giaccarpi, Compendio di Matematica Attuariale, seconda edi-
tione, Torino, pp. 180—205. (The year of publication is not printed on the book, but the
references in the book indicate that it has not been published before 1953.)

[27] V. A. ZmoroVvIC, On some inequalities, (Russian), Izv. Kiev. Pol. Inst. 19 (1956),
92—107.

[28] A. OstrROWSKI, Aufgabensammiung zur Infinitezimalrechnung, vol. 1, Basel — Stut-
gart 1964.

[29] J. DieuponN?, Calcul infinitésimal, Paris 1968.
[30] N. BourBaki, Fonctions d’une variable réelle, chap. 2, § 3.6, exerc. 2, Paris.





