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PREDGOVOR

Ovaj rad predstavlja skradenu i neznatno modifikovanu verziju doktorske disertacije
autora (ref, [21]).

Predmet ovog rada su istraZivanja nekih zakonitosti kod elektronskih transportnih
procesa u nehcmogenim poluprovodnicima, odnosno P-N prelazima. Cilj je da se ustanove
kvantitativne ili polukvantitativne zavisnosti za one procese koji do sada nisu bili dovoljno
detaljno razmotreni.

Razmotreni su neki osnovni problemi teorije P-N prelaza (Gl. 2) i graniéni reZimi pri
direktnoj i inverznoj polarizaciji (Gl. 3), s tim $to su svi bitni rezultati i verifikovani na od-
govarajuéi naéin (Gl 4). Narodita paznja posveéena je temperaturskim zavisnostima.

Pored toga, teZilo se da svi problemi budu razmotreni sa svoje osnmovne, a manje sa
aplikativne strane. Koncepcija koje smo se drzali, bila je ta da se manje i$lo za matematicki
taénim re$enjima ili numerickim postupcima a vi$e za prostijim ali fizicki adekvatnijim rese-
njima koja omoguéuju suitinsku analizu pojava.

Lista oznaka data je u prilogu A. Svuda je koriéen internacionalni sistem (I.S. —
odnosno MKSA sistem, relacije se zapisuju u racionalizovanom obliku).

Jedan deo ovog rada predstavlja rezultate koji su postignuti zahvaljujuéi pomod¢i Savez-
nog fonda za nau¢ni rad (Ugovor br. 3-1692/1 sa Ins. za fiziku), tako da posebnu zahvalnost
dugujem Institutu za fiziku i Flektrotehnickom fakultetu u Beogradu za materijalnu pomoé
pri ovom radu, odnosno za stavljanje na raspolaganje svojih istraZivackih kapaciteta. Takode
se zahvaljujem svim mojim kolegama sa kojima sam, tokom rada na tezi, vodio vrlo korisne
diskusije o odredenim problemima.

PREFACE

This work represents a shortened and slightly modified version of the author’s Dissertation
submitted to the Faculty of Electrical Engineering of the Belgrade University (see Ref. [21]).

The subject matter of this work is the investigation of some phenomena encountered
in the electron transport processes in inhomogeneous semiconductors i.e. P-N transitions.
The main aim is to establish in more or less quantitative terms the relationships for those
processes which have not yet been studied to any appreciable extent.

Some basic problems concerning the P-N transition theory (Chapt. 2) and the limiting
regimes for the direct and reverse polarizations (Chapt. 3) have been discussed and the most

* Received February 6, 1969
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important results verified adequately (Chapt. 4). Special attention is given to temperature de-
pendence of some basic parameters.

Throughout the work emphasis is put more on the fundamental aspects of the proces-
ses involved, rather than on the possible applications. In dealing with these problems, we have
also been guided by the idea that simple but physically more adequate approach may lead
to better understanding of the essential concept than the analysis based on more exact nume-
rical computational methods.

List of symbols is given in the Appendix A. The international system (MKSA rationa-
lized system) is used throughout.

The work reported herein was partially sponsored by the Yugoslav Federal Fund for
Scientific Research (under Contract No. 3-1692/1 with Institute of Physics — Belgrade). My
special thanks are due to the Institute of Physics and to the Faculty of Electrical Engineering
in Belgrade for their financial support, i.e. for giving me the possibility to use their research
capacities. I also feel grateful to all my colleagues for their very useful discussions.
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Chapter 1. — INTRODUCTION

This problem derives its origin from some papers publiched at the end
of the last century and afterwards at the beginning of this century ([1], [2], {3],
and others — the earlicst period: natural crystals PbS, Fe, CuO, Cu,0 —
rectifiers). It attained its full development in the thirties ([4], [5], [6], and
others — the period of the theory formation, the first systematic studies and
the hypothesis of rectifier action; Cu,0, PbS, SiC, Se — rectifiers and detec-
tors) and subsequently in the forties (the final theory formation done by
Davydov [7], Mott in 1938, Schottky and Spenke in 1939, Pekar in the year
1940, Bethe in 1942, Shockley in 1949 and others; the notions of holes and
injection; modern singlecrystal semiconductors Ge, Si, ...), after which there
was a certain stagnation. Apart from scientific interest (the problem is exa-
mined here from that point of view) this problem has become again important
because of the appearance of numerous new applications as in microelectronic
integrated circuits, field-effect transistors, cryo-electronics, semiconductor lasers
and others.

Intermetalic compounds (III—V) — single-crystals InSb, GaAs, GaP and
others (for instance SiC), as well as oxide films (for instance SiQ,) have re-
ceived much attention in present days (see also Table T1.1). More quantita-
tive results have been obtained by various authors and new physical interpre-
tations of some phenomena have been presented (for instance [16] — dealing
with physical interpretation of saturation current phenomenon in field effect
devices). Rectifying and transistor effects have now also been treated extensively in
the current textbooks and monographies ([8]—[15] and many others), among
which especially [8], [9] and [10] should be pointed out.

Fig. 1.1. illustrates the definition of a heterogeneous and inhomogeneous
solid (junction), from which it can be seen clearly that the latter implies in-
homogeneity only in respect to impurity distribution (¥ and P being the concen-
trations of donors and acceptors, respectively; n, — intrinsic concentration of car-
riers), while all others ,,intrinsic*‘ properties (a — lattice constant, m* — effective
mass, ¢ — dielectric constant and so on) are the same for x>0 and for x<0.

Some specific problems concerning the electronic transport processes in
the space charge region (Chapter 2) will be examined with the particular
emphasis put upon the regime of stronger fields and currents. The temperature
dependence of various relevant parameters will also be discussed.

However our discussion will be devoted for the most part to the case
of depleted space charge region, for which, from well-known relation for the
space charge density :

(1.1a) p=en;c/f +(p—n)et+en g
5
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we have

(1.1b) Inschf | >or>|(p—n)|.

Apart from that, all donor and acceptor centres are considered to be ionized™),
which is not true for recombination centres (concentration Np=n,/p).
One-dimensional (planar) case is treated.

Heterogeneous and inhomogeneous

semiconductor
o © @
g % /wa,m = N -Pr)
Ny
X X
_
a) 7LA9_> b) <—A9—>
enhancement \depletion
Fig. 1.1. — Heterogeneous (a,y+#ag, m:47& m;, €a7¢Ep, Wya# Weg, .. )
and inhomogeneous (ap=ay=a, ..., ep=cx == €tc.) solid (junction).
Ay, — total SC-region width,
Data for some noval semiconductor materials T. 1.1
W, w Structures
Mat, g 4 P-N .
[eV] [cm?/Vs] P-N-P Ref
GaAs 1,35 5000 + + [t7]
GaP 2,25 300 + — »
InSb 0,18 80 000 + + 1
B-SiC 2,86 100 + — [a]
»+ — is applied: W, energy gap; (., — electron mobility (ambient temperature),
[a] Ref. [18] to [20] (concerning photoeffect).

Chapter 2 — SOME BASIC PROBLEMS OF P-N TRANSITION THEORY

Irrespective of the fact that the junction may be either inhomogeneous or
heterogeneous even when no external field is applied, the space charge field
exists in the vicinity of x=0*% and may have the intensity even in the range
103 to 104 V/cm. The condition of neutrality is, therefore, moved at a larger
distance from the origin. Between space charge region (SC) and the reutral
region (NR) there exists a narrow region of thickness A,p or A,y which may

*) The question of space charge region depletion when impurity centres are partially
ionized is discussed in [44].

*#) This point is cleary defined in Fig. 1.1a, while for Fig. 1.1b, x=0 for <4/ =0. In
x=0, (where </ =0) which is called the point of technological (physical) transition, it is not
necessary that p=0 and (n—p)=0. The point x=Xg,,, where p=0 will be called electric
transition point, and the point where (n—p)=0 will be called inversion point x; (see also
Fig. 2.3).
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be designated as the intermediate region (IR) in which, as in borderline case,
neither

2.1 e=0 nor |emcl|>|(p—n)el

holds.
In further discussion our attention will be focused to the phenomena
occurring in the first (SC) and the last (IR) of the aforementioned regions.

2.1. — Transport relations and boundary conditions; quasi-neutrality criterion
a. — General transport relations

These relations were established long ago in their phenomenological form
according to the band model (see for instance [8] to [15]; especially [9]),

However, the transport coefficients in SC (and IR) regions (y.s — mobility,

D5=kl[.1.s) and concentrations may depend explicitly on the field, which means
e

that the recombination rates r,, and r,, are also dependent upon K. Hence it
seams much better to emphasize these interrelationships by writing the continuity
equation in the following form:

0 , 1 '
(2.22) ﬁz'—rne(ni Ds Ngs 5 Das» nRS”)+;VJn+gn;
on A+D+R)
(2.2b) 0—R= —Z Yis e (N;—ny) + Z Yie (Ne—ni) ny, (
t J#k i*k eqns.
1s) ‘ 1 ’
(2.2¢) §=—rpe(n, D, .. .)—:VJ,,+ s
where the subscript ,.ds’* stands for s-th donor, the subscript ,,as“ — for

s-th acceptor and ,,Rs” ¢ for s”-th recombination level, and the subscript ,,5*
for every local level (A acceptors, D donor and R recombination. levels). vy,
are recombination coefficients (for electron transition k—j), e—absolute value of
electron charges, and g, (r, K, ...) and g,', (r, K, ...) volume rate of external
(not thermal — not intrinsic, say that of strong K's, light and similar) generation;

— for kinetic equations (for current densities Jy,):
(
2.3a) Jo(r,t)y=en(r,K) u, (K, r)-K(r, t) +eD, (K, r)-Vn,
(2.3b) Jo(r,t)=ep(r,K)-u, (K, r)-K(r, t)—eD, (K, r)-Vp,

supposing that the current cannot flow through local levels (J; = 0=V J, which
is valid for ,higher* temperatures when the process of ,,hopping* is neglected).

Hence, there are (1 +1+D+ R+ A) unknown ,,concentrations“ (of Felmi's
quasi-levels Eg,, ...), two ,,unknown* currents (J, and J,) and the ,,unknown*
field or potential Y (r, ), with ,known* u-s, D’s, ¥'s, Nge's, r,,’s and similar,
it means that (2) and (3) result in (4+A+D+R) equations i.e. regarding
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the number of unknowns, one equation is missing, and therefore another equation
must be taken™: Poisson’s one

24 VD=¢; D=c5c(r)-K; K:—VYE_%V@_

The system (2) to (4) was certainly well known even earlier (for instance
[9], [15] and similar) but writing in the above formulation one emphasizes

(transient case; gf, Z—p, R ;&0) in the general case:
t ot
—- that the members r,,=r,—g;, and r,, need not be the same and that
the writing of r,, as (n—no)-r;lz‘o‘n-r,,_ ! (ny, — equilibrium concentration)

with constant lifetime t, is #not correct; even only the direct recombination
(c—v level) results in

Tp=(n—ng) [Yer (np—nD)] = f (n, p);

— that g:,qég,', and that it is better to separate the ,.external* generation
effects (that is often left out, as for instance in [9] — Chapt. 3),

— that the dielectric constant (relative) can depend upon r; e—=c(r) —
for instance as in the junction in Fig. 1a: in heterojunctions.

— and that when applying V to J, , from (2.3) one should pay atten-
tion to the fact that D, ,=f(K), with K=K(r, .. ).

b. — Accepted model

The system (2.2)—(2.4) cannot ce solved in its geneial form, and the cor-
responding approximations**) based on definite physical conceptions should be
carried out so that apart from the aforesaid, we shall suppose later on that:

— we have a steady state case:

(2.5) on op  Ong _ .
ot ot ot
— that Ve, p=0,
— that all other ,,fields** (B=0 and VT=0 — isothermal
conditions), except K, do not effect,

{ — that the state of carriers are not degenerated anywhere:
| E;(x) or Eg, ,(x) does not intersect anywhere E,(x) or
| E,(x) (see also Fig. 2.1.),

(2.6a—c)

— and that indirect recombination processes are sufficiently well repre-
sented by one R — level somewhere in the middle of the energy gap; hence
(see for instance [15] — Chapt. 6):

. np—'BcR .BvR
(P +Bog) Yp+(+Beg)Yn

ren:rep=re:NR 'Yn'szre(n,p),

W Wgp—W
(2.7) Yn=Yeg» Yp=Yors Ber=B.¢ RNBvREBve "

27 Mgy, - kT )3/2

By - Bop =12 B, ,=2 ( o
*) The question of correctness of its application here as well as that of Einstein’s rela-
tion (D,=u,;kT/e) is a special problem which is not treated here.
~ *%) Doubtless, the general relations (2.2)—(2.4) are of great significance then as well,
because they form a correct and reliable starting point.
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The choice of only one recombination level does not diminish the gene-
rality of phenomena and conclusions obtained.

The remark regarding notation. Normal subscripts as well as upper indexes
are used according to the scheme:

(2.82) A7

x — space and time notation:

x=0 means that +=0, x=0 or at some boundary (x=x§p — Fig. 2.1);
Xx = oo means ,far away from something*;

y — defines the quantity 4 more closely (for instance 4,, , — ,,what refers

to the electrons* i.e. ,holes*, 4, — equilibrium value);
z — approximation order.
(2.8b) A means AJkT.
+ A4, (or +A4,,) means A, and (—A4). ,,=---=* means after ,,longer
calculation.

See the list of symbols in the Appendix A.

¢. — General boundary conditions

These conditions are different for the case in Fig. 1.1a from those in
Fig. 1.1b, and therefore they are given separately.

1° — Regarding the transition between two bodies (A and B — Fig. 2.1a)
these conditions seem to be most completely formulated in [9] — Chapt. 3.
The first condition is that (for smaller polarization) the resultant flow of the

electrons (—J ,l,)) on the boundary 4—B (the layer C is ,,thin‘‘) must be equal
to the difference (J pp—Jgsr) — of the nonequilibrium ,,thermal“ currents
(A— B and B> A); the same is valid for the holes. Hence, the electron flow

that may pass the barrier ®,=E¢ —Ecs >0 is (conventional direction):

— 00

- @
ffd'vy dv, | (fop+finp) Vedvy=- - - —JBATO-I-Y,,BJ,,BG ,

Vx=Ym

+ o — o0
73— e
8 ffdvydvzfﬁ)vxdvzm‘“‘_‘::’ﬂ(kry-e m
— o0 vm

JBAT=e 3h3

where:

Jpago=——"
BT g

(2.9)

— o0

f dvydvz Sing Vs vz =1Ip5 (vp,); JnB-'InB(+°°)

Ym

Jo and f; — equilibrium and additional distribution function (f=f,+/f; — see
for instance [15] — Chapt. 5 and 7).

-, em’
0 nB
7~
YnBJnA € ~ A P

Mp,p 8 effective masses, vm= —\/ .
Myp
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The same expression is obtained for J,pn, but in that case the index ,,B¢
should be changed to ,,A“ and @,=0=uq,, is taken formally, while the electron
flow A— B need not have to pass any barrier, and in addition J; 4= —1,,(+ »).
Finally according to (2.9):

D o o
o =Jnp—Jrep=Jna—Jgea =JIgar—JIapr

(2.10) 4memnp k2 T Wy, -~ & n &
B k2 T? Wrp o @ Amempqa k2 T? Wry o
=(——:;3———6 f: +YnBJnB)e c—(—ZT——e 4 —YnAJnA),
| el
————@P-type sc. 1 '
Y b —lN-type 5C, e
]
E x)
Ea="Wi F W
'9A e)
o e —]— W Eglx)
s ” g T
lers [
P | |-k e
W, ®,
elpg
o 'Ilayer C (thickness s;)

E, (x)

Fig. 2.1. — Energy situation in the vicinity of x~0 for hetero (a) and P-N — transition (b).

a. — Two semiconductors contact (in equilibrium). U, — diffusion potential @;-s and
®,-s — internal and external work functions (® = @, + @,), V. — potential drop in the layer C.
b. — Band edges correction at direct polarization of N-P transition. U’ — external

voltage drop between x; and x;, (dY/dx=0=K for that x); L,p and L,y — corresponding

diffusion lengths (L=+/D7); 3 Eg and SES — band edges changes at x=x;v and x;,.
I — SC and IR regions, II — quasi-equilibrium (quasi-neutral) region (NR). ,,Relative*
Fermi level W, = E.,—E,<0. See the text for all information.
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because there are also recombination currents J,,z on the boundary: J,,p;=
=Jnegva=Inrs—Ings Unrs=Inrep—va aNd Jpgp=Jpp4 _cp: transitions czvy)
ard generation currents Jy,p oq=Jyeq= - - - (due to the transitions vgecy), so
that the whole J,p or J,4 does not pass through the contact. From (Fig. 2.2a)
the equation

oo

-] ~0
nqh? W r4

2.11 Wia—Wei=®,+ (eUp+V, g Ak
(2.11) r8—Wra (eUp+Vy), 2@nmE kTR

using (2.10) also, the first boundary condition® is obtained finally in the form

ny (mA my )1/2 my e~UD+Vc
€

o o0
mp My

:llof_+ \/T:mj‘l [J:,B"_(JreB+quA) . J;B (1;)3/2 . eei/D-H;c:l
ny 2kTe? ny ny \m% ’
which is more genmeral than that of (17.19) in [9] and [15.2] — page 7.40, be-
cause it takes into account that m, == mg and that the effective masses of electrons
in the depth of any semiconductor are different from those on its surface
(Mna B 7 Mg g) SO that (2.12) is not transformed into (17.19) even if m$ =m3,

but only if m§ = m3 = mg = mz = m,,.
The second (,.electrostatic‘‘) condition is

(-]
np

[212)]

(2.]3a) K;t =K%t and DBN_DAstBKBN—SAKANchB!

.t — tangential, ,N* — normal component, and o,z is here the surface
charge of the layer C.

The third condition (which is very often forgotten) is:
(2.13b) Eup(xy)—Epa(xp) =eU’ or Efy—Efi=el,

where the last condition is valid for ,,smaller currents. The condition (2. 13b)
is valid also for the P-N transition (Fig. 2.2b).

2° — There is not any ,,discontinuity® for P-N transition at x=0 (Fig.
2.1b), so that the boundary conditions are usually given (but not always, for
instance in [22] they are given for x=0) for transition ,,terminals* (the values
for these points will be notified by the upper index ,,0°) where the quasi-neu-
trality conditions prevail (about it see the point d). When the polarization is
direct, p}, and n}, have not the equilibrium ,somewhere® at xy p, because of
injected minority carriers (holes from P- and the electron from N-region). There-
fore the concentrationts of the majority carriers must be increased in order
that quasi-neutrality mlght be kept: :

o [ o o . o o .
ny—ny ~pN Pys Mon+Py=py+Ny .. ny~py+N;

(2.14) Po—Dp s s, . pRAN,+ P
N=N;—P; and P=P,—N5.

1 ‘
*) Here we suppose that Yan;NYM, while treatment in the original version [21]

is slightly more general.
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As the currents Jun.,p~V Ef;p of the majority carriers in the vicinity of xy;p
cannot change abruptly (see for instance [12]), Ef, ,'s remain almost constant
here, and as ny >n, and p,>p.,, the band edges E., must ,correct this

situation, approaching to E;'s (at E_,. .). As it was shown in [21] (see also
Fig. 2.1b), on the basis of (2.14) and

(2.15) p‘I’vn‘I’v=n‘2e‘U'=p°P p=pn for x,<x<xy,

the following conditions can be obtained:

- P N
_ \/1+4—x—1 1+45% x—1 -,
o N P n? U
[(2.16a)| =N > , n;=P———2———; r="te" ;

correction — the displacement of band edges is

8E‘:=ln[—;—(\/l +4%x+1)], $E—In [%(\/1 +4§x+1)],

o o o n?V'p?" ot PN
SW;=3 E;+ 8 Eg=kT In——, (eUDEln—),

n;?

[(2.16D)]

that is valid practically for all injection levels (when y<{1 or Up>U’) and for
the reverse polarization.

The analysis of (16a) can bring us to many useful conclusions. Thus, for
instance, for y=1, for symmetrical (P=N) and for extremely asymmetrical
(P>N) transition

=N \/3;"‘ —0.618 N=n,<N=P and

(2.16¢) pna/N-P, npmN=n,y <P

is obtained respectively, that means that the injected concentration never exceeds
(if x<1) their equilibrium values (P=p’, and N=n,) in their region. This
conclusion seems ,,a priori® logical, but if the correction is not taken into
account properly, starting from (2.14) one has

°_ AN+ P

(2.16d) =t po = XPTLN

and .

1—x2
instead of (2.16a) like for instance in [12—153]. Consequently, an absurd con-
clusion that n}, and py—oco when y=1, will follow.

Apart from that, such presentation enables the precise definition of x}, ,;
here is K=0 exactly (and it changes the sign), while without it (Shockley’s
conception [24]) for x=xyp (without the asterisk) we have Ka~0 somehow
»asymptotic. Thus if the transition is abrupt or linear (in total depletion ap-

proximation — [24]) we obtain:
. P . 2ec, U+ P12 P
xN= xP= 2 ] = A;’
N eN (N +P) P+N
Al (3seoU+ )1/3

* P
X = —X_ =—=
N P 2d,e

(2.17b)
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respectively, but with
(2.17¢) eUr=20*kT=eU*+3W;, U*=Up—U’

and Sy=n; %Ciy=C“ — linear transition slope.
X

d. On the quasi-neutrality criterion

Putting </4/r=0 in (1.1) with

n=n,+dn=2B, e =n‘e"’““fn, p=po+3p=n &' ®";
(2'18) ¢=Ef—EiEEf—[ﬂC)_;—'EL({)_ +I;_Tln%]=‘p+gfn;(l-fp,

Urpm=Er—Etpns Wp—iirm =20,

under the condition that §=eU’/2=C* (which holds good for direct polarization
in x},>x>x;, — see Fig. 2.1b), (2.4) becomes ([21])

(2.19) Af=-1 [e“"h -25inh<L—-c/y(r)], Az, =Sk
AD{ e’n,
so that for U=0=U" (p=14) the gquasi-neutrality condition is the following:
(2.202)  2sinho—cf ()=—plem;~0 or |--|=|2sinhp—cf|<|f],
en,

which is well known (see for instance [13] where, however, it is not empha-

sized that absolute values should be compared), but determining A ¢ from (2.20a)
it is assumed (for instance in [13]) that from

(2.20b) p~0 it results also Vpa0 and Ap~0,

while withour this assumption quasi-neutrality criterion will be obtained in the
form which is more general:

2.20 A( _L)——C/Y— [V( _L)]Z
'_(___c_)[ 1 A4 en; 4+ A en;
That (formal) taking of p=0 in (2.20c), as for instance in [13], is not always
correct, it can be seen from the example of abrupt transition (Fig. 2.2). Actu-
ally, as Vef=0=Ac/ for x>0 for the abrupt transition, with p =0 eqn.
(2.20c) would be

(2:20¢) 0<chH Va+cH? A =An>

which is always fulfilled, and the result of which (evidently incorrect) would be
that the quasi-neutrality conditions are fulfilled everywhere in this region. How-
ever, it is obvious from Fig. 2.2. that neither A,p nor V,p are equal to
zero, so that the left hand side in (2.20c) which is actually proportional to p,
never equals zero, and it decreases abruptly starting from centrain x,y, which

<M7I V4+cA

Apy
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will be defined in Section 2.2. Similar statement might be done for the graded
transition.

Eqn. (2.20c¢) is also valid for small reverse polarizations and for almost
all direct polarizations, provided that (4832), B2=expel’, should be written eve-
rywhere instead of 4. Thus (2.20c) is fulfilled more satisfactorily for direct
polarization, and less satisfactorily for reverse polarization. See also the eqn.
(2.28¢).

Yoy

g }V

[ |
NN

/ '

i

o] Xon vxu;\ x
t

Fig. 2.2. — Example of incorrect application of (2.20c) with p=0 for the abrupt transition
(N-region). g, — for graded transition; M — inflection point (xen= x,); tt — tangent in M.

|
|
i

2.2. New approximate solutions of Poisson’s equation (small polarizations)

a. — Solution conception

Poisson’s equation (2.19) in its general form cannot be solved even
not for the equilibrium case, which is assumed here also (y=¢, U=0=U").
Nevertheless, in the intermediate region (somewhere at x,y — Fig. 2.2) the
potential ¢ lacks ,,very little‘ to reach its asymptotic values:

(2.212) {;N,P:sinh—l%, 00, (x— & o),

although (n—p)~sinh ¢ changes very much here, and the conditions (2.20c)
need not be fulfilled. Under the assumption that here (or anywhere else) one has

d, ..~ df . do ~ dz
. — heos>—2 th z==-7, =z,
(2.21b) N 2sinh ¢> s and with z o ((p "=z dq>>

we have obtained in [21]:

A AT ] 2X di’
[(2219)] +C:f - e
—— Ay [Zu2+cosh a—cosh q;u+q;u Ay A q’]l :

2 2

/ s
c - (P—u)? - (o—a, /
[Z,,%(i/yl—“;y) @ ;") +sinh g, & %)3+~--]1 ’

> 2 +cosh @, v

e
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where the last expression represents the expansion of cosh ¢ (near @,) in the
series and where:

Pu
\M“ Ven| lvetal

2 cosh g, Nar c/yu

z, Ap,

(2.214d) =9 (%) Zy=—7 > Zu=Z()=

provided that the quantities with subscript ,,u¢ are constant, and x, = const
or x, —oo.

The actual solution choice consists of retaining the largest number of
terms in expansion but the solutions must be given with elementary functions.

b. — Abrupt transition

The assumption (2.21b) for the abrupt transition is quite correct (/=
=c/f,=n N=const) and Z, is very near to zero (this holds only approximately
for graded transitions). By taking Z,=0 and </#,=c/, and by retaining the
terms to the fourth power® inclusively, in (2.21c¢),

,

- - - 12c o pi
_ A=Py—P= g 2 =
x[A . -

| (2:22) | (cye P +tanhg,) —3

— 6 Api= T

= ’ i — —_——>

\/3—tanh? 3.sinh (i + cz") +tanh @, V2cosh ¢,
Di

is obtained [21]. It is obvious that & (x) decreases more slowly than exp (—x/A},i)

when x~/x, 5 (for larger &'s) and that a~exp (—AL,> if x— o0 (smaller &’s).
Di

The expression (2.22) is more general than any of those given up to now
(for instance those in [23] and [25]) and it might be reduced to the latter. For
instance, Shockley (from the expression 2.13 in [24]) and Aigrain ([12] —
page 138) obtain
(2.23a and b) BE__ & . ge~e i and &Ne_x/ADN, ADN=(

dx? (A;)i)z

eg, kT\1/2
ezN) >

respectively, for the intermediate region when o« is very small in the ,,space
charge‘ approximation (total depletion for x<{xy); (2.232) can be obtained
from (2.21¢) neglecting all the terms except the square one, or directly from
(2.22) for smaller & ; eqn. (2.23 b) is more narrow than (2.23 a) because it is

supposed that N>n; (N~n; exp cpu) i. e. that the condition cpu>1 must be
satisfied; (2.22) may be shown to be valid for &’s even when they are larger
than 1.

*) Only the second power is retained in [23], so that (2.22) is much more correct. If
higher powers (from the forth on) were retained in (2.21c) as well, the solutions would be
even more correct, but not expressed within elementary functions.
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Another advantage of the relation (2.22) is in the fact that all its solutions
are analytical and therefore they make analysis easy, what is not possible with
the solutions obtained by computers (as for instance in {26]), although they
are more accurate. Apart from that, the expressions of the type (2.23) are
obtained under additional assumption that besides

(2.23¢) &<<§u one must have &:—Z%<l,
while for (22) the last condition is not required.

¢. — Application to asymmetrical transition
Let us divide the whole region into four parts (Fig. 2.3.):
—(@), xp<x<0, where (2.22) is valid with

(2.242) ‘ c}u—ZpP=sinh—1 (—P) and ap=¢°—pp~0

2n;
because for P> N the whole potential drop is in the N-region;
—(1V), x,<x<xy, where also (2.22) is valid with
(2.24b) 9u— Py = sinh1 21 — Gy,
n;

or eqn. in TB.a* if the origin is transferred to x;;

-— (III), near x~x;; onl_y in this part carrier chargs (according to Shockley
— parabolical dependence of @) can be neglected, and

— (1), 0<x~x; or 0>¢° <<oSe,~0, where (2.22) cannot be used, because

for p<g, it is not valid (cﬁcmcﬁN—# — the lower boundary for appro-
tanh @,
Ximation éw, see also Fig. 2.3).
np v
fixed ) cha
® @ 8.1;:;”#’} ;rt:g/?l, X Y 2
P vy,
-1}\’ K in e
l Xo o, ——— .___._._._Jz./_..fi_...ﬁ’l x
{ . -9, _?: _____ .I._:,74. —————
{n
{ m | e\ avn s@r/ W
| N i E 2 7y
=~y N | wo
*’ 0 ):r‘ XN X. '.---é Va 8
a)

Fig. 2.3. — Dependences p(x), n(x)—(a) and ¢ (x)—(b) for asymmetrical (P>N) abrupt
transition (in equilibrium U=0=U").

*) In order to clarify the text, the list of numerous clumsier expressions is given in
the Appendix B, see the table TB.a/TB.b and further on; the potentials for some particular
regions bear the subscripts I to 1V.
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It is obvious that the solution for P-region (Fig. 2.3) is not interesting
and that separate solutions for (III) may be left out, because (2. 22) is more

correct than other solutions and may be used for larger \oc| s, so that ory and ¢
overlap with <pIII (or mutually) in (III).

Thence, from the point of view of our solution (2.22) the only problem:
is the region (II), where the following possibilities based on (2.21c¢) are examined.

1° — Since at x=0 we have
(2.24c¢) p=n1e—aﬂ>>n=n¢eq~’n coshcﬁnme—‘;nl2>2—]!i<;’n”
n

instead of C/y ® the constant v is introduced (v=0 is taken in [23], while here

o<<v«l, what is more ,,flexible‘*), so that the solution is as given 1n TB.b;
the subscript ,,e“ is to remind us to the ,,exponential‘¢ dependence exp (pH ins-
tead of cosh g.

2° — That costh expands again into a series, is the second possibility,

but near some ,,nonasymptotic* value ¢, (0><§°<q~91<cﬁc). The solution for ¢
with

(2.244d) ¢1=—py<0

when it stops in its expansion at a square term (in order to avoid special func-
tions, since now there is a constant term) it is shown in TB.b down, provided

that x° is determined from. the condition ¢y =¢° for x=0 with ¢° and x° given
in TB.d.

3° — Near x=x; where ¢~0 and for large |p|’s i.e. everywhere where

A =
2 b

(2.24¢) . cosh <§ >

eqn. (2.21c¢) is reduced to the elliptic integral of the first kind: no series ex-
pansion is required (when Z,2~0) and the solution for g is like that in TB.c.

Inversion points x; can also be determined on the basis of the above men-
tioned, from the condition that x=x,; for ¢=0:

(). — If 9,>0 (larger @x’s and N’s) then x;=x,, is determined directly
from the expression for ¢ in TB.b — below, because at ¢~ 0 the ¢y should
not be the worse approxxmatlon than cplv Thus the expression glven in TB.d
is obtained for x;;;.

(IV). — If, however, cpc<0 (smaller ¢,’s and N-s, the case of silicon
transition in [23]), ¢ and ¢iv must first be ,,joined** (determlnlng C, in
TB.a), then x;=x;1v is obtained from ¢iv~0. From the condition <pH(xc)_
= g,=qwv(¥x,) with ¢, according to TB.e (see also Fig. 2.3.) x, and finally Xy
are obtained, as in TB.d. — below.

(Ile) and (IVe). — If we use the expression for ¢ (TB.b — below, see
also the paragraph 1°) instead of cp;I by means of the same procedure

— Xyr. as in TB.e — above is obtained for ¢,=>0, and

— X;v. as in TB.e — below is obtained for 0. <0.

2 Publikacije
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T2.1. — Results of calculation for x;’s according to TB.a—e for cases A, B and C

Resutts A B C
for N
=026 — =578 —=13-10* Calculated
i i i according to
P 26100 Ps18.10° P 130
Quantity n; n; n;
. 0.13 1.78 9.47 (2.21a)
sinh o =7y 0.13 2.89 6500
tanh @y 0.129 0.95 w1
cosh oy 1.0085 3.05 6500
cosh @p-10-4 1.3 28.9 6500
—3p 10.17 13.27 18.68 (2.21a)
V2cohpy 1.42 2.47 115
100 M 1.14 88 291 TB.b
—9° 9.17 12.27 17.68 TB.d
*°/Apy 6.7 2.64 1.43 TB.d
*°/Aps 4.76 1.07 1.16 x 10-2 2.22)
xi1t/AN o 432 2.57 2.4 TB.d
xi1t/Apg 3.02 1.04 2.18 x 10-2 2.22)
xs1v/ Aoy 1.70 0.92 2.14 x 10-2 TB.d
100 My® 6.465 n 206 TB.d
Cy® 8.4 x 10° 3.1 5.4 x 10 TB.b
exp 7 1/96 1/470 1/6750
oc —46 —4.52 3.47 TB.e
100, [Ap, —1.48 —031 —0.021 TB.e
X116l Ay 1.4 0.93 2.72x10-2 TB.e
%11V ol Ay 2.8 0.68 3.25x 10-2 TB.e
Xit Apg 1.3 1 3.68 x 10-2 TB.c
°xifApg 7.6 1.49 2.77 x 10-2 TB.e
xil Apq 2.35 0.77 2.17x10-2 [23]

*) v=1; the values almost do not depend upon v for the case C.
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The last expression in TB.e for °x; represents the zero approximation
(total exhaustion of carriers i.e. the so-called ,,space charge*® approximation —
of Shockley [24]), which always gives much larger values (see also the curve
Sh in the Fig. 2.3.). This approximation is called Sh-approximation in the
further text.

According to the expressions in TB.a — TB.e (they are deduced in [21]),
the corresponding x;’s can be calculated for the given values N and P, what
is already done in T 2.1. for the three pairs (A, B and C) of values (N, P)
taken from [23], where x; is calculated by computer (the last column in T 2.1).
The results for some auxilliary values are also given in T 2.1. Our values for
x;’s are compared with the correct ones (according to [23]), and analysed in
Chapter 4.

Finally, the dependences <p,.( ), (r=II, IL,, IV; el), can be calculated
i1
according to the expressions in thé) same tables, what will be done in Chapter 4.

d. — Intermediate region width (A,, in Fig. 2.2) is not ,,sharply*¢ defined,
but on the basis of (2.22) and of the definition in Fig. 2.2. (which is valid
for all kinds of transitions because p always has the inflection point, while the
abrupt transition has not, for x#0, a maximum of p), it can be written down
as ([21], see also eqns. 2.23):

Apm— 2SIBPCI—cHGa) A2 @ (ia)-tanh @ Gry)
up — ~ -
A’ (o) —2cosh e (xa1) ¢ (Xa1) 2cosh @ (xM)
where the last expression is valid for the abrupt transition. It is obvious that A,
decreases with the increase of T and that it is ,,small*‘ because ¢’ (xy,) is small,

tanh <0.25 (maximum of @ is for sinh2g=1). If

[(2.25a)]

and apart from that &=
2coshcp

(2.17b) is applied to the abrupt and very asymmetrical transition (P> XN), for

equilibrium U=0=U"' we get the following

ny
- g§— =
[2.250)] A o \/ 16 (—=%) N (=%
I oN Nigy—@ xs) coshoy  [pxy—o (xp)] 2

where the last expression is valid if 2cosh <pN~—>5 As [cpN—cp(xM)] is of the

order of unity and smaller, the conclusion is that A, (xpnv — in this case) may
be both

— larger (higher T, direct polarization),

— and smaller (lower T, reverse polarization) than A,.y; this ratio is of
the order of unity for U=0 and ,,medium* T's.

2.3. — The question of space charge region existence

It is evident that the abrupt P-N transition will always have the space
charge region (depleted of carriers). Nevertheless, the graded transition may also
be quasi-neutral. The criterion for the transition slope (J,), its dependence upon
temperature (T) and applied voltage are examined here. In the end, the recom-
bination process influence is given.

2¢
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a. — The required transition slope (U=0)

Let the transition be linear at the place where x=0:
(2.262) (N—P)=n, /) (x) =S, x, (Cso=ni|vc/y|z%i)

and symmetrical: p(0)=0, since then n(0)=n,=p (0). Evidently, the space charge
will not exist if the quasi-neutrality condition (2.20c¢) is satisfied. This condition
together with (2.26a) gives

TR St (L @ 8

|(2'26 b)‘ (”i) —(A ) < Ap? Azzn'

0
ANz 1
e (—L) >'8— or AO>AD1: and C50< j\"i s

ADi Di

because one has |Vc4|>|Vel|len;, in the quasi-neutral case, and N=0
for x=0.

Evidently, (2.26b) does not give us the correct answer to the criterion
for the space charge region existence, but if (2.26b) is satisfied — SC certainly
does not exist, and if:

(2.26¢) Ag< Ay, or c50>:i

Di

the SC-region will certainly exist.

We must mention that the condition (2.26b) for quasi-neutrality is usually
written as Ay;>Ap, (for instance in [9] — page 242), but we have proved here
that the condition A,>Ap,; is sufficient; apart from that, the reason why the
transition slope S, must be compared just with Debye length ie. with n/Ap=,,
is not often shown, but that dependence is clearly seen from (2.26b).

The space charge region or rather the region of the depletion of carriers
will actually exist when the following condition is satisfied:

A .
AL

(2.26d) 2 [sinh[p(]|< | ()] or Agn —

it means that it is necessary to solve the complete Poisson’s equation (2.19)
and then to see whether (2.26d) is satisfied. For our rough estimation, we
shall solve (2.26d) — the right hand side, with </ according to (2.26a),
under the condition (Shockley) that SC of carriers may be neglected up to
x=xy when, ,,at once* the neutral region (NR) begins:

xytx x3

28 Ap7 6A A}

(2.26¢) P

in order to determine xy we have the equations:

L : xp? Xy
(2.26f1) sinh @ (xy) =sinh —F =" for xy<x,
3A0Ai)i 2A, ’
or
.. AZNy N
sinh——— =—%_ for xN=x2.EAONN ,
3Apn?®  2m n;

where x, represents the distance after which (x>>x,) impurity density remains
constant (1; </ =Ny — the final concentration).
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Let a=(3A, A},)1~1/A,, then
d . d
—sinhaxy3}:(— 4
<dasm axN) (da axN)

will always be bigger than one (4=3Ap;2/2) i.e. the bigger the slope, sinh axy3
will increase more than Aaxy and their intersection according to (2.26f) takes
place for smaller x,. It means that with the increase of JS,, xy will decrease,
but the ratio xy/Ay~S, xy increases. Therefore if the final Ny is given, it is
easier to achieve x, to be larger than x,. It means that the depleted layer
,»,penetrates‘¢ into the region N =const. more easily. The least transition slope
required for this penetration will te:

e Somin_ (1 ) _ vy @Wymy 1 [ Ny
@20 (50w e = | NioS
n; n;

where the final expression is valid for semiconductors of one type dominating
(ﬁg>1)

n;
It can be easily proved that, at a certain definite temperature, (n;, Ap;,
...=const.), the larger Ny is*), the larger Sypmin is.

b. — The influence of temperature and voltage

Realizing that »; and Aj are dependant on temperature but that
So#S(T), we would better rewrite (2.26g) in the form:

e? Ny >1/2 1

3 ez,

(227a)] cfom,,(fr)———( v
_ . N
kT sinh—! —
2n,
using (2.19) for Ap;, Symen i8 clearly shown to have the minimum with respect
to T; Ny being constant:

N 2 Na\2 1/2
kT (—N) \/1 + (—N>
4n,; 2n; 2n,

[(2.27b)] i
9KT +3 W

INFe= > cSO minmin
Ap;

for T=0, (and n,) which is obtained from the condition:

Ny
N 7(3kT+Wg) kT
sinht "% =" . py=+/B,B,” l2kT .

2n, N2 12’
‘ 2k7[1+(—5)]
2n;

(2.27¢) ~
—A(KT)2eWei2; B, ,—2(2mmyy , kTh2)¥2~ (kT2

) y(Ny) is a monotonously increasing function of Ny. The wrong conclusion might
be obtained from the final right hand expression in (2.26g), i.e. that there is minimum of
3

Ve [Ap, in y(Ny) for Ny/n;=+/e (while it is valid only for Ny/n;>1); therefore the rela-
tion (2.21) in [24] is not always correct, as e*a2 sinh x do not hold always.
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Consequently, the space charge limit (xy) in the given transition may be
in the transition (xy<<x,) or outside:

xy<x, for Somm (T)=5,

l(2.27d)l
- xy=2x, for Somm (TY<S,,

at various temperatures. The fact that S, increases for T>®, if T is incre-
ased, and it decreases for T<<®, is even more important. It actually means
that xy in the former case decreases and it increases in the latter (it may
even ,,get out* of the transition).

In other words, xy either diminishes (if T>®y) or it enlarges (if T< )
when T increases — actually it has its maximum for T=0,(Oy is different
from ®,) as it will be shown more generally in Sec. 2.4. both for the linear
and for the abrupt transition.

When the applied voltage U is sufficiently “’small* so that the problem
can be solved even further electrostatically, introducing the notion of quasi-
-Fermi levels as in (2.19), when it is very convenient to introduce the notions of
effective Ap's and </f's:

el

(2.282) Apg=Apy=Ape=T*,  fy@)=cf (e 2

and the notion of effective slope and p’s:

eU
(228b) CS()U—'=—'C5='CSOe El and pU=pe—ei}/2,

which all depend on U. That physically means that all processes happen so as
if U=0, but with the effective intrinsic concentration:

(2.28¢) Ny =n eel7/2_—_;ni B, (B=ee(7/2)’

or rather — as if the gap W, bad been changed for eU and all other values
had remained the same [24].
If we compare (2.28c¢) with the results obtained under the assumption

that the condition y.fp=ez—U=p.f,, has to be satisfied (for instance as in [9] —

page 243), we see that this condition is not necessary.
Consequently, whatever is derived in Section (@) is valid also for U0
(for smaller polarization). Thus the condition (2.26b) changes into:

2.28d Boy2go 1
I( )| (Am) BZ>8 or AyB=Ap,

from which the direct polarizations are seen to ,,help* the quasi-neutrality
appearance. Above all, voltage application can completely change the condition
for depletion (or for the quasi-neutrality). Direct polarization influences (but
not those of reverse polarization) are also examined in another way in ]26],
and the same conclusions are attained just like with us.

Somen (T> U) analysis leads to the conclusion (which is deducted in the
original version [21]) that Sy, again has the minimum for T = 0, which increases
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when Uy, increases and it decreases when U,,, increases, soon tending towards
the asymptotic value

A AG Y 1 /Ny\3/2 2m\3/2
[2:28¢)] KOu=— (5" A=2(37)" (mgn me

The dependence of SC- width upon 7T and U will be analysed in Sec. 2.4.
where the estimation of values ®,, for S,y will be given.

c¢. — Recombination process influence; transition capacitance

1° — 1t is comprehensible that the recombination processes in the tran-
sition have not any influence when they are in the equilibrium state (without
polarization), but as soon as nonequilibrium concentrations (the polarizations
U+#0) appear, these processes may ,,spoil*‘ rectifying action and they can affect
the distribution of ¢ and p very much. In principle, the complete system of
equations (2.2), (2.3) and (2:4) or (2.19) should be solved, and for the steady
state the condition (2.5) is satistied.

Shockey accepted the simplest model of direct recombination (instead of
re according to eqn. 2.7, one has r,=vy,np—g;) and he got:

I
(2.292) Jnen?y, [ (€ —1)dx=en?y,-F,
ip

for the total current, where /5 and [p are points of contacts sufficiently spaced.

Fy serves as the measure for the total number of carriers which must be
recombined in the transition in order to make J at /[, and Iy to be composed
almost entirely of majority carriers. It means that for the constant J and T,
the larger the recombination (y,), the smaller the difference (E;, —E,,) must be.

— When the recombination is extremely intensive, quasi-Fermi-levels
join and

e

Ip
(2.29b) U=Efp—(’N’”—Efl(’L)=Jf % _JS-R=IR,,
a

LY

is obtained, where 6=g¢,+0, is purely ,,ohmic” (drift) conductivity, so that
U = IR, is the ohmic voltage drop: rectification practically does not exist®).

y,«—)uo

— E;, (x) and Ej, (x) differ considerably if the recombination is moderate,
and by introducing the notion of transition voltage U,;.e=E, (0)—E,(0)
according to [24] (we consider that it would be more general to define U; for
x=x; and not for x=0) and supposing that E, (x)—E, (x) = eU;=const for

*) As p and n depend upon x, and hence upon U as well, at least on the width A,
of transition, then however R, will depend upon U at least slightly and the linearity U versus
I will not be complete: there is a certain rectification, which is not always stressed. Conse-
quently, the term ,,ohmic” in the sense of drift and the term “rectifying” should be diffe-
renciated.
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the whole integration region (Lpy=>x>> —L,,) of the diffusion lengths beyond
which E;,—E,=0, one has:
(2.29¢) J=en? v, (Lpy + Lop) (eVi—1)=Jg (eVi—1),

where Jg is the total number of recombined pairs in the layer (Lpp+Lpy) or
the saturation current The remainder (U ~—Ui) of the voltage drop is ohmic:

(2.29d) U—U,=8Upp+3Upp= f_zp:£+ ,fl,,‘ﬁs,ml
P Gn

so that- finally ,
(2.29¢) U=Ui+SURp+SUR,,=VRJ+’£m(l+Ii)

is obtained, and evidently £°—<R<R0. Consequently, the recombination invol-
ves the series resistance Rl, and it influences the transition state just because
it reduces U to U;.

2° — The basic characteristic of every transition is its capacitance C,,,
or more generally expressed — its susceptance. We should mention first that
there are two conceptions of capacitance, the well known ,,electrostatic”:

XKmax

(2.302) ct,=cp=—;l—]—ﬁf S o dx, (fpdx 0)

Ip

and the almost unnoticed dynamic conception according to Adirovi¢ ([23]1—1959):
S Ly . Iy -
0 0
(2.30b) : Ct,.=CwEeSf b%dx:esf S%dx
. v ;

which seems to be more adequate®).

The transition. capacitance for the ,,neutral** case (S,<J;=n;/Ap) is
examined in detail in [21]:

1
. ) . N ) . -p(ly)
TATAR C, d Co’ dl dU
30 Crew _, 4 f dx— ... =Co_ % Javi
@309 —tzt—e—- | pdx s PR a,
IP . U -p(lp)

<from which it is concluded that Co = Crouts because always Z—U 0 holds)

as well as the recombination effect on C;, in general There, by dividing the
the current into the time 1ndependent (J,n) and the time dependent part (J,n.),

*) ThlS questlon is discussed in more detail in [21] See also [45], where there is an
attempt to evaluate the difference between Ciw, Cp and °Cp — capacitance defined in (2.30a)
but in the approximation of total 'depletion. We remark that °Cp but not Cp, agrees w1th
the experiment.
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for dc-part we have got the losses R, and R, like in (29b and d) and the
excess concentration of time dependent part

Slm :Snw (O) ejwt _—,

I_«\/l+j<m'__
Ly Ly

_—1) 2

[(230d)]

2D

Ly = —_
(12 K2+ 4D[t)' 2+ uK

We see that 8n,—Re SL o only when wt— O, which means that the current
will be purely reactive (jw C,U) only for frequencies sufficiently low and for
the recombination sufficiently weak (short lifetime 7). Otherwise, by writing
dn,=a+jb, the susceptance has the form derived in [21]:

U(G+]0)Cm) [f dx— emedbdx]
Nb Iy
+j[ef—-dx+ewUfaidx].
T oU
ip Ip

It means that the recombination influences both G and C,=C,, with the
effect that both the values depend upon frequency, recombination mechanism,
polarization etc.

Let us remark that the expressions (2.30d and e) have a truly general
character and that we have not had any opportunity to see them at any
other place.

[2:30¢)]

2.4. — Temperature dependences of A, and ¢

Widths of SC-region (A, or x, and xp) are shown here analytically to
have the maximum for some temperature (®). Temperature variation of the
potential distribution ¢ (x) is analysed.

Experimental checking will be carried out in Chapter 4.

a. — Starting relations for temperature dependence of the SC-region width

In the general case (U#£0+£U’, see also the condition 2.31e) defining
Xy.p With p~0 in (2.19):
eU’
(2.31a) sinh &N,Pwi(zxg"”), B=e 2 =const,
under the assumption that the quasi-neutrality condition is valid here as well as
that ¢y p and n, o/ (xy p) explicitly depend only upon xy p, and (8n;) only




26 Dimitrije A. Tjapkin

on T, considering that W,, € and the like do not depend on T, and differen-
tiating both sides of (2.31a) with respect to (KT) (here the sign ,,prim¢)

1\ 2 -
) (B” ) cosh Uy, p-Un. p—chf (. ) -1 B sy

R R =
n
25 Cosh b G, ) B
Bn _Wy—eU’
(2.31¢) Bn) = i(3 + W —eU"); mB=AKkT)2e 26

is easily obtained, with all the symbols as before.
The denominater in (31b) can be proved never to be zero (for the abrupt
transition it is simply ,=0) so that xy p have the extremum for x,'v, p=0:

(@318 2(22Y cosh §up- by, =i @Bm) =28 m-sinh . p- B,
i 4 W) Kl 3 W,—el
". Yy, p=tanh q)N,P'(i’ll: tanh Yy p- (7+,W_2£) _

n;

Using (31a and c¢) and taking into account (31d), the xw.p from (31b)
is seen to be:
— negative (ngc/}/ , Wg, U’ and $n, p—0, while @N,P-coth JJN,P—H) for
n

i

the high T's (formal]y T— o, so that 1—%= ——;—<0)

— but it is positive (%>1 sinh @N,Pwe:‘ﬂv,zaﬂ) for the low T's (formally

v 3 1 ~
T—0, and as ~ln A L Woe +— In — and tanh —1  then
bx.r 4 26T 2 kT Yap
) 1 . .
cte— ; +In prng + oo) it means that xy p have the maximum values (xy 4, and

Xpmaz) for the temperatures T=0y py-. It may be defined from the transceden-
tal equations (31d and a). If the conditions
Wg—eU’

”iC/Y E‘J—'ﬁﬂ‘!—e 2ko :\Sinh¢N,Pmax‘>>l:

2 208n; | 2A(KkOYr
@2.31¢) ? P o
L e |smh¢|~* tanh § |l —— '
251nh2

are supposed to be fulfilled, then from (31d and a)

sinh | = LA _ Imepl | g1 pennd (300

28n, 2A4KkO)P 2 ’

|_(2.31f)[ Gy )| 3 Wy—eU! , (for |tanh |~ 1);

kOy py 2 2kOy py

Wy—eU'y
k@ )3/2_ 'nidy(xN Pmaz)' {l +[ Bn‘b _(3+_g___)]},
( v.PU c/Ym | Oy, Pu k®N,PU

AeSIZ
are obtained; the member [...] is much smaller than 1.
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Here the expressions (31b, d and f) are more general than the correspond-
ing ones in [21]; there they are given for particular cases of abrupt and graded
transitions.

b. — The analysis of xy, (or Ag ) and S;, temperature dependences

The following may be concluded on the basis of the above mentioned:

— according to (31f)-above, supposing that ¢ depends only upon xy p
(explicitly) with the increase of the reverse voltage (with the absolute value),
Xy, pmag Ceases to depend explicitly

upon Oy py, and that happens as

el .
—, what is prac- o U |

Xy

soon as 3<€—L =

N, PU
tically always fulfilled (except for /
W,~eU’" — the high injection

. |

graded Hiabrupt
level), because Oy py’s are very *wmex // i °
low temperatures, as we shall see \ / I
later on;

tic temperature Oy py Will either
increase, if /Y (Xy pmaz) ETOWS

h*_—__mﬂio%
i 1\
N AR Ny AN
— therefore, the characteris- /V\j_//l_u \;?\\
| dir ~
|
| |
| |

more rapidly than {I+[-- -]} de- 5 : < 7

1 y 1 T
creases — in the cases of graded \9~uw/ =9~u/ Snuab
transltlons,' or it will slightly de- Fig. 2.4. — Temperature dependences of the space
crease — in the case of abrupt charge width for the graded (left) and abrupt
transitions (where c/y'zconst) if transition (right), with U as parameter.

\Uiny| is increased, according to
eqn. (31f) — down since [- - -] always decreases.

— Opp and Opy are the same only for the symmetric transitions;

— Oy py depend very strongly upon |n;c/f (Xy pmay)| i-¢. upon the doping
level of the region, rising with the increase of the latter.

The shapes of xy py (T) with U as the parameter are shown in Fig. 2.4.,
so that:

a2 [ty G pmas) 232
(2.31g) (k05 pv)*"? ='—Ae§%’__|, [A ~2 (7) (Mg mgp)sm]

is the ,,asymptoticc value.

As an example, let us calculate O,y and ®py, for N-region of P-N
junction of Ge and Si, taking N=2-10!cm—3 what would correspond to the
Ge of the conductance of about 10 S/cm or about 3 S/cm for Si, at the ambient
temperature (typical value for the base conductivity both for the ,,drawn‘
and for the alloyed germanium transistor transitions); let us take that N=Ny
— the final concentration for the graded transition, when we calculate 4,4,
and Sominy 1. — ©’s and let us take that its ,,real’* physical slope is
S, =10cm=3/cm (the value which is given for Si transition [24]) and N=C'®
— the donor contents for the abrupt transition, which is supposed to be sym-
metrical; the results are shown in T 2.2. when the values for W, and »; (300 °K)
are taken from [13] and they are 0.72 and 1.1eV, or 2.4 x 1013 and 1.4 x 1019cm™3
for Ge and Si, respectively. In order to see the application limits of the cor-
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responding appoximative expressions, the whole account is repeated for
N=2x10" cm™3, what approximatively represents the boundary of the non-
degenerated carrier states (for the ambient temperature).

The following may be concluded from T 2.2:

— The characteristic temperatures ©,, and @, for S,’s are low even
for the case when N is almost equal to the e_ﬁ’ecnve density of states (B, ,) at
the ambient temperature (then the semiconductor is already degenerated), and
apart from that, they are practically independent of U (Q,y;~0,~0,,) even
up to 99 W,/100e of the direct polarization; for the adopted J,, there are no
real reverse voltages which will widen the depleted space in the region
N =Ny =const., when Ny=2x 1019101 cm~3

— Opy are still lower for the graded transition, so that the depletion
region boundary (xyy) decreases with the increase of T for all real temperature
and U’s (see Fig. 2.4); here

3
(2.31h) XNUmas™[3 €8o (Wy—eU)[2 €2 S|P3~/ W,—eU.

— Xyg's are smaller in the abrupt (symmetrical) transition, when all
other conditions are the same, what is otherwise quite clear but we should
keep in mind that ®yy increases when the direct polarization increases (but
very slightly) and it decreases for the inverse polarization (also slightly) so that

Oyy~0,,—Ony as in Fig. 2.4.; otherwise the following is obtained from
the relation (2.31f) for such a transition:

TR 12
| (2'31 1) ‘ XNUmaz = ( s;;} WgU) WgU W

TR VPN | n2eel (P N

[@31))] (kOup)> =S | L+ Spy |+ 73 k@z:y )

where the last expression is valid also for the asymmetrical abrupt transition
(P#N).

The starting point for the whole this analysis is the assumption that all
the states are quasi-equilibrium states, so that the above conclusions are quite
correct within that frame, because we ,,must not‘“ apply too high reverse
voltages, nor ,,permit large currents flow, ie. eULW, for the direct direction,
when the conditions (2.13e) — below are certainly fulfilled. Thus the value of
the voltage larger than Wi/e in the last row of T2.2 must be understood to
be only conditional — i.e. only as the reliable indication that such ® cannot
be obtained.

c. — Potential temperature dependence for the abrupt transition

The dependence ¢ (T) for the more graded symmetrical transition can be
analysed comparatively easily. The accurate analysis of the asymmetric abrupt
transitions is rather hampered by the ignorance of the exact expression for
x; (for the symbols see also Fig. 2.3b) and therefore its dependence upon T
is not known.



The study of thc eleztron transport phenomena in semiconductor p-n structures 29

Characteristic temperatures (®©) and others for the concrete Ge and Si transitions T 2.2
Quantity [unit] for N=2x 10 cm~? |forN=2x10¥ cm~3| calcula-
Ge | i Ge | Si ted from
7A 10-2 lso (2.31 Cm: 1 75 o 77&)7 | 77”& o & ;31

x see also (2.31 g) 7(e7V)3'/727 ) ) (2.31¢)
e — relative diel. cont. 16 &) & 12 —
0,, —asympt. temp. for Syminmin 0.77 0.96 77 96 (2.28¢)

[°K]
i for U=0 [ <10-% | <10-% | 10-% | 10-% | (@3If
n’? eeU (3 We—eU _< S ( )
v, U ke, )y e
eU=099 Wg | <103 <1073 0.062 0.056
N Symin for T=300°K| 129 10.4 294 275 (2.27a)
Necessary slops —
[102°cm 4] and
Sominmin fOr O, 9.2 8.5 292 272 (2.27b)
Um; Hecessary for 300°K 2.64 3.96 3040 4130 (2.28¢c)
to equate [GV]
Sominy With S, for O, 6.1 8.0 6150 8100 (2.28¢)
Lo Ong * 104 —for Xy oz K] 14 &) &) 72 2.31g)
S ’
T xyo for 300°K 1.4 &) &) 7.1
§ & depletion region
@.8 | width [pwm]
C% | Xyumas for @), 9.8 &) &) 10 (2.31h)
£ ©/,~0y, for Xymus K] 0.77 0.96 77 96 2.31g)
b
=g
g Xnv 300°K| 124 156 1.78 2.00 (2.31i)
2.2 — boundary [nm] — B
ﬁ'ﬁ XnUmaz v| 178 190 5.60 6.00
eU to be kO, ,=W,* with graded
transition| —10%7 —10%8 &) &) (2.31h)
[meV] abrupt -
transition: :
Wd Ge; Si~0,01; 0,04 eV Wg+|+3.3 +114 +0.52 +4.7 *%)
&) The value does not depend upon N| 1 pm=10-Sm=10-%cm=10-3 mm;

G =10° (giga). 1om=10"*m=10-% um.

*) W, — Ionization energy of donor impurity, chosen so that it corresponds to that of
antimony as donor [13]; those are temperatures~ W,;/2 k =58°K for Ge and ~230°K for Si,
above which this impurity is almost completely ionized; the sign ,,—*“ corresponds to the
reverse polarization and ,, + ¢ to the direct polarization.

**) These voltages cannot be calculated from the approximate expressions of the type
(2.31f) or (2.31j) (with P=N), because the ,,correction‘* for eU>Wg is [...]>1, so that
the correct expression (1.27a) from [21] with x;vuzo (and P=N) is used and the
graphical solution is performed: drawing [1; ' (1 +ng,)1/2]~sinh— 19, and

3 Wy 3 2 A (kT)3/2 ’ N
—t——|={=+In—— +1In =—oy\ (kT =k Oy, ~Wd).
[2 2kTJ [2 N Y]UJ versus My 2ny ( NU d)
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The dependence of ¢x p upon T can be determined exactly (according
to the eqn. 2.31a) and it is shown that both dependences have the maximum
(pn and |@p|) with respect to T for:

2
R N: P Ry W,u
N ' .
[EH0] Oy 2|14 (5

Taking the risk of not getting quite adequate results, let us accept Sh-
-approximation. Then, as it is well known, one has

o~ OxnN+¢pP! 2n, o~ ~
2.32b =‘L__NP=[zh*h}
(2.32b) ¢ NP T lp, w (Coshep—cosh gy)
(The above left hand side index means zero i.e. the Sh-approximation; if the

expression in brackets is added, the exact value ¢° is obtained), and °x,; will
be then given by the relation in TB.e. On the basis of these two relations, it
is easy to prove that both °¢°(T) and °x;(T) have the maxima for:

2
(kOyg 2 =— . 7 [1_ Mo (3+h_)];

Ae¥2  NNIP-N PN k Oy e
: G;iU P\0,806
[(2.32¢ and d) | ; N(w) for P>N.
®abU N

It is necessary to notice that ® for ¢° decreases (slightly) with an increase of
U, like with a graded transition (see also Fig. 2.4 — on the left) and that
the asymptotic value ® for the inversion point (region boundary enriched with
holes) may be considerably larger than that for the transition width.

d. — The conclusion for temperature dependences

According to the above mentioned, the conclusion would be:

— that the SC-region widths have maxima as indicated in Fig. 2.4,
both for the graded and for the abrupt transition,

— that the dependences of the slope Somiau(T) have the minimum
(Fig. 2.5a),

— that the potential ¢ (x) moves as in Fig. 2.5b, where the dotted line
denotes the potential distribution for the pseudo-abrupt transition treated in
detail in [21], where, apart from other things, it is proved that always @,, <@g,
and x;<x;,,, if all other conditions are the same.

Interesting temperature effects, not noticed by the others, are theoretically
proved in this way. It is necessary to emphasize that the same shape (with
the maximum) has also contact potential difference (eUp=@y—¢p) which actu-
ally defines the barrier in the way physically most adequate and most objective,
since the notions of A, or xy and xp are conditional to a very great rate:
where the SC-region ceases is not known precisely.

All these results are obtained under the condition that the impurity centres
are completely ionized, and that ©’s are low, which is evidently contradictory.
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Nevertheless, it is shown in one of the latest papers [44], both experimentally
and theoretically, that the temperature maximum effect always exists regardless
the degree of impurity ionization.

Sominis t1v)
s
// ’f//
;W__Lf// T
U>0 (dir)
:s/ / 1‘ Xyz Xy x
|3 / 0
< -
e Al
23 /‘ {
\ /o
——————f—"Tu<o.
/! u=cte
/ i
/ ‘\ i < <’r;

al

Fig. 2.5 — Temperature dependences for the least transition slope required (@) and ¢ (x, T)
— the abrupt transition potential (b); subscripts ’1¢ and 2¢ refer to 7; and T,, *’ps‘‘ —
pseudo-abrupt transition.

Chapter 3. — LIMITING REGIMES IN P-N STRUCTURES

Limiting regimes are understood to be either direct polarization currents
caused by the polarizations of the order U or reverse polarizations which lead
to the (avalanche) breakdown with the currents that overtake the saturation
currents (Ig) for many orders of magnitude.

Considering that all the impurity centres are ionized, let us remind of
the conditions that exist in the transition regions:

1. — Carrier depletion — impurities have got bare,

II. — The field is nonhomogeneous and rather strong, even when the
polarization is direct (103—104V/cm), so that the mobility (1) depends upon
K (at least near K,,, at x=0).

III. — With the increase of K, the (avalanche) breakdown may occur
(see for instance [28]). Because of the finite value of the width A,, this break-
down need not be the same as that in a homogeneous body.

3.1. Direct polarization limiting regimes

According to the generally known conception, let us assume that the
direct current is composed of the diffusion current (J;) on the boudaries X

and xp (see also Fig. 2.1.) and the recombination-generation current (J,_,) in
the transition:

(3.1.') Jdir:Jd+J—r; Jd=Jdp+Jdn'

Let us consider first J,_, and then J; — roughly and generally.
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a. — Recombination-generation currents from the transition
1° — Taking into consideration only analytical solutions which, in our
opinion, are given in the best way in [32] and especially in [22], for the re-

combination — generation part J, , of the total current Jg,, the follow'ng
is obtained:

XN
1+

XN
4, 1+, W) -
(3.22) Jy,—e |t — 4 Low .Ia(U’)-,"ﬁfz.zsinh(Ee:T),
1+ 2N, U 1+ix—N—-I“,(U’) i
nP PN

so that according to [22] the integrals 7, (=1, 2, 3) are defined only for the
linear graded symmetrical transition and that as (see also eqn. 2.17¢)

Il",P(U')zze*“'f-Yu_n’p-t-Sl'nhq;dt, (F.”za;:(:;t—‘ﬂ);
0

(3.2b)
’ * - l-]+ n°
DLn,p(U)=2e"" f‘Yun,p-COShcpdt, oc*Eez =a+1nWN;
3.2 1
(3.2¢) S (U)= fzmhq) va)
Up—U

but with U'=U, a*=a=e 2>— i Yun,p—=1 and cosh?pme‘s/Z. Consequently,

even in [22] the attention was not paid, that:

(I) — the total voltage (U) is not the same as the voltage at the tran-
sition (U’ — see also Fig. 2.1.),

(II) the ,,correction‘‘ according to (2.16) and (2.17c) may be considerable
especially at higher levels of injection, and that it is not oa* =q;

(III) that Yun,psﬂ(’%) — the ratio between the starting (for K=0)

and actual mobility may”'dpiffer considerably from the unity, and

(IV) that the question of approximation coshqae?/2 is discussable —
especially for the abrupt asymmetric transitions (which are not treated in [22])

and for the direct polarization (when ngaz=<1~91v or |<E°| is not much larger
than 1).

The first remark is not essential, but the last two must be examined in
the light of the second (II).

2° — The integrals I, and I,. 1n [22] the starting point is the relation
of the type (2.2) and (2.3) with 90—"—:0 and g, ,=0, as well as T'n, pe according
'

to (2.7 with Wr~W,/2, what is quite correct, but it is considered that p=f(K)
i.e. that it does not depend upon x, so that from

dr, dn e
(333) ;=ere .. J”=efredx—i-C”:p,”(x).kT(d_x_*_nEK)’
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the differential equation for n is obtained:

(3.3b) @+e1~<(x)-n= ¢ fr:dx—l- 2
dx tn (X) kT-p, (x)

and the solutions differ from those in [22] as the function vy,, , (x) is also
included in (3.2b). Apart from that, «* should be placed instead of «, as it
was taken in [22]. .

It can be easily shown [21] that the correction due to vy, may increase
I, ;'s mostly twice or four times, co that if xy<L, then the values I, , do
not influence the exactness of the expression for J,_., the value[- - -] in (3.2a)
is about 2 for ,,good‘¢ transitions.

3° — The integral I3 for the symmetrical graded linear transition defined
with (3.2¢) and with ¢ from (3.2b) cannot be calculated in a simple way,
and the following two ways can be applied:

— either sech ¢ is expanded into the series at ¢ —a:

sech q;'s- Sil_ _ S1h . sin:za (c.[;—— a) "‘,Slnhz;_l '((P;a)z-l-
o ] CO a cosn“a cosh’ a
(3.4a)
5 sinh g—sinh® a .(q:—a)3+ o
cosh*a 6 )
Thus, if a=0 (when o is small — smaller than 1 — the high injection level)
we obtain:
A AT * 1 17 57.58
3.4b L= a¥ 4 ¥ ... a*<l,
[ G4b)| T a0 Y s ” s
and if a=2.095 we obtain:
| (3.4¢) | L*=0.63924—0.26658 «* + 0.0488 a*2—0.00350*3 4
+0.000221 a*4— . - -, 1<a*<3;

— the second way is the graphical intergration.

The results of the calculation in both the above ways are given in Chap-
ter 4. (The departures in relation to [22] are seen to be very great: they may
be even above 200%).

The expression
(3:4d) L, (anvab),
Ja

is used for large o's in [22], but we have shown in [21] that the approximation:

o . 2 NERT 1
3.4 I3 (o)~ ——1—Y"e?2 |l —— " *
1349 | 2 (@) 30:"‘[ 2" ( 3\/3a*)]’ (@*>4)
is slightly better.

4° — The integral 1; for the abrupt asymmetric transition is not treated
at all (in [22]). One may show that the definition (3.2¢) is still valid for the
very- asymmetric transition (P>N), but the eqn. (3.2b) is not valid for <~p and
oa*, but

~~_ * —_— *Ni _1_ £ p— od
[(35a) | pr—2at(1—1), o~ In (t—x;v).

3 Publikacije
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The following two ways are treated here:
— graphical integration

— and the representation of sechcp as the sum® of the infinite geometric

progression of the factor g = —e29 (since (p is always negative, see also Fig. 2.3)
so that

i (—1yw @, (%) =

841* (2n 1)

P T (—1)n-1 2 (—Dr-1
(@] =\/8—a*-[2v2n_1 e+ S,

2 [ o=z, x,=2+\/a* @n_1),

V2T,
0

D, —

is obtained, with the fact that @,~1 for n>>4, being used in the final expres-
sion for I*. Thus this problem consists of finding tabulated values for

D, (n=1,2,3, and 4) and the sum z - - .; the last one is slowly convergent,

5
but it might be expressed by means of Riemann’s {-function ([21]) with suf-
ficient accuracy. Finally

0.6267 1)" 1

T [0 1756+Z

| (3.5¢) | L* (¢*) =

(«*>0.4), is obtained.
The value of the first derivative dI,*|da* is also of the great importance.
Starting from (3.5a) for ¢ and (3.2¢)

2a*

o, (xn)] ,

s 4 f o= ( *__1__)
de*  do* \\/32¢* ] \/ycoshy 20¢ \°  2cosh2a*
0

| (3.5d) |

is obtained, which is quite exact.
The results of the calculations based on eqns. (3.5¢ and d) will be given

in Chapt. 4.
b. — Diffusion currents — Higher injection level

1° — If the space charge and the electric field effect (drift components)
are neglected in the vicinity of x¥;p, then eqns. (2.2) and (2.3) in the steady
state become purely ,,diffusive‘c for minority carriers:

(3.62) dnp_Bnp _mp—mp .t dipy

The boundary conditions must be retained in their full form (2.16),
since the value of y is not much smaller than unity (n;;éN xs Ny Moy etc):

*) At the suggestion of Ing. M. Smiljani¢, Inst. of Physics— Beograd.
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it is implied that p}mor}N, and thus if ,,only* p?vz =n; for the

N_P
2 2
symmetrical transition, then y is already about 0.75.

2° — Thus, for the medium levels ( p;vw%, Xm—i—) for the symmetrical

linear transition according to (3.6a), ([21])) is obtained:

o o ’ e L] -
Ji—e [LDM» (p—rip) . Dox (Py—ron) J

wp+ Xy Ly (U*) Loy +xy-Lp(U)]

(3.6b)

where the above index ,,0¢° denotes the point x=x} p and where the inte-
grals I, have also the same significance like those in (3.2b). Actually, (3.6b)
represents the ,,corrected‘‘ well-known relation for the low level of the injection, as,
for instance (2.29c) with J;=const. The general treatment of this problem will
be given in the point c.

Supposing that L,p,,n>xy I, (;,thin‘ transitions), we obtain from (3.6b)
for all kinds of transitions and medium levels:

eU’ 1 N \1i27]-1
e -] 0.5+ —+—x) —1
Dyp 4 P

J;=:.- =en? - 4
d V2 eel —1
: 7 [ 1 P \1/2
I e -[0,5+(—+—X) ] —1 -,
[ (3.60) | 4 Dow 4 N (eV'—1) =
“ Loy N el —1

N ,Tn: Lyn. “+(i+x)1/2_

where the final expression is valid only for the symmetrical transition (abrupt
or graded). Eqn. (3.6c) is implied to be valid also for the lower levels and it
transforms into the expressions of the type (2.29c¢) in the limit.

3° — Eqn. (3.6a) would be approximately valid further on for high

levels, but not only p;’v>N or np>P but also ny>N or pp>P is valid for
majority carriers. Therefore, almost the same large diffusion currents of the majo-
rity carriers appear, and in order to keep quasi-neutrality, a field that should
“almost‘¢ cancel these currents, must be created.

Regarding the asymmetrical transition (§> l) in the limit (x—1, U'—~Up),
it can be easily shown that the diffusion ,,constant* for N-region. is:
3.7 D,(p)=D 1+L), —py>N),
( a) p(p) po( p+N (P pN> )
i.e.  almost 2 D,,, while np~ P~ pp and D,p=D,,=const. We should emphasize

that this is not valid for the symmetrical transition, because, accordmg to (2. 16c)
the condition Py>N cannot be attained.

30
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Consequently, (3.6b and c¢) is still valid, and it is also valid for the
asymmetrical transition (P> N) with D,y— D, (p) according to (3.7a) and

P \1/2 °
(37b) Lon =Ly (1) =Lyo (1+ )7, (p=p").

¢. — Dependences J (U)

. - - 2 ~ 2 s
according to (3.2a) and (3.6¢), since expeU’'>1 and expeU’'[- - -]7! in (3.6¢)
are much larger than 1,

— for the asymmetric transition with P> N, %x<l and ;V{ 1L>1, we
obtain:

1°—Regarding the medium injection levels, considering that sinh

T 02 U U2
| (3.8a) | Jdt,=A,.,,-B,,_,-ee +J8,,Bd,,ee + Az By e vl R

where A's and J,, are the constants and B's are quasi-constants:

2en en?: D
A = i; B —T.% LA . — 1 nP .,
g1 - g—r=L*(U*) - xn; Jsn —_—an'P 5
— 2 te . .
(3.8b) By = ", me ~1; Biy~1;
l+(1+7x)

Ay = (eniz_D!N_) _A_,EJ”’ N _emDyy
PN n; n; Lyn
— but the following is obtained for the symmetric transition (P =N) for
the diffusion current:

(3.8¢) To=1, N (JTHdy—1), (X=%e,ﬁ').
n?

It can be easily shown that the ratio of the second and the third term
in (3.8a) is always smaller that (N/P)V2 for U’ U, (the medium level) i.e.
regarding the two ,,diffusion‘* components, the component ~ eV’ 2% prevails in
the asymmetrical transition and the total current has two components both di-

’

rectly proportional to the exp _e2£

We can see from (3.8c) that the further expansion of the expression
(1 +4)2 is useless, because 4 >1 can never be for U'<<Up, i.e. the compo-

nent ~ exp. ig—— does not exist here in its real sense. This fact is not noticed
to be emphasized by the others.

*) Evidently, the component ~ exp eU’ prevails for U’>Up, but those are already
higher levels; apart from that, U’ is smaller than the applied voltage U for the voltage drop
beyond the transition, thus the condition U’>Uj can hardly be attained in practice.
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2° — For high levels the diffusion current is obtained for the asymmerric
transition according to (3.7a) and (3.7b):

2

Ty =Jpa (XN) + Tng (xp) T g () = -

D,x(1 + P[Py +N)”2

Lpy

| (3.8d) |
(P;V—PSN)N p;v .

We see that Jd~pfv~\/i~expe7w according to (2.16a). Let us remark

that the above fact in [12] (page 159) is taken from otherwise correct conclu-
sion that D,—2 D,y for high levels, but the interrelation between this conclu-
sion and the fact mentioned above is, in our opinion, not clear.

3° — As a conclusion, by forming the following relations according to
the above:

Jo-r
(3.8¢) Yea U) =722
[

it is possible to show ([21]) that this ratio between recombination and *’diffusion‘
currents constantly decreases in any transition (abrupt or graded, symmetrical
or asymmetrical) when the polarization (for U’<{Up) is direct, with the increase
of U, which is obvious even physically, but according to the conception which
does not take the band edges correction into consideration (does not distinguish
«* from « according to the eqn. 3.2b) the correct result is not obtained. Thus,
the relations (3.5¢) and (3.5d) have also a great principal significance.

Finally, by forming the ratio &=vy,;(U =0)/y,q(U' =Up) we obtain
approximately:

- LN DuypLlpy [N
[GBD]  fam~o o ad LenV2Ep T
() .
1

for the linear symmetrical and abrupt asymmetrical (P>N) transition, respecti-
vely. We seg that &, may be very large (E_,;,,,NZ 9 for ¥ 1.95) which is

ny
. N . .
not the case with &,,, because D,p L,y \/7 / D,y Ly, is never larger than unity

-

en not for InSb where D,/D,=y,/u,~100). Hence, with the increase of
nsition asymmetry, the ratio v, remains ,Jess suitable‘ if the injection
el is increased: the participation of the recombination currents from the
nsition decreases less.

d. — Higher levels — General relations

1° — Let us be satisfied with the solution for J,_, from the point a,
try to find the more correct — general solutions for the ,,diffusion‘
:nts beyond the transition (x<xp, x>xN) takmg into consideration the
‘tions described in the paragraph 3° — point b. By using the model and
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all the transport relations from (2.2) to (2.7), except Poisson’s (2.4) instead of
which the quasi-neutrality condition® is written

(3.9a) ny (X)~py(x)+ N(x), xXZ=XN;
Pp (X)~ny, (X) + P (x), x<xp,

emphasizing that both N and P may depend upon x (graded transition) for
the one-dimensional and planar case, when according to (2.3), with r,,=ry, =7,,
we get:

(3.9b) O Ut d)=""0=0 .. J=const.
ox ox

i.e. the total current constant, for the field one can easily obtain from (2.3):

on op
’—e(”" ox Do ;)
3.9¢ K (x) = . (w, D=C").
(3-9¢) O = e mirm )  * )

By noting the derivatives with respect to x with ,,prim‘c and ,,second*,
after long but simple calculation, the general equation for the holes in the
N-region (x>>xy) is obtained from (3.9¢c), (3.9a) and (2.2) together with (2.7):

| (3.9d) | P+ (=10, N)- (P P———Q (P, N)- Q1P+
) an o
R(p, N
+Q(p, N)- @, p—R2 1) g,
DynTob
av A%
where
Dy [b—1 F‘N”N'(DJ —bN’)
— 14 Pon (; -—b)'N’, _ _\eDpy  /
Ql + 7 Np Q2 N 5
0———N F(p,N)=p(b+1)+bN;
F(p, N)-Qp+N)~ ’
3p
. F 5p 1+CW N
3.9 R(p, Ny=g,eF . =02 N -
(3.9¢) (p, N) o, w T x 1rasnN’ S Nazp
_TeN _ PotByR ny+ BcR
a= WWN+2py " Tro Tpos %o Nizp, ™ Ni2p, P
1 1
b=tn]yp; Tpo=——» To="— =3 SP=P—Po.

Y» NR

Y, NR

n

*) Actually, (3.9a) should be considered as Poisson’s relation with pa0; consequently,
it is always necessary. Nevertheless, dK/dx =0 and K =const. would result from p=0, which
is too rough, so that (3.9¢) is used for K.
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The equation of the type (3.9d) was obtained even earlier (e.g. in [34]
to [37]) but this one is more gemeral than those given up to now, because it
contains both N’ and N”, which is important for graded transitions, at least
on principle.

Only the abrupt transition will be treated here (Q,=1 and Q,=0), but
even then (3.9d) has several advantages:

— only the direct recombination (formally with a=0 in the expression
3.9¢ for r,) is treated in [34], but with us (a£0) both are possible: the direct
and the indirect recombination according to the model (2.7); apart from that,
the case of large p’s is treated in [34] only for J~0, but actually the contrary
would be more logical.

— Eqn. (3.9d) has also been attained in [35] (without Q, and Q,) but
in actual solution it is considered that t,=const., hence even rougher than in
[34]; apart from that, the terms (II) and (III) are neglected in [35] and some
restrictions are not documented.

— The problem is presented in [37] more widely than with (3.9d): the
impurities are not completely ionized, p#0, but in actual solution it is consi-
dered that p~0, and the differential equations are linearized without special
explanation®); apart from that, the conception of external field (homogeneous)
is applied in [37], but in our opinion, it would be more correct to consider
external voltages.

2° — Regarding the abrupt transition (Q,=1 and Q,=0) by introducing
the symbols:

dy dz

— N, r %) ,NZZ, " =
y=pIN, y = P/ y 2y
(3.10a) G=Lyno- 2 (Lawo=Dpnoo)
_ JLyyo
eDyy Nb ’

the equation (3.9d) under the condition that 8pasp (higher levels), is obtained
in the form:

(3.10b) G-f"dE+N(G, $)=0
y
with
NG, »)=0 (- EGC—GAH—y ()
b—1 b41 1
.1 =Ty B:—y ’:——“_)
(3 Oc) B b b e (1+By)(1+2y)

_1+By 1+cy

142y 7 l+ay

Hence we have the generalized: concentration gradient G, concentration y and
current 4. We remark that it is sufficient to know the dependence G (») i.e.
P’ (p) and not necessarily p(x), for our problem.

*) The detailed comparison of all the terms with (I) is carried out in [21], and (3.9d)
is shown not to be a linear equation on principle, (let alone the eqn. with constant coeffi-
cients), and actually it must be solved complete. . .



40 Dimitrije A. Tjapkin

The equation (3.10b) is Abel’s differential equation for which, as far as
we know, there is no general solution in quadratures. It exists only for 4=0
and it is as follows:

(3.11a) G

A, J=0 §? 1+ By

¥y

21,\1/2 1

()" b=to)= [y dy s -2,
0

which can be easily obtained by the method of integrating factor (indepen-

dent of G).

By using the integrating factor which depends on G (which is not ade-
quate mathematically), the approximate solution (explained in detail in [21]) in
the form
—G-= (Sy + H2 4, )”2 HA,,
|(3.11b)| .
= A/48, H()=1—

is obtained.

The value of the proposed solution will be checked in Chapter 4, but
now it is only clear that it coincides with (3.11a) for A=0, and that it satisfies
the boundary condition G=0 for y =0. We remark that the 1ntegra1 I, has a
solution expressible by elementary functions and that (3.11b) is roughly valid
both for graded transitions and for all injection levels.

It is valid for very low levels (¥ —0), since then

3.11¢) S~1, ya~y, I~y 2, Hx2By,
and from (3.11b)
(3-11d) —G=—Lyyoz=(/1+A42/4—4/2) .y,

which completely coincides with the solution of the equaticn
(3.11¢) y"—%y’—y/U:O

obtained from (3.9d) for y —0 and |y'|>(y')%, which is usually used for low
levels (and abrupt transitions — Q,=0)

3° — With ¢=1, for the very high levels (y —) according to (3.11b),
the following solutions are obtained

b+1 b+1 1/2 b+ 1\1/2
—G= - -y for 0,
- [Zab ] (201?) Y o
[G.11D)] b+1 3b+1 b—1 T2 b+ 1y12
- + + — +
G = 34200 g T m(—i) -y32 for a=0,
[ 35 7 4 0 4b y] 3b Y

i.e. different for the indirect (a7~0) and direct (a=0) recombination and more
general than the corresponding relations in [34] and [37]. The same result is
obtained also from the immediate solution of (3.9d), when p-—>o and when
the terms II, III and IV are neglected.

We see that G does not depend upon the current (parameter A4) for very
high injection level.



The study of the electron transport phenomena in semiconductor p-n structures 41

By using (3.7a) according to (3.6b) the diffusion current is obtained at
high levels for the asymmetrical transition:

° 2D,y-N
|(3.11g)] Jam N = — .

Lyyo+xN-Lp(a*)

Go’ GO:G(yO)9

with G° according to (3.11f) and y°=py/N according to (2.16a). We conclude
from (3.11g) and (3.11f) that Jg,

— contains the quasi-constant term besides the terms according to (3.8a)
for a#0:

[3.11h)] AZ

_2eDyy N [(a—l)2 (b+ 1)]1/2

Lono 2 ba?

since \/x2+2x~x+1 for x>1.

— but for the direct recombination (a =0) the following term will appear
instead of the term Ad By, eV "in (3.8a):

3 - ~,
R |
(3111 | * + i
2eND,y Jb+1

Lowe V35 °

o0
Aaso =

eV’ which are different from those for a#0. The

. 3 -
i.e. the exponents TeU and

results expressed with (3.11h) and (3.11i) are very interesting, and as far as
we know, thsy are new; however, the checking of their practical significance is
beyond the frame of this paper.

3.2. — Limiting regimes at reverse polarization

a. @ (K)-dependence — hot electrons

1° — When the field is increased, the carrier distribution ceases to be
equilibrium: the carriers do not ,,have time* to transfer all their energy to the
lattice and they become hot. The notion of electron temperature 7,>7,=1T is
introduced in ([24] — 1951). Mobility begins to depend on the field — it
decreases. Without entering into the explanation of this phenomenon®, let us
emphasize that the essential role is played here by the scattering by the optical
phonons (of energy /iw,) and that the saturation effect of the drift velocity
appears there. This velocity bscomes
(3.12a) Y RN LN
for the field K’ of the order 103 V/cm in the wide temperature region (50 to
400°K for Ge); v, are of the order 70 km/s. K’ is the field in the ,,middle*
of the borderline region p=ct*—p~1/K.

" %) It seems that the first such theory is given in 1934 (L. Landau, A. Kompanejez.
Phys. Z. Sowjet., 6, 163) and later on it was treated by many authors ([7] — 1937; Seitz;
Conwell — [30] — 1952; Gunn, and many others).
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Specific conditions mentioned at the beginning of this Chapter prevail
in P-N transition, so that the following questions must be cleared up:

— Is the transition width (A,) small in relation to the length of the
free path of the carriers (A, ,), so that the complex effects appear as if being
in thin layers (see for instance [15])? However it is possible to prove that:

(3.12b) A,>Ay, Ay;

— The ,,nakedness“ of the impurity may cause the quantitative change
of the scattering character on the ionized impurities i.e. the carriers may not
be of ,,band* but of ,,quasi-polaron‘‘ character; it was shown in [21] in detail
that the carriers in the atomic semiconductors may, however, be treated as
,,band‘“ carriers and that for the mobility a more suitable expression is that
due to Conwell [30], which is usually considered as less accurate than that
given in [29];

— Relaxation time, or rather distribution function may depend on x
explicitly, and not only implicitly throughout K=K(x); it was shown by
Cujenkov ([31] — II) that t#f(x) if

3hw,

—,710 Nopt = W’

Vo

where 7, is a relative energy given by the carrier of energy W=W?* to the
optical phonons, W* — the threshold of the atomic ionization energy, and

(3.12¢) lK(x)l>>

ho,

(3.124) Co—coth

Eqn. (3.12¢) may be shown, what is done in [21], to satisfy any graded tran-
sition, but regarding an abrupt transition — only if A,> A,/ /4, holds, which
need not always be the case.

Hence, nothing changes in the machanism of scattering processes in relat-
ion to the machanism in the bulk, under the condition that (3.12d) is ful-
filled.

2° — The common effect of the optic and acoustic phonons were trea-
ted by Bok [33] in an alternate way (strong interaction of carriers) and under
the condition that
m* vd

(3.13a) m*ve <kT and <kT,,
where ve is the phonon velocity and w; — the drift velocity. He got the
following parametric dependence for vy and w:
K 1/
(3.13b) Lo L Fy () ~ Eufiteos Eom ( )2
ds 8
(3.13¢) Kvgs = K2 =G5 (&),
where the subscript ,,5¢° denotes the type of scattering (,,ac** — acoustical

and ,,opt — optical). As Fy's and G,’s are the known functions (different
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for various s's) — p,'s, vgs's and T, for the given field (and T) can be ob-
tained from (3.13). The resultant mobility pe can be obtained according to:

(3.13d) LN .

Mq) “‘ac y‘o pt

L, ! )_1=H®K2.-. L:KZ(I + 1 )

Vdae vdapt (2]} ac Go pt

1 1
=Fac+Fopt:Ee( + )

aco  Hopto

[(3:13¢)] deq,=1<(

According to ([38)])
2v%,
Haco
we obtain from (3.13d) and (3.13¢) for the larger field (£,2>1)

B \2 Com* g2 Ropy |2 1 2942 V)12
b, hoy  Hae K2\ g taco

[Co m* v g2 u,,,,,,,'J 1 1 1
Tl hey, el He,

(3.13f) Goo =

1 h
(1= L) and G2,

*
C Mopto- M

[(3.13g)]

Lo, Haco  Hopto ’

The member (...)/K?2 is <[---]* for the fields large enough and by
developing {- - -}!/2 into the series, we easily get

(3.13h) (“¢>)2 fron o, L oo —poK- _hwo( Hhaco )”2

A — N
5 @, C,m* Hopto U (I)OZ K Co m* \Ugeo + Kopto

which is at least semi-quantitatively correct, and it agrees with the results of
other authors mentioned earlier. The value of this method is in the fact that

the explicit dependence po (K) is obtained-according to (3.13g), and as

Lo/ o) = Z;ij =£,2 we have also the dependence T,(K).

We remark that the dependence o (K) is incorrectly deduced in [33]

(eqn. 3.13g is not obtained) because the ,,energetic* expression (3.13e) accord-
ing to (3.13c¢) is noted in an non-adequate way:

(3.13) o K2=Gap+ Gope, ([33] — p. 128),

and there is even an unadequate conclusion that the saturation exists at lower
£,/s i.e. K's (because the member with &, prevails in 3.13i for the lower K)

and that there is a further (,,acoustic¢‘) increase of 'vd~\/1? after the ,,Ohmic*
part of vz~K and the part od v;=1v;=const.

b. — Avalanche ionization

1° — According to Cujenkov [31] — II, the distribution function in the
SC-region is shown not to depend explicitly upon x, i.e. avalanche ionization
phenomenon may be treated in the same way as in the homogeneous semicon-
ductor, if the condition (3.12¢) is fulfilled.

We should note that the avalanche ionization in solids may be equalled
to impact ionization in gases (glowing discharge; Townsend, as early as in
1901) only formally, because in reality there are some essential differences:
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— no pair- carriers are created in gases: hardly mobile ions (u; <y,
but p,=~sp,) are there instead of holes, and the conductance is monopolar;

— drift velocity has the saturation long before the avalanche effect, as
it was described in the Section a. — so that the direct acceleration in the
field is almost prevented and the impact ionization takes place indirectly: the
field increases the average thermal velocity (vg) i.e. carrier temperature, and
at such distribution the fastest carriers ionize neutral atoms which have the
ionization threshold ([31])

1422
. )2 P
(3.142) W= (00l gy e
2 m,
142
my »
and ionization probability
(3.14b) wr (M)~ w, J— 0 = W, (W— =),
where W; =W, — if the intrinsic ionization is concerned, and wy=const. —

ionization parameter.
In [31], for the field K’ defined at (3.12a), the following is obtained:

Vm*Clho 'Ud>
(3.14¢) K'~1.13 Y—= i (kT);;z o2
where {o is the parameter of the ratio between scattering by optical and that
by acoustical phonons (for Ge and Si of N-type, it is 2 to 2.5 for the wide
temperature range); all other signs are as before.

2° — By introducing the characteristic lengths of the free path (A,), the
field (K,) and the ionization probability parameter™®:

_ Nope . 1 hoy, _ 2mug?
(3.15a) Ao=Ag, n: 'cq,z> Tc. W*[p,m]NSOA, Mg = 5
(3.15b) Ko=2" \ oy~ 104—10° Vjem, K* =7
e, eA,

i 2w+ 3k
(3.15¢) Po=Wo, lﬁp ~wo- 10712 =1 to 105, ('v*:\/ w2 Nopt = 4CVOI:0*)

Cujenkov obtains the expression for the coefficients (ay,,) 0

tion, for stronger fields, in which only we take an interest (z.
22 34T (3 >1/4

(3168.) 0(( )_ v* nopt.ze 2.314.T(3/,) RN
\/n Ay, 3.T(/) 231

*) Numerical values in (3.15) are calculated in [21] according to
for T=1300°K; w, exists within the range of 10'2s—! in case of week ioni:
lattice scattering, and up to 10!%—! when the ionization is preponderant.
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which is very similar to that of Kel’dy§ [38], where the attention is paid®
to whether the dielectric constant (¢) is near the unity or ¢>1 (which would
correspond to Ge, Si, GaP and GaAs):

2.3 LGA) @O 1

’ e Y a—22 .
(3.162") w(z)=2"e [ T 5

|-c@.

where C(z) almost do not depend on z, and where va2.

The compositions of eqns. (3.16a) and (3.16a") are similar, but we have
decided to take (3.16a), because (3.16a’) cannot be used for the limiting case
K- (z—0), then a~z!2, but if K increases, then ionization must also
increase.

By introducing the notation
° LA le _ ko
A*=A%lky, T=ek A TN TR ‘P“@CO_WO.,
(3.17a)

A=%kx2é¢, B-2LCH (w 340 )”4, pp =

ra/a \° v*p, T Ak,

where kb, and Ak, are arbitrary coefficients for the correction in calculation.
Instead of (3.16a) we get the rearranged expression

B3 .
i3170)]  y=aA*=-... =ﬁ—xiz¢isF(x, $-e 1, (x<l)
€Xp

A

suitable for the quantitative determination of parameter from the exact nume-
rical results (according to [39]).

We remark that Wolff [40] was the first who gave the theoretical treat-
ment (by means of kinetic equation for distribution function) for finding a, ,'s:
he calculated the dependence « (K) and he managed to get the analytical depen-
dence of the type:

{78l
(3.16b) %y p=An,p € LE®] (4 and bs£f(K)),

for silicon (with m=2). There are various approaches both in [41] and [24]
— 1961 to the relations similar to (3.16b) but with m=1, while regarding
low fields (K<K’) it is shown in [39] that m=1 should be taken and by
strong fields (K>K’)—m=2. We see that our rearranged expression (3.17b)
has advantages because:
— it has an adequate physical interpretation for every parameter,
¢

— it shows that the exp (—xzj) need not be a preponderant factor for
the change of « with K, but that may be F(x, y)=F (K);

*) In [38] — 1965 the attention is paid also to the orientation of K in relation to
the principal axis of the equi-energetic ellipsoid; the relation is roughly similar to (3.16a").
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~— the parameter A4 is wuniversal (it is compared with [39] in [21] and
A =3 is calculated); thus we have four (A* B, W* and hw, or {) parameters,
which is more than in other works, with mostly three parameters, i.e. eqn. (3.17b)
is more correct.

3° — Multiplication factors are best defined as the ratios of current at the
output to the current of same carriers at the input of the transition (and not
as the ratio of concentrations):

Jp(xp) _ Jpn Jom . ( r_ My ’ PM)
3.18a) M, —T200) _Jav  pp T (a0 Muooppo Pu)
( ) P Jpxy) g " JTno " n, ? Po

not only because M, y is not equal to M, ., but also because the starting
relation (eqns. 2.2 without the recombination part and diffusion current)

1 dJ, , s, 1
(3.18b) —— ==t gy =gt (v TPV =—2 . —

e dx dx e
is written in a simpler way by means of current®):

dr, dr
(3'180) ;:an-]n‘*'ap-]p'*’egi:——d—xﬂ
with:
Jp=epvy, and J, = —envgy,
and it represents the linear differential equation:
aly,
(3.18d) ;—cx(x)-],,(x)=oc:,,(x)-J+egi, K==y — Uy
where, by definition:
(3.18¢) ap=—2 and oay=—2-, (an,p>0),
[vap| |Vl

under the condition that drift velocities (vg,, ) need not be (for lower K) the
saturation ones (v;p,,). By solving (3.18d) and knowing that ([21]):

dr, dj
J:J’ﬂ (x)+Jp (x) =JnM+Jp0=Jn0+JpM, E:—-——d—f,

(3.18f) (J=Jp+Jp=C");

Ix, x)=[ ay(»)-exp (— [adu)-dy=I,—1 +exp(— [ adu),

according to the definition (3.18a) — left, we get finally:
M,, = (1 +%Ip9 -+ Gip/Jno)/(l _‘Inp)s

no

(3.18¢g)

Jno I
; Mp=(1 ELLy S (RN ep/Ipo)/(l—efo.lpp)
I po
*) As we have v4,>0, v4,, J, and J,<0 both for reverse voltage and for N-P tran-
sition as in Fig. 2.1b, reverse currents are considered here further on as positive: calculations
are carried out with the absolute values of current.
v, and v, are the rate of ionizing collision acts per carrier.
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where the integrals

Ipp =Ip (xn, xp); Iyo=1, (xy, xp); I, =1, (xy, Xp);
(3.18h) x 4 4
I,,=focn e Ydy, Il,zfocdn,
*p *p

are dependent on the field, i. e. on the voltage applied.
Similar expressions are obtained at other places, but

— it is assumed in [42] that the generation does not change with x i.e.
with K, so that instead of our

¥y
—Iadu

(3.184) Gio=G;(xy, xp), Gi(x,xp)=e [ g (e

*p

a simplified expression is obtained, which need not always be correct; Cuenkov
considers that g;=0 (in [31]) and he neglects J;

— M, and M, can be immediately seen from (3.18g) to be different
not only in the general case but even when «,—a,=a=0: ionization by elec-
trons and holes being the same, (My=M, only for J,,=Jy,);

— if we assume that approximately
(3.19a) ap=katy, kaFf(K)

which does not result from (3.17b), but it might be accepted for a ,,narrower*
region of K's, and we obtain

b —1
(3.19b) M,=—=°

T b —e—1
éaep

(as for instance in [25] — 1956) only if J,, is neglected together with g,.

c¢. — Breakdown criterion

1° — In all the papers known to us, the breakdown is considered to
take place when the corresponding value, e.g. current, becomes extremely high
at the ,,excitation* (for instance voltage or the field) reaching the correspond-
ing breakdown (critical) value:

(3.20a) I, J>o for U=U, or K=K,.

Nevertheless, if we consider it physically, at least two objections can be made:
— the ,,excitation‘* in one process approaches a certain value, hence
U-’Ub or (Ub—U)'—>+0,
— and apart from that, new effects may originate from the tendency of
the sudden increase of I, and they may be of great importance in that situation,
so that the further increase is slowed down to a certain extent.

Hence, the process o0 may not even take place, but a situation when
the slightest change of excitation causes an extremely great change of I may
take place in the common effect of the ,,old*“ and ,,new‘ processes:
[(3.200)] :—2—»:» when U—U,,
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which is physical y more adequate than (3.20a); when U—U, the current may
have the finite value I=1,.

2° — By applying the above to the avalanche breakdown, the breakdown
condition is obtained from (3.18g):

(3.20¢) 1—1I,,=0 or 1—e’°~1pp=0,

with both the conditions identical, which can be easily seen when using (3.18f)
— below. Thus, the breakdown criterion is finally:

y Nb
*Nb _f xdu *Nb fadu *Nb
(3.204d) f %, e dy=1= f ap e’ -dy; f ozndx=élnk°‘l,
*pb *po *pb *

where the final expression is valid only for h,= const.

By applying the above to the calculation of the minimum width of
SC (A,min) needed for the start of the avalanche breakdown (but not that of
Zener), according to (3.20d) and (3.17b) we have got the quantitative relation
A,y (Kp) in [21] and calculated A, i~ 500A for Si and Ge, which agrees well
to the well-known fact that Zener’s breakdown takes place at small widths of
about 400 A ([25] — 1960).

d. — Breakdown regime current

1° — Let us assume that b, =a,/a, =C* is valid. Then (3.18f), (3.18g)
and other expressions become somewhat simpler, and the following expression
is obtained after a detailed analysis (in [21]):

DnP DpN
LN B+
bal Lypp Lynte BO 147

ba 1—-78()
where, by applying (3.17b), B(U) is:

(3.21a) J=

. eniZ

@(U)=zl;—eXp[(ka—1)fXNandx]= =

M, U\3/4 2M,
“Eka—1) exp [(—) (b, —1- £ ]
W/ V) 2 ) . Uy 7D 3 7 E—Cb U—b1 b2 U3

2M,(5H —1)/3
£2Ma ka.exp[z_ggz (/aa_l)]

=23(U) =

4

and where 2B(U) corresponds to the abrupt asymmetrical transition with the
constants:

e, W* 1, K,\3/2 3¢, \2/3
3.21 M= 3P % g (K2 g g —) ;
(-21¢) 2 2e2(A%2 A & (K,) 1= 0 (2 AB,
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K, and U, are the breakdown field and voltage which are obtained from (3.20d):

314N N _ba—l1 2eNU,
(G:214)] T (S LT N SRl
- N, In by ) €€,
with
(3.21e) Ny— 2 M N== 0 K
3 €2 (A%)2 4 K,
- lﬁip _ip

Zzi 3a(—1)? (_1;5.,, 3T 1-g, 3 )

=S 4! p—3/4 P '
The ratio vy, is
(3.211) ypa= T N LA

by—1 aynTeDyy R/ Tw Dpy-a,

We see that the current is expressed through our basic parameters (W*, A*,
B and ¢), technological parameters (N, t, . ..) and intrinsic properties (g, ny, ...).

2° — Let us analyse our expression (3.21a) now, and compare it with
the results of the others.

By assuming that «, , is given (empirically) with the expression a,, ,=
=Cp, » K7 Vul has obtained the expression:

r+1

(3:222) BU) = ks e=() 7

for the abrupt transition. We have put the above index ,,0°, because a~K"
is really a zero approximation.
bn
Starting from the approximation «,~e€ *, which might be somewhat more
correct but physically it cannot be justified either (see point b.), and after
neglecting some facts not quite in an adequate way, Armstrong obtained [42]

K m  exp (b,/Kp)
3.22b 1R(U) = [ Lmaz )™, n y Kppr=|K| 4o=K
(3.22b) fm)(&)“mﬂw maz=|K|maz=Kn

with m=0, 1/2 and 1 for P-I-N, linear and abrupt transition, respectively.
Both according to (3.22a) and according to (3.22b) the constants C, ,, r and
b, cannot be adequately linked to the real parameters of the avalanche ioni-
zation (hw,, W*, A* and similar).

Our expression (3.17b) for a A* is already partially checked® (for strong
fields); the value x2¢/4 ($~0.02, 4=3, x<10, K>K,) can be easily seen then

_ *) We have got (3.21 d) on the basis of (3.17b). Then U,=26.6 V is obtained for Ge
for N=101% cm—3, while according to the experimental data U,=27 V! We have further
developed the idea of getting dependence U, (N) in [46] for Ge, Si (and GaAs) and obtained
satisfactory agreement.

4 Publikacije
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not to exceed the value of about 0.7, so that it is possible to write approxi-
mately (for e?*~1+2z)

* B = 3¢,K, 1 B,Y, 32 1

3.22 Apoy =ty JK—23n8n  — Tnn g2 1
(3.22¢) %n =K, v 24 Kk A K32
where we introduced separate constants B,, ¢,, K, and A,* for electrons,
because B depends on p, i.e. on w, from (3.15¢) i.e. on the sorts of carriers
and materials, and we have left 4 to be ,.universal‘* (4= 3). In that way we
have obtained (3.21b) for 278(U) where all the parameters are physically clear;
b, and b, are either both positive (for Ge) or both negative (for Si). By
comparing 2°3(U) with "3(U) according to (3.22b) we see that:

— B's are rapidly varying functions of U near U, in both the cases,

— both the expressions contain the product in the form U-b1¢e/2(),

— but b)’s differ in magnitude and they may differ in sign, while the
functions f;(U) can differ very much.

The assumption a, =0, i.e. b,=1 (used for instance in [43]) is very
rough, but if it is accepted, the result obtained is very interesting:

J Gip
1+ P, Inpg +‘;__

*N
(3.224d) M,=—""— "o, Ipge= a, dx,

1—Ing,

*p
and it is possible to see from (3.21b) and from (3.22d) that the following
expression is not obtained for M, :
o
)"

Uy
which has been used empirically by many authors. The expression (3.22¢€) cannot
be obtained from (3.22b) either, but only from (3.22a) and that exclusively
for Uy =&y

That the coefficients n, , in (3.22¢) are not constants is proved even
earlier in [17] — Vol. 1, pp 294 to 310 (Fig. 10).

For smaller reverse voltages, B(U) is approximately 1/4, and v,4 accord-
ing to (3.21f) -
(3.22f) Yoa= - =a = LN

0 77w Dpy

(3.22¢) M, ,~

(xn—xp)

and then (3.21a) transforms, roughly, in an expression obtained in [22] and
[32] for reverse polarization neglecting the avalanche effect, where °J depends
upon U, only through (xy—xp)=A,.

By developing "Bk, into the series (Bbky~1—1I,+ - - -) in [21], the more
correct expression for current ('J) is obtained. It enables the conclusion that
the influence of multiplication is negligeable for U<0.1 U,, but for U=0.6
up to 0.8 of U, this influence is considerable, and that happens far from the
actual breakdown.
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Chapter 4. — VERIFICATION OF RESULTS AND F URTHER ANALYSIS

The accuracy of the expressions derived: for the distribution of potential

@(x), the temperature dependence of the width of space charge, the ionization

coeff1c1ent the ,,recombination*‘ function I3 and the expression (3.11b) for
G(y), will be estimated.

Various methods, either those based on our experiments or experiments
from other authors or those based on our calculation or on data of other
authors, will be used.

In the further analysis we shall try to find out, whenever it is possible,
either the applicability of our results or the consequences.

4.1. — Estimation of the accuracy of the potential relation and its application

In Section 2.2 point ¢ the expressions for potential function ¢(x) were
derived and comments have been given, respectively. Now it is necessary to
make a qualitative or semi-qualitative estimation of the accuracy of these
results.

At the beginning the errors in those expressions similar to (2.21e) and
(2.22) will be estimated and our expressions ¢(x) will be compared with the
exact ones in relation to asymmetric abrupt transition (P> N).

The relation obtained in [23] has been taken for comparlson because a
precise calculation with a calculating machine was done.

4.1.1. — THE ESTIMATION OF ERROR

a, — General

The mean-value theorem (for integrals), will be used for the estimation
of the error, using the way like in [23] and the same symbols like in Section 2.2.

For an abrupt transition </, =c/4 is valid and Z,2=0, so that the de-
nominator of the integral (2.21c¢) can be written as

- ~ tanth ~ G2 tanhq; o )
W2 2] — u L Lk % SR
[ 1 & (cosh @,) (1 3 %ty o & T

R tanhq?u L E2\l2 N cosh "u 1/2
=—oc(1— 3 oc—l-ﬁ) 1+ F @2 ——2—<P— ,

where F is a ,,residual“ functional (|F| is smaller, or much smaller than one),
and the integral can be written as the definite one

& &
4.1a ix_x°=ff(&)—ﬁ= ! f By da= 2@ with
(412) Np J VIFF  Vi4F 7 Vi1+F
ab ac
- tanhg, . &\ V2 40 -
(4.1b) s@=a-(1-20% 5 B0 rG) amg,—,

4*
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where ¢, is the ,,asymptotic* vzlue of potential for P-or N-region, o, = ¢, —q,;
F=F(a), a;=C' and its value is between o, and «. Our expression (2.22)
is approximate (it was assumed that F=0). Let us assume that (2.22) is exact

for @ () = ixA % so that® it is:

Di

a=F+dx, ®(@)=D@E+30)-0B)+3P— \/1+F¢(B)~(1 +§)¢(B)
| (4.1¢) | .
— D)
@]

o= o@E~"%5a or |80Z|~|£
z da

and it is necessary that the error is smaller than |3«| for « in the interval («,, 0).
This general expression is not derived in [23], and from (4.1c) one can

find that it is « In % for ]tbl/}f| if expanding coshp one stops at square term
o

(then it is f(x) = 1/x).

The estimation for the largest values for |F| and |®|/|f| was made in [21]
so that taking this into account and expression (4.1c) the error and the biggest

value for |a,| are:

B - hou| |- - |8a|-e-80\1/4
41d So|<tamheal Zhg \<(7)
—|( )I | a|\ 80-¢ |%| ‘%1 i [tanh @, |

Using our notation for expression in [23] one can get that it is |8x|<
\Egh—q)ﬂ\ %[>, which means that for the same interval |a,| the relations (2.22)

will have a (3 ]ac’2/40) times smaller error from the respective ,,exponential*

relationship (&~exp _x). That means that our expression will be more accu-

<X Dt .

rate up to the value |a,| =+/40/3=3.65 i.e. that the interval |a,| using our
expression will be larger until the tolerated error is fulfilling the following
condition:

(4.1¢) |8&|<£‘tanhq§u|.

One can conclude from the above that our relations are practically always
more accurate and that the interval, in comparison to the expression given in
[23), is extended for

- - 3x | 80 i 3% 6 /
(4.11) |0ty | 2.22)— | o2 = (Lel)‘ L(JLel)l 2,

|tanh @, | tanh g,

for instance, if ‘ ]:10%, it is (2,17—1,2T)~ 1.

tanho |

We are going to use those results on some abrupt transitions.

*) Minus sign is related to the N-region (x>0) and plus to Peregion (x<C0); the same
s valid in (4.1a).
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b. — P-I Transition
We are not going to discuss the distribution of potential in I-region
(x>0), because it can be expressed with an elementary function (in equation
22l1¢, Z,2=0, ¢,=¢;=0 and </ =c4;=0).
For P-region of an P-I transition [oc‘c’ is smaller than (¢°—qp) so that
from TB.d for N=0=g, one can get easily

~ _ cosh op—1

~5 _ 2n;(cosh gp—1)+@pP I& ’g’&o]_c}o_ "
— o e =

(4.2a) 0] »

sinh (—gp)

and the largest error in the whole P-region (that means on the edge of the
transition) is equal, using equation (4.1d):

. ' 3'<’Lan_h§ﬂ '04=&§51)__‘5 )< —0.46%.
[(4-20) | 9] < 80e |«°] 80 e cosh g, | sinh g |2 ¥ (%e) “80e %

One can show that the function y(cp'P) has no extremes and that it grows
monotonously, approaching (assymptotically) the above value, when P/n; and |¢p|
is approaching infinity — i.e. descriptively: for strongly doped P-region. Using
[23] one can see that the error would be about 6,1%.

We should remark that the analysis leading towards the relation of type
(3.2b), has not been done in [23] and as far as we know nowhere else.

¢. — Symmetrical abrupt P-N transition

Now cEN=—c}P=sinh—1£N— and the biggest value for [ofc] is oy so that
n;

for the whole transition the largest error will be like in T4.1, depending on the

doping level N/n;. This fact, once again confirms what was said in section a:

- N
|8 |=f (—) Jor the whole symmetrical transition T 4.1
n;
5.78
Nin; — 0.1 0.26 1 5.78 10 38.45%) 57.8
100
. N 2.89 o O 1T
¢y =sinh—! — — 0.05 0.13 0.483| 1.782| 2.31 3.65 4.055 J
n; 100 ) ]
100 tanh ¢, 289 | 5 12.9 449 | 94.6 | 99 100 100 |
i 1l
P | i —
*|, ean. ~10-% | 1.5-10-7 | 1.7-10—* | 0.011
@.1d) ] 0 1.5 4.4 13 81 124
— — R
ref. [23] ‘ 1.5 10-+|7.7-10—4| 1.3-10-% | 0.64 | 18.5 | 324 81 100
| | |
*) For this value the errors found, using [23] and (4.1 d), are equal. The other
values different from decade units are taken for comparison from [23].
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— our approximation is far better than the exponential one for
,,reasonable** values of errors;
— for higher doping levels (higher than 10), even our approximation

cannot cover ¢'s for the whole region of transition — in the neighbourhood
of x=0 there exists another distribution of potential.

d. — Asymmetrical P-N transition

Let us assume that the degree of asymmetry y=§— :::;1 l'f;” [ (P> N),

is much bigger than 1, because if not, the situation is very similar to sym-
metrical transition which already has been analyzed. Besides that, let us

assume that the doping level ot N-region is much higher than 1 (£>£>1),

. . R T
because in the opposite situation it would behave almost like I-space (see
section b). The general expression for |«°| is from TB.d:

(4-3 a) i &o l = (I’o —EPP = cosh q;P_COSh q;N +sinh (;N (q;N_(;P)

= = =z (¢x> Pp)-
sinh ¢y —sinh ¢p (x> o)

1° — In the P-region it would be useful to estimate the largest value
for |«°|. It was shown in [21] that this function has no extremes in the proper

sense, which is physically clear, but for gy the condition fi =0 could be ful-
Pp

filled in interval between 1 and 1.91 which means that there z (|¢p|) is not a
monotonic function. Meanwhile, for bigger v’s, |a° |=z is tendmg towards 1

not depending® on the doping level in N-region (only py< —¢p must hold),
which one can see easily from expression (4.3 a).

From all this, one can conclude that
— for y<1.91 ie. for E<66 for any degree of asymmetry, ‘oc | is

not larger than 1.91, so that by expression (4.1d) is

(1 91)

by | 155 < L2 er| (1 g1y (LOD

0/.
80e ~6%;

in the whole P-region (using [23] the error would be even 22%);
— the largest error, for the whole P-region and any y’s, the doping
levels being higher than 6.6 (pyx>1.91), would be

|tanh gp | \on 4,

(4.3¢) |8 | < g

while for a strong asymmetry (y>1) it would be only:
T 14

4.3¢’ 3 —=~0,5%,.

(43¢ 3] < -~0,5%

*) We can note that, as far as we know, nobody has mentioned this conclusion before.
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To compare this with the results from [23] let us assume that [8& | =10%

and then «°=2,16~2. That means that for v=1 one can go up until the

doping level reaches E IO(or for Y~ 10 with any Y) But using the assum-
n;

ption made at the begmmng of this section, one can suppose that approximately

(4.3¢) 2 sinh cENNe“’NNZ coshgy and 2cosh ‘(;PINCI¢P{N2 sinh | @p|,

especially because we are intef¢sted now in region | cEP[>cEN>2. In [21] it was
shown that between the smallest degree of asymmetry v, (for the error of

10%) and doping of N-region N ~e® there is an approximate relation which

n;
could be written like:
Ym+3
N €Xp 2 -
| (4.31) | —r —=—, O Yp=Iny,+2¢y—3.
n; \/Ym

One can see that vy, depends on the doping level too, and increases with
x> so that the statement made in [23], which says that the exponential

approximation is valid for the whole P-region when §>10 (with 109, error)

is not true even for our more exact approximation. From (4.3f) it follows
that the above is correct only for 2¢n=10—2.3+3=10.7 or for ﬂ<200

2° -— In N-region our approximation need not be valid near the transi-
tion (about x~0, range II in Figure 2.3b), as it was said in point e¢. — Sec-
tion 2.2. So the space beginning with x>x; — regions IIT and IV in Figure
2.3b is interesting here and, also_the question of the magnitude of the error
[80(] for x~x; or x<x; (when ¢~0 or 9,<0). Now a,=¢py—¢,=>¢y and
@u=@y; using this and equation (4.1d) one can easily make the analysis. The
numerical values are the same as in T 4.1 but they are nor valid for the whole
Neregion but only up to xax; ie. for 0<<o<<gy. It is even better not to
connect the quantity N/n, with the largest &c for the given error.

e. — The conclusion could be that our approximation (2.22) always gives
better results than the usual ,,exponential*“ one, covering practically the whole
P-region of asymmetrical P-N transitions, with the error less than 109 for
vy>10 and N/n;<<200, and it is almost exact (0.46%;) for the same region of
P-I transition. Roughly, |3«| is smaller than 15% for J&c|<2+3.

Taking into account the approximative relations

(4.4a) A/L=C1+ln[&| and |«|=C,+1Inp or |&|=C3+1nn,
Di

where n and p are the respective concentrations of carriers and x is the dis-

tance, one can see that

(4.4b) 19x] 18] gng L—_|3y
Apg o p

anl

so that |8x| can be even smaller than |Sa«/|, while ]Sa] is the relative error for
carrier concentrations.
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4.1.2. Calculation of variation qS(x) for some cases; its application to x;
a. — General

In [23] the exact variations of o(x) were given by using the data obtained
with electronic calculating machine (,,STRELA*), for several cases (A, B and C
as given in T 2.1).

b. — The treatment

— At the beginning we calculated the relation Zp=q~>lv(x’), using the data
given in T 2.1 for all three cases and our expression (2.22) (the potentials have
indexes 1V). The constant C,” was calculated temporarily from the condition
erv=0 for x'=0, and then matching point ¢,, was chosen in such a way
that ¢rv(x’) is identical with the exact value c}(x) which was calculated in [23]
and then the ,translation‘* was done to the ,,real* values of x:

(4.53) x:x‘—aADi
and the matching for cases A, B and C was done for
(4.5b) @ma=—0.87; 1.3 and 8.61 so that a=2.45; 0.75 and 3.28-10-*

respectively.

— For region II the approximations from TB.b were used where the
potentials were marked with indexes II and Ile, respectively.

— Besides that, we wanted to examine the exactness of the approximation
of integral in (2.21c) for region II with an elliptic integral using TB.c
(index ,,el**).

All the variations of ¢(x) for the region II start from the point 9°==9(0),
because this potential is exactly known (see TB.d and T 2.1).

For P-region the relations ¢(x) were not calculated, because we have shown
already (Section 4.1.1) that our approximation was quite exact®.

¢. — Results and conclusions

The relations ¢(x) for the cases A, B and C were calculated in [21] for
more than 20 points (the calculations were done by M. Smiljani¢ — Institute of
Physics, Beograd).

We are not giving the numerical data here because they are too extensive,
so we have shown them as diagrams in Figures 4.1a, b and ¢. The symbols
are the same as in points b and c.

— full line (,,computer) — exact data obtained from [23];

— Sh-so called Shockley approximation or the ,,space charge approxi-
mation- ¢(x) is then a parabola (see Sec. 2.2¢).

The analysis of the dependences in Figure 4.1 gives the following con-
clusions:

*) One can see from T 2,1 that |o,|=|&° |=9°—qp is equal to unity for all three cases,
which confirms our statement formulated in sec. 4.1.1 (that «°—1 for y>>1) once again.
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1° — Our expression (2.22) can approximate the variation of ¢(x) in
an excellent way in almost the whole region for a small doping level of N-region
Figure (4.1) — for a value of x which is much smaller than x; that means
even out of the intermediate region, and not depending on the fact that the

degree of asymmetry Y=-I]:~, is big. This is in quantitative agreement with the

analysis of errors made in Section 4.1.1., where one can see from (4.1d) that
it is |da|=|3p|~tanh qy.

i

b

computer

¢ oo Fe (I=4)

o
e —— ¥y
i By

- 2
.

Nfmi= 026 Pl g0

Fig. 4.1a. — Dependences Ea(x) for the case A;

The rest of our approximations: c~pe and <(3ez, except ‘E’n’ are quite satis-
factory in their regions — for 0<x<%. Disagreement in the variation of q;H

can be explained as a consequence of choosing incorrect values for <p'1 (for all
cases we have taken q'>1=—<§N).

2° — For the ,medium* doping levels (Fig. 4.1b) one can use the
conclusion from 1°, but with a bit weaker note.

3° — The results from Fig. 4.1c, which represents the high doping level
of N-region, show that erv is still a good approximation for its region — for

occ_(pN q;c about 2—3, and that (pH is the best dependence in region II, (now
the choice v=1 is almost not important); here one should take a special appro-
ximation for region III.

4° — All our relations for ¢y, rv, Pue and ©er give fér better approxi-
mations than the ,,parabolic one (Sh — Fig. 3.1) and they are nearer to the

exact variation, even taking into account the ratio N oand a big disagreement

. . . L
for the case C. The advantage is that they have analytical character which was
emphasized previously (in section 2.2b). :

5° — Our relations could be improved, for instance with a better choice
of parameters (p;, v, @, etc.), better choice of a ,residual”“ function F(x«) in
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(4.1a) and similar. This problem will not be analysed further, here; it could be
the subject for a separate study.

—— computer
o=V l=h)

—de= By
e

Nin =5m Ply=sye’

Fig. 4.1b. — Dependences ¢(x) for the case B;

5 €

—computer
-0 ¥y, (¥=1)
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—

——

Woy=tan'  Yoota®

Fig. 4.1c. — Dependences ¢ (x) for the case C.

6° — The application on calculating the point of inversion x; given in
Section 2.2c¢ leads towards the results® given in T 2.1. The last line in T 2.1
(x;) relates to the exact values for x;; the values which are the nearest to those
are denoted by baldface fugures. On this basis we made a gradation of ap-
proximations for x; in T 4.2. For the best agreement the error is not larger
than about 15% for all cases. The ,,Elliptic* approximation (,,e/**) and Shock-
ley (°x;) ones are not included in T 4.2 because they give the biggest disag-
- reement (even bigger —459, and 2249%)).

*) Detailed calculation has been done in the Institute of Physics, Beograd, by M. Smiljanic.
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The order of relations for x;, by accuracy — T 4.2

Case The best A bit worse| Worse Bad

A IVe) av) an (1Te)
B IVe) av) (ITe) an
C | (D and (IV) av) (L) (IVe)

Using the above one can make the following conclusion:

— For ,,A“ and ,,B“ cases a better approximation will be that with
connection®, because @,<<0, and that is quite well confirmed by the results
from T 2.1 and T 4.2. The fact that (IVe) is better than (IV) one can explain
with a too free choice of parameters ¢, (p;= —¢y) in TB. (see point 1° too).

— For case ,,A“ where there is a small doping level of N-region and
even B, relatively big departures happen, which are obtained using the best
expression TB.e, since the relation for ¢, gives too large absolute values, (for

A it is ¢,= —46 which one can see in T 2.1). In this direction this treatment
could be improved. It is obviously better to take at least |¢°| instead ¢, for
|| > 9%

— The tables T 4.2 and T 2.1 show that the ,direct*“ method (II) is
better for case ,,C* where there is a high doping level. Even method (Iv) is

not inaccurate, which can be explained by the fact that the choice ¢, = —oy is
now adequate (see @ in Figure 4.1c).

The general conclusion could be, that one can calculate far more accura-
tely the point of inversion by x;iv and x;1v,, i.e. using our relations (the error
is less than 15%), than using the ,.classical® relation for °x; (last one in TB.e)
based on the ,,space charge* approximation.

4.2, — The temperature dependence of the space charge region width

In Section 2.4 we obtained interesting results, with the theoretical treat-
ment, that the dependence xp n(7) and A,(T) have maximum values for a
temperature © ,y, graded and abrupt transition. These results are shown in
Fig. 2.4.

Aiming at the verification of these results we have made the experimental
studies on the following bases:

-— the lowest temperature which one can obtain in our laboratory*® is
that of liquid nitrogen (~77°K);

— this means that the transitions should be abrupt and with the concen-
tration of impurity as high as possible (see T 2.2);

— for this puprose, the best technique is alloying, which is the easiest
to make in germanium.

*) Laboratory for Semiconductors, Electrotechnical Faculty — Beograd, and Laboratory
of Institute of Physics, Beograd.
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a. — The preparation of specimens. Measurements were carried out using
the following P-N junctions:

(AD) — emitter’s junction of a germanium transition which was made in
IHTMI® with alloy-diffused technique.

(Z) — Zener silicon diodes, produced in EI-Ni§, with the breakdown
voltage~20 V.

(S) — Diodes specially made
for this purpose®).

The last type (S) of transi-
tion was made, with alloying pro-
cedure, on N type Ge. The room
temperature resistivity was about
0.01 Qcm (N~2-107cm™3). The
junctions were mounted on the
standard headers and sealed with
a proper resin to protect them
from moisture (see Fig. 4.2).

We have chosen 5—6 speci-
mens, from several dozen of all
types, which have shown the smal-
lest influence of the surface phe-
nomenon, which was checked on
a Tektronix 575 U-I tracer.

b. — The measuring method. A very well known and accurate resonance
method has been chosen, as shown in Fig. 4.3. The elements were as follows:

— (8.G.) — High fre-
quency generator (Orion 1163). o1 |
4
8 A

Fig. 4.2. — Photography of some specimen (S, Z,'
and AD) prepared for measurement.

— (T) — High frequency S.6.
transfomer with a resonant cir-
cuit in secondary.

— (Cs) — a standard va-
riable capacitor (Philips, 60—

—360 pF and a IEV MA 2400
box x 100, x 1000 and x
10000 pE), Fig. 4.3. — Circuit di for diode (D i

— (T.V.) — a tube volt- ig. 4.3. ircui mézixr;;renmer?t“. iode (D) capacity
meter (IEV MA 3000),

— (P) — potentiometer for regulation of a DC bias for (D).

We have adjusted the oscillator circuit to be in resonance without diode,
then connecting a diode the capacitance became bigger for C. Then one had to
decrease the capacitance of C; for the same amount without changing the fre-
quency to obtain the resonance again which could be observed with an elec-
tronic voltmeter (T.V.).

To obtain a Q-factor big enough the resonant frequency had to be lower
than 100—200 kHz, because the capacitance of transitions was several hund-

(STE0TTT)
1

*) Institute for Chemical, Technology and Métallurgy investigations — Beograd, La-
boratory for Semiconductors and special materials. The junstions were made by Ing. D. Por-
devi¢.
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reds pF for U,,=—0.1 V. The capacitance of all diodes was measured for so
small reverse voltage (0.1 V), because then the changes of temperature of xyp
were higher as follows from eqn. (2.31b). Really, for an abrupt transition
Fo(xy.p)=0 and

B 3 Wgu> 1272 sinh-t —(i @)
x;VUE_—deU:wg:_Z»: e =2 LnNU vu 2 " 2 ’
dkT ddyldxy Xy
[(@62) | po 20PN T
L St A T E@NP+N) NNy 2y np=mB=nmez, Wy —eU’,
since 4% - _XvuN__ " ying (2.31) and (2.17b) with 8W5— 0. From (4.6a)

‘dxy  Fr(4ng?+ NHU2’
one can see that xyy depends on U mostly thoughout the numerator Xy,
which could be seen even better if one assumes that 7nyy> 1 (this is surely
true for U=U,q):

1-sinh—! vy =G+ Wp0)2 _

xyy ~F?
(4.6b) NU pw
_ a2 In 20yu—(+Wou)/2 _ 2 IMIN/A (kTP
XNy Xyu
When U increases — decreasing |U,,,|, Xny increases its absolute values
similar to 1 ~(Up—U'y 12 for T=Cte.
Xnu

Diodes were not directly polarized, because a diffusion capacitance, which
is more difficult to remove, would exist then.

The transition capacitance of the specimens was measured at four tempe-
ratures in a cryo-apparatus at about:

77°K — in liquid nitrogen,
195°K — dry ice CO, in acetone,
295°K — at room temperature and

370°K — about 95°C in a thermostate furnace (or 335 and 350°K, see
T 4.3 too).

We need not verify the accuracy of the measurements because it was
higher than necessary.

¢. — Results. The measured values of the junction capacitances are given
in T4.3 as a function of temperature (for symbols S, Z and AD see the
previous text). Special attention was paid to S — specimens, which were divided
into three groups I, 1I and III with similar variations of C(amb)/C(T)
[C (amb)- capacitance at 295°K]. The dependence C(T) for every spe01men was
measured for each temperature twice during decreasing and increasing T, so
that the values in T 4.3 are average values (the dispersion was small-about 19/,,
for all T, except for 370°K where it was smaller than 2%). Only diode Z II
had abnormal behavior; its capacitance decreased with increasing T7; it is
obvious that temperature 7° was not low enough so that xyy became
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positive; with additional investigations it was shown that Z II had a pinch-
-through effect, so that its behaviour was not studied more.

C (T) dependence of junctions [pF] T4.3

T [°K]
The 77 195 | 295 |370%
specimen
S1I 761 831 | 927 | 1140
SII 635 | 697 | 777 945
S III 801 881 977 | 1180
Z1 155 178 | 220 245
Z 11 99 66 60 54
Z 11 175 190 | 225 250
AD 11 15 30 69
*) For Z I and AD —335°K, but for
Z IIT —350°K.

Because all transitions are abrupt
and very asymmetrical (P> N, A ,~xy)
one can write, using a known axpression
for C(xy) (see for instance [15]):

S
A €€0 T . : .
Ao (T) XNU
AAQ(T) P XnuU (T) ~ C(amb) "-—:y(T),
plamb)  xyy(amb) c(m

(4.6b) C(T)=c(T)e,

where room temperature values were
taken as standard ones, (,,amb“— 295°K)
and where we assumed that the changes
of e(T) were neglectingly small
(for o,=238¢/edT are given values of
order 2-10~4 1/°K-—-[27], while from

T 4.3 one can see that \occ|=~8—c~ is at
C8T
least of order 10—3 1/°K).

Using the data from T 4.3 we calculated y (T)~xyy (T) and the results are

given in Fig. 4.4.

MlT) _xy(T) _ Cfamb)
Aglamb) ™ Xy (omb) )
! 1 [ [}
| ] |
| . : i | Only
T NG z |1 [ulmr foru
s N ; Clamb)[220[60] 225 'f
SR\ [pF] ! I
12Fsin ! f T 3
pinch-throu_lqh
Ielfecl abser“ved
scale ! :
i ! I
! ! I
! I : [ 2
1 | } !
I I | i
1 | 1 {
! } ! :
! kK : i
! , LAD" Clamb)=30pF_|,
! | ! i
i [ I 1
| : : |
: | | !
| I |
1 | [ !
T : ! zZi 0
! i ! Z!\A !
| s 1 ]uji : '
ictamb)|927]777]977 | !
I TpF] ' 1 smr
! i su
; 4 : vs!
77 195 295 370
— T[]

Fig. 4.4. — Dependences x,y(T)~y(T) according to (4.6c)
and data from T 4.3. The scale for AD is on the right.
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d. — The conclusion is as follows:

— the variations of xy(7T) are qualitatively in agreement with theoretical
consideration, x, increases as T decreases, but more and more slowly. The
maximum (Xypy mazy»> S€€ also Fig. 2.4 on the right), could not be obtained
with our measurements, since judging by (2.31g) and T 2.2 the maximum is
for @NUNG);VU which should be < 77/21 and 96/21 i.e. below 3.6 and 4.5°K
(21 = 1002/3), because in all specimens® N<2-1017 cm™3. However a ftendency
towards maximum is obvious.

— using (4.6b) and F2 from (4.6a) one can approximately write

x;v”:ejveio lnA(e 1?;)3/2 :SeZ’N CMn~ elZ’)’/Z’
4.6d) v (
RES I t A(e kTyR|*® ( N E)
e tamby=|akT| =Y [~ I s X3~V w )

N

where one can obtain xyy and C(T) using (2.17b) and (4.6c¢), respectively.
Then one can see that with increasing N the slope || or |xyy| will decrease
for T>0yy (for U and T=C*). Our measurements show this and the agree-
ment is not only quahtatlve but semi-qualitative too: the data from Figure 4.4
(say for 295°K) give

7 . —3
(4.6¢) Yar o 211070 4,

Y 175-10~3
while with (4.6d) this ratio is 7.56/6.5=1.17, which is greater than one. This
is in agreement with N,<<Ng too (4’s are not very different for Ge and Sij;
using the equation 2.31g, they are 75-102° and 60 - 1020 cm—3/eV3/2 respectively).
One can obtain the same for (AD)—(S) but here it is not possible to make
a quantitative comparison using (4.6d) since AD is a diffusion transition

(with an ,,opposite gradient: %< 0) and (4.6d) is not valid even approxima-

tively.

One can consider this effect experimentally almost proved: A,(7") in Figu-
re 4.4 shows a clear tendency towards a maximum with decreasing 7. It is
possible to say that we have not used a very low temperature here, but later
we have proved this effect directly (in [44]), as was said in Chapter 2, not
only for Si and Ge transitions but for GaAs transitions too.

4.3. The verification of the relations for ionization coefficients

In Section 3.2b, using the theoretical observations of other authors, we
obtained the relation (3.17b) for ionization coefficient « (preferably y=aA¥)
and we have applied it on the phenomena in P-N transitions. Now one should
verify its quantitative side which will be done here for Ge and Si, although
this treatment can be used for other materials too.

*) According to [28] for Si the breakdown voltage U, is 20 V which corresponds to
N~6.10'° sm—3, Measuring U, (on the tracer) of our ,,AD* and ,,S° transition one can obtain
6V and 4.5 V, respectively, which gives, by [28], N=10!® and 10" cm~3, respectively.
A(ekT)¥?

**) More exact calculation [21] yields |y’| ~In —
211 y 1] JPN
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4.3.1. — The applied procedure
a. — Introduction

One should know the following parameters to be able to find out quan-
titative ionization coefficient as a function of the field K, for every type of
carriers and for a particular semiconductor:

A — a dimensionless constant independent of the type of materials and
carriers (4 =3),

B — is almost the same like A, but it should depend on the probability
of ionization i.e. type of material and carriers. This could be found using
(3.17a), (3.15a and ¢) and (3.14b). \

W* and hw, — the ionization threshold of the atom and the energy of

ha, .
o =G

Ax =D the characteristic length.
x

W* and A* are parameters which depend on the type of carriers and
materials; hw, depends only on the material type. ‘
We should note that one should know the parameters Aw, and W* sepa-
*

rately because they take part not only in ¢ =hw,/W* but also in x=

optical phonons, or parameter ¢ = 4,

ek A*
b. Method of calculating the parameters

Taking into account the experimental function «;(K) for a particular
material and the type of carriers, the ideal treatment would be to change all
four parameters, using a computer, and to try to find an optimal fitting with
the function (3.17b). However the parameters %, and B have been experimen-
tally obtained, although the various authors give different values for them (see
T 4.4) so that the method mentioned could only be formally correct.

Because of that, we have proceeded as follows:

1° — One can assume the parameters B and /i,

2° — One can calculate W* and A* from two sets of values («;, K;)
and («,, K,) for « and K obtained from a known curve «;(K) and our equa-
tion (3.17b). The calculation cannot be analytical, because the equations are
transcendental and we obtain our solutions using a graphical method drawing
W* as a function of A*, using (3.17b), with parameters o,, K;, B and /Ao,
and «,, K,, B and /e, (the solution for the right values of W* and A* is
obviously at the intersection of two curves*).

3° — With the above obtained values for the parameters, we have drawn
a curve a, (K} which is compared then with a known one («;); if the agree-
ment was not satisfactory (although «, and «; must cut each other at two
points), we repeated the whole process for another set of parameters.

¢. — We could not verify the exactness of such a procedure so that results
obtained are more semiquantitative than quantitative, since even the ,,exact‘
dependences «; (K) are not very raliable.

*) Sometimes we have used an exact diagram from [39] instead of (3.17b) but then
we had to use a graphical solution for obtaining the corresponding values W*—3*. A. Mutav-
dzi¢ helped us in performing this calculation (Electrotechnical Faculty — Beograd).
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4.3.2, — The results and the comments

a. The starting data are adopted from the literature whose values are
given in T4.4. One should remark, once again, that those data are not quite
exact, but they may be regarded as starting values. Some authors obtained
those data finding the best fitting between the experimental results and the
theory.

The source data for parameters and o, (K) T 44
For material and the carriers? |
. 1 Using:
What!) Germanium Silicon (remark)
n | P n | p
0 | 100 70 100 128] — 1957.
A*[A] 130 — [28] — 1955.
— 160 — 200 — 260 [40]
l l
s | 35 s L3S [28) — 1957.
W*[eV] 1.5 — [28] — 1955.
— 1.5 — 23 — 35 [40]
25.10-3 51.5.10-3 [31] — 1958.
ke, [eV] 36-2f 10-3 — (@, = 420°K)
— 0.1 [33], (©, = 1200°K)
o, (K) B. Vul er al. [25]. S. Mmeigig[ifg 5_ 1957 see Fig. 4.5 too
1) For the symbols and the names see the previous section (4.3.1) too.
2) ,.n“ for electrons; ,,p** for holes. |

b. — The calculation and results

Using the mentioned data, and the treatment from section 4.3.1b, in [21]
we have made a calculation for four cases: n-Ge, p-Ge, n-Si and p-Si

We used such a method that at the beginning, procedure (I) was followed,
using the data underlined in T4.4 and B=0.4. In procedure (II) and (III), we
assumed two parameters (B and /w,) and the other two were calculated (A*
and W*, see paragraph 2° in Section 4.3.1b); the actual calculation for the last two
parcmeters will not be given here, because it is a long procedure, but not
very important.

¢. — The comment and the conclusion

19 — Comparing results with the exact ones [a,(K)] in Figure 4.5 one can
easily see that the best agreement can be obtained:

— for electrons in germanium using procedure (I), i.e. taking parameters
from the literature (see T4.4 too) and taking B=0.4, but not our calculation
procedure (II) and (III). One can explain this that the movement of electrons
is the best known and treated of all carriers, and from all materials germanium

5 Publikacije
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is the best known too, so that the exactness of the data given in T4.4 is large
just in this case.

— For holes in germanium — using method (III). This confirms once
again our remark that B cannot be the same for electrons and holes.

— For electron in Si — using method (III). This shows that B must
depend on the type of material, and also A* which is not taken into consi-
deration in the literature. Besides that, it seems that even the value fiw,=
=51.5 103eV (0,,,—600°K) is not correct for Si (it is taken from [31]), and
that a better one is about 0.1 eV.

— For the holes in Si the best agreement is obtained using method (III),
and the comment may be the same as for n-Si.

In T4.5 we took parameter values which give the best agreement. The

symbols are as before.
We should emphasize that we in-

volved two more parameters B and ,,Uni-

The Optimal Parameters T4.5

S versal“ A, besides obtaining more accu-
Materials rate values for parameters A*, W* and
Parameter Ge Si hw, In connection with the above,
} n | op | n | relating B’s and A4 with the basic quanti-
—— e ' ties one could make a better analysis and
A*[A] 70 J 100 | 39 1120 discussion, which will be done elsewhere.
W*evV] | 1.5 i 35 | 15| 35 h Ffrom the diagrams of figure 4.5
L o | where function «,(K) were drawn using
B 04 | 06 l%\ 0-29 (3.17b) for parameters given in T4.5,

hey [eV] 36.2-10-3 0.1 one can see the following:
T4 [ 3 — the agreement is better for larger
—— - K although it is quite good even for

decade lower values of o:

— it is difficult to give an exact quantitative verification of our relation
(3.17b) with parameters from T4.5, but one can easily see that it does not give
worse results than the methods which have been used up to date (for instance
[40], [28], [39] etc.), although it is much simpler and has the advantage that
it has an analytical character;

— one can see, comparing «,the empirical relation (3.22a) (this is not
given in figure 4.5) that the agreement between the real dependences «, and
ours is very bad especially for higher K where a mild ,,saturation* should exist.
That is quite logical because (3.22a) is not justified conceptionally-physically.
If one tried to find the relations in the shape of power function it is better
to try to find them in the types of relation like (3.22¢) which are the consequence
of physically correct relations of type (3.17b).

3° — The application of our relation could be the following:

— obtaining the above mentioned simple but physically adequate rela-
tion a~K”,

— deriving the quantitative relation for factors of multiplication M, and
M, (using eqn. 3.18g),

. — the application of all the above mentioned on the [limiting regimes
(as in Section 3.2d): function 9.93(U) using (3.22a), 2. B(U) using (3.21b) and
similar.
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We are not going here to consider the applications, because that is out-
side the scope of this work. However, the previously mentioned verification is
satisfactory, so all the conclusions and considerations from Section 3.2 remain valid.

However, one shcould remark that we have already considered the application
of our relations (3.17b) and (3.22¢) in Sec. 3.2d paragraph 1°. Deriving (from

Si, Ge — ..
300 KlkV/cml Gé
—T T
108+ - -
o |
[em™]| ;
10° 4=
4
70 ._'_h._
'Ge—pA 7 ,.-‘,Ge-nx ; il e i
i lm‘ ik g b gl ‘1“_‘r:j¢g‘i ‘il i
T : i AL
il T i iy f
il o i
103~ l\ T M0 o P ot 0
L '
400 600 K[kV/ecm] Si
———
Fig. 4.5. — lonization coeficients in dependence on the field:

— full lines — o, (K) according to T 4.4,
— points (x, A, O and @) without lines — according to T 4.5 and our relation (3.17b).

5%
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the mentioned relations) the relation (3.21d) for the breakdown field K, and
taking the parameters just from T4.5, for n-Ge we obtained an excellent agree-
ment of calculated and experimental values (U,=26.6 V to 27 V): better than
1.5%, for the breakdown voltage®.

4.4. — Comparison and checking of 7% («*) and G (y) dependences

4.4.1. — Comparison of ,,recombination‘‘ integrals I; and /,

a. — General. In Section 3.1.a it was shown that instead of integral I («)
defined in [22] one should put our integral I3 («*) defined with (3.2¢),
into the relations for the recombination part of currents. For the case of an
abrupt and very asymmetrical transition, which has not been treated in [22],
we succeded in expressing I3 using tabulated function — the expression (3.5b). It
is useful to know the derivative 7’ of these integrals given with (3.5d).

b. — The results of the calculation are given in [21] while the diagrams
in figure 4.6 are used for making the comparison.

0.5

0.4

0.3

0.2

0.1

0 = it
a) 04 06081 2 i 6 810 20 of

Fig. 4.6. — Graphic representation of ,,recombination‘‘ integrals /3 and their
derivatives 1 ;'.:,dla/doc* (b). For the signs (a, b, ...) see the text.

*) Although such a good agreement cannot be just a coincidence, one should not
conclude that we have a pretension for the absolute quantitative accuracy of our relations.
This question will be considered somewhere else (see for instance [46]).
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The symbols are the following for both Figures: I3 and I;'.

1° — Symmetrical linear graded transition:

(a) — according to [22] («* —>a« and I3~ L),

(b) and (c) — using (3.4b and c): series expansion near a0 and a=2.095;
(d) — graphical integration (this was done by M. Smiljani¢ and D. Slavic).

2° — Extremely asymmetrical abrupt transition:
(e) — according to (3.5b) and (3.5d);
(f) — graphical integration (M. S. and D. S. have done this).
(g) — like (e), but with @, , ; (=1, so that it is
4

T =n* _ *a®) A
| 4.7 | ; D 0.4919 and I3(x*)~ o

0.418 (a*= eUD—eU’ +8 Wfo).
2 2

0.10

0 E3at i = == i Bz Bes
04 060. 0
b) 08 1 2 4 6 810 20 i

Fig. 46.b

3° — Exceptionally the symbol (a) in Figure 4.6b shows the results
which ‘'we have obtained with the graphical method from the curve (a) in Fi-

gure 4.6a, since % has not been calculated in [22].
o
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c¢. — The comment
1°. — For a symmetrical graded transition

— one can see an important departure of dependences (a) according to
[22] from exact ones-(d), and not only for a high injection level («*<1) but
also for .,medium‘‘ one where the disagreement is even 309;

— the dependences (a) and (d) coincide only for «*>>25, i.e. for very low
levels;

— our approximate relations (3.4b) — curve (b) and (3.4c) — curve (c)
are in a good agreement™ with the exact one — (d) in their regions: a*<C1
and for «* between 1 and 3, respectively.

2°. — We cannot compare the results, for an asymmetrical abrupt tran-
sition, with the results from the other authors because, as far as we know,
there are none, but we can say

— that our expressions (3.5¢) and (3.5d) are quite axact**), because they
are in agreement with the results of the graphical integration — with curve (f),

— that one can use even the approximate relation (4.7) for higher injec-
tion levels: for «*>>0.8 the error is smaller than 10%, while for a*>4 it is
very small.

3°. — The General Conclusion would be that our results: analytical, cal-
culated and graphical, could be reliably used for quantitative analysis of the
respective processes in the space charge region of P-N transitions.

4.4.2, — The verification of the validity of the relation (3.11b) for G (3)

a. — The method of verification of the relation (3.11b) derived for a
limiting regime in transition, which gives an approximate solution of the dif-
ferential equation (3.10b), is based here on the comparison of the numerical
results obtained from relation G (y) with more exact dependences obtained in some
other way.

Although this method is not general, as for instance that used in Section
4.1.1, it could be accepted for a rough estimation of the quality of the expres-
sion (3.11b) connected to the departure of the regime from a currentless state***)
(with a parameter A which is different from zero).

Among the exact dependences we know only one, that from [34]; that
is relation G (y) obtained with numerical integration for a case of direct re-
combination (and many values of parameter 4 between + 50 and —S50): the
recombination parameters in equations (3.10c) or (3.9¢) being a=0 and c=1.

The ratio of mobilities b= p,/u, was taken to be 1.5%¥***) and we shall
assume the same value in our calculations.

*) In Figure 4.6a the curve (b) is moved, on purpose, from (d).
**) With a further verification it was shown that the divergence of shapes (e) and (f)
does not exist (Figure 4.6b, a*a0.6).
' *+¥) For A,J=0 we have obtained an exact solution (3.11a).
o *#£x) In [34] it is assumszd that b=1.5 for Ge, but now it is well known that b is
about 2.
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b. — The results of the calculations (for the current parameters 4 as in
T 4.6) are given together with those from [34] in [21].

Values of parameters A requested T4.6
|
l A +12 +4 | +2 +1 ) 0 —1 —12 | =50
|
l A, | + 9] 43 |+15 +o.75’ 0 | —075 ! —9 [~37.5

The symbols ,,+“ and ,,—‘ designate direct and reverse direction of
currents, respectively.

One should note that we could not find quite exactly the values from
[34], because we have read them from diagrams in log—Ilog scale, since in [34]
the numerical values were not given. So here is a possible error of about
2-3%.

c¢. — Discussion of results and conclusion

1°. — For 4A=0=J the agreement is excellent, which one need not verify,
since the relation (3.11a) is quite exact, as it is already mentioned.

2°. — For the same absolute values of the current parameter 4 (for
instance + 12, +1) the discrepancies are larger for a direct polarization (4> 0)
and that is less convenient for us. For 4= —50 the largest error is only about
12% (for y=0.05). ;

3°. — If we mark our values with G, and those exact ones from [34]

with G,, the ratios will be as in T 4.7

The ratio G./G, according to [21], A—parameter T4.7
G./G, for values of A:

y +12 +4 +2 +1 0 -1 | =12 | =50
005 0.81 0.64 0.98 0.956 1.008 0.95 0.925 0.875
0.1 0.66 0.55 0.86 0.905 0.99 1.01 1.037 0.965
05 | 0487 | 058 0872 | 0918 | 0995 | 100 | 092 | 0924
1 0.524 0.67 0.931 0.900 0.987 0.98 0.984 0.943
5 0.744 0.846 0.92 0.945 0.964 0.98 1.03 0.987

10 0.875 0.88 0.93 0.966 0.975 l 0.983 — 1.07

Analysing these results we made the following conclusions:

— the maximal departures (figures in bold type) increase with increa-
sing |A4| (they increase less for A<0) and appear for smaller values of y,
when A4 decreases (for instance between + 12 and —50 and further).

— for a reverse polarization, except for y=0.05, we can say that the
agreement is satisfactory, practically for a// values of 4. This is even more
favorable because the inverse currents are much smaller than the direct ones,
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so that the case 4= —350 practically cannot happen (see the equation 3.10a
for A, too);

— for y>35, G practically does not depend on A; this is valid for asym-
metrical transitions and the limiting regimes.

4°, — The case of direct currents, when the largest departures occur
(for A>0),is of a special interest. We shall consider this problem in connection
with its application to the limiting regimes in P-N transition. We shall estimate the
value for A, trying to find the currents J; , for x=x3%p, because the currents
are then almost pure diffusion. As it was said in Section 3.1 before, but for
symmetrical transitions, we shall have, taking roughly that D,y =D,p=D, and
Lyno=Lnpo= Ly, with all the symbols as before:

0
Jon =veD,|2°| N=veD0N‘i I ~Jop
0
. . G
l (4.8a) | JJon +Jnp = 2vD0N|——|e and

- 0
E_JLpNo N?_"Gogglyo; varl + »° ,
EDPN~Nb b b 14y

where we have written the expression for v taking into account D,(p) from
(3.8d). The sign ,less* i.e. |G°|<<y° can be explained with the fact (from [21]),
that for 4>0, |G|’s are always smaller (or slightly bigger) than the value of y,
if y<1.5.

Taking into account (2.16c¢) for limiting regime we have »°<{0.618, that
means that v<{1.38 and finally, assuming even v=1.5, it is

—_— 2:1.5
‘ (4.8b) | A<—Fy=2y for y<<1.5, (b=1.5),

that means that for y°<<1 parameter 4 is not larger than 2, for limiting re-
gimes of direct polarized P-N transitions.

Using the above speculation and T 4.7 (the framed part) one can make
a table of the largest errors (T 4.8):

T4.8
y 0.05 0.1 0.5 1 1.5
Az 0.1 0.2 1 2 3
th
errgr 0 1% 8% 7% { Rilo%
5°. — The Conclusions are as follows:

— our relation (3.11b) practically always quite well interprets the depen-
dence of gradient of concentration versus concentration of carriers for reverse
polarization (for |A4]<50),

: — while for direct polarization it can be used well for solving the pro-
blem of limiting regimes of the symmetrical transitions: for y=y°<1.5, the
error is smaller than 109,
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— qualitatively, our relation shows correctly the shape G (y) for inverse
polarization in a much wider region of y’s and A4’s.

We should remark that the above consideration has not an absolute ri-
gorous character, because it is based on a comparison with the more accurate
results for a special case—direct recombination (a=0). However if an agreement
was obtained for a=0 there is no reason to say that there will not be an
agreement for a+0. Actually, in a later work [47] we have verified our rela-
tion for a general case and indirect recombination (for a=0; 0.25; 1 and 2.5)
calculating G, on a computer (Elliot 803). The results cre in agreement with
the above conclusions.

One of the possible applications of our expression for G (y) is in studying
the ,,breakdown* in a direct direction, i.e. — negative resistance of S-type
(like in [35] and [36]), which could be the subject of another work.

Chapter 5. — OUTLINE OF THE PRINCIPAL RESULTS

On the basis of the analysis in the previous chapters the following principal conclusicus,
both with respect to the general thcory and the more specific results, can be drawn.

a. — General theory

1° — The expression for the quasi-neutrality condition (Eqn. 2.20 c) has been obtained,
which is more gzneral than the results so far derived in the sense that it takes into account
not only the impurity concentration (c/) but also the influence of the space charge (p). In

-
fact, in all previous works it was tacitly assumed that the condition p~0 must lead to yp~0
and Ap~0 which is not true in all cases (see, for example Fig. 2.2). Becides. the relation
(2.20 ¢) indicates that the quasi-neutrality condition is also dependent on the polarization (U).

2° — The transport equations (2.2—2.4, 2.7) are given in the form which is especially
suitable for consideration of the limiting working conditions i.e. ths high reverse pola:ization
or large forward current. It bhas been stated explicitly that the carrier concentrations (n, p)
and the transport coefficients (D, 4) both depend on the position (r) and the field intensity
(X) in the transition region, and that the lifetime (r) is not always constant., In these equa-
tions. the terms representing the ,,intrinsic’’ and ,external’” recombinaticns are separated.

3° — Special attention has been given to the boundary conditions and a new relation
for the heterojunction has been derived (Eqn. 2.22). Different effective masses (m,°, m7, mg®, mg )
have been introduced in this equation in order to comply with the fact the electron motions
in various crystal lattices and in various states (in the solids 4 and B) are not the same. It
is worth noting in passing that in the cited works the fact that these masses differ one from
the others has not been respected and that the same true mass (not even the effective one)
has been used throughout, which, at least in our opinion, might be considered as a shortco-
ming from the point of view of the general conception.

The relations (2.16 a) and (2.16 b) for the P-N transition, which have been widely used
in Chapter 3, do not seem to have been derived yet. They tak: into account the band edg:
correction quite accurately (Fig. 2.1) and therefore, they can be widely used when studying
the effects of high injection levels and reverse polalization*.

4° — In Section 3.2 ¢, a new formulation of the breakdown condition has been given
which, from the point of view of physical interpretation, seems to be advantageous when
compared with those in current use (U= U,—breakdown voltage for /— ). Instead of using
the assumption that the breakdown occurs when the current increases to very large values,

* Note added in the proof. There is an attempt in the paper by Nussbaum [48]—1969
to take also non-zero gradients of the quasi-Fermi levels into consideration when boundary
conditions are examined.
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acccrding to the new formulation the only criterion for the breakdown condition is that an
. . dl
incremental change in applied voltage causes a largs increase of the current (E—no),while

the current itself may have a finite value.

b. — More specific results

1° — It has been defined quantitatively the least transition ~lope (S, — Sec. 2.3)
of the graded transition necessary to enable that the depletion region penetrates the region
of the constant impurity concentration. The temperature dependence of the least transition
slope has also been considered and shown that the shape of the function $,u;, =/ (T, U)
exhibits a minimum (for T=0,,) which decreases with decreasing U (see Fig. 2.5). The smaller
the values of U, the smaller the values of @, , corresponding to the minimum of g
(these values of ©,, are extremely low — see Table 2.2).

2° — The width of space charge region has been studied in quantitative terms (xy,p
or Ap, Section 2.4). It has been demonstrated that with increasing temperature, x p first incre-
ases, passes through a maximum at T-=0y p,, and then decreases in the region of very
low temperatures (see Table T2,2 and Section 4.2).

It is interesting to note that graded and abrupt junctions behave differently when increa-
sing reverse polarization, namely ®y, pyy for graded junction decreases while for abrupt junctions
increases with increasing reverse polarization (see Fig. 2.4).

This previously unknown phenomenon has been verified experimentally for abrupt
junctions and it has been found a fairly good agreement between the measured results and
the theory. (For complete proof see the author’s paper {44]).

3° — Major attention has been given to the question of the potential distribution in
the transition region and especially for the equilibrium states and abrupt transitions.

Our relations (2.22), which were derived by retaining the terms up the fourth power
in the series expansion for cosh ¢, are more exact than all similar relations previously deri-
ved. As it has been shown in Section 4.1, they also offer the following advantages:

— They cover the whole P-region of the asymmetrical transitions (P>N) for any de-

N
gree of asymmetry Y:—}—, with the error which is in all practical cases less than 6% as com-

pared with the error of 229 for the ,,exponential* approximation. If, on the other hand,
N=0 (i. e. P-1 transition) the error is even smaller than 0.5%,. (This may be compared
with 6.1% error obtained by the method outlined in reference [23]). Finally, for the case of
a strong asymmetry*), the error was found to be less than 0.5%.

— In the N-region as well as in the whole transition region the error does not exceed
the value given by the equation (4.1 d). This means that our approximation (2.22) provides
satisfactory results up to the value jo|=|py p—Pc|~2-3 and, therefore, it is advantageous when
compared with the  exponential“ type of approximation at least for |da|=|3p.|~1.

By comparing the values given by eqn. (2.22) with the exact values obtained in digi-
tal computer it has been found that the approximation is fairly satisfactory for lower doping
levels (Fig. 4.1). In any case, it is superior to both the ,exponential“ type of approxima-
tion and the so-called Sh-approximation.

It must be noted, however, that the approximation (2.22) can hardly be used for the

region II (Fig. 2.3b). For this region, some other approximations (py;, oy, and ¢, — see
Appendix B and Fig. 4.1) have been examined and found to be fairly good for smaller do-

ping levels.

4° — Using the expressions for ¢, the equations for obtaining the values of the inver-
sion points have been derived and found, by numerical evaluations in Sec. 4.1.2, that for

*) It should also be emphasized that the expression (4.3f) yields the lowest degree of
asymmetry v, corresponding to a maximum specified error (say 10%) in the P-region for a

N
given doping level (—) of the opposite (N) region.
n;
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smaller doping levels the best results are obtained with x;;,,, while, for larger doping levels
the equation for x;; is most satisfactory. (See Tables B.e and B.d.). The estimated error is
less than 15% which compares advantageously with the results obtained with the Sh-approxi-
mation (°x;). In this way it has been proved that the real inversion planes are much closer
to the planes of the physical transition (x=0) than what might be expected if the Sh-ap-
proximation were used.

5° — A suitable definition of the transitional (intermediate) region (Szc. 2.2d) has been
introduced and the relation (2.22) employed to predict its width (Aup). It has been siown
that Ay, may be either smaller or larger than Ay =xy—xp (space charge width) for higher
temperatures and direct polarizations and for lower temperatures and reverse polarizations,
respectively. On the other side, for medium temperature and U~0, A«p is of the same order
as Ap .

6° — A novel method is used in treating the influence of the recombination processes
on the transition susceptance (capacitance). The derived expressions (2.30.c,d,e) are quite ge-
neral and suitable for detailed analysis which, however, has not been accomplished in the
proposed work. Tt follows from these equations that the transition behaves as a pure reactance
only in the low frequency range and for a sufficiently low recombination, while the recombi-
nation processes must be taken into account in the general case. Both active and reactive
components are present (G and Cw) and they are dependent upon frequency, recombination
mechanism and the transition profile.

7° — Special attention has been paid to the limiting regimes including aalanche ionization
phenomenon. The following major results hav been reached:

— The previously known relation (in [31]) for the coefficients of iinpact ionization
(0, ) has been conveniently rearranged by introducing the parameter A (which doss not depend
on the type of semiconductor material) and the parameters B (which are dependent on the
material used), apart from the known parameters (A*,W* and Awg). In this way a more sui-
table form of equation for comparison with the exact numerical results has been obtained
(Eqn. 3.17b).

The argreement of the results for a(K) obtained by the expression (3.17b) with the
measured values (for both Ge and Si) can be considered satisfactory to some degree which
is, at least, much better than if the empirical relation a~K" is used.

— On the basis of the foregoing analysis, the functions *B(U) are introduced (Sec.
3.2b). They enable a better insight into the validity of different expressions for the approxi-
mation of «(K) and also for the breakdown criterion, i.c. the breakdown*) field (K,). Each
parameter in this equation can be given a clear physical interpretation which is not always
the case with the previously derived expressions (see, for example [42]). Besides, the equation
(3. 17b) also indicates that the empirical expressions for M, ,, as for example (3.22¢), in
which the exponents n, , are assumed to be constant, are not adequate.

8° — The problems relating to the limiting regimes for direct polarization have been
considered in more detail and many interpretations of the phenomena involved have been
improved, such as:

— A more precise definition of the ,,recombination‘‘ integral I (Sec. 3.1a) has been

introduced leading to more exact results when compared to those in current use (Fig. 4.6).
It enables to establish in more quantitative terms the physical fact that, in each transition,
with increasing the direct polarization, the ratio of the recombination and diffusion currents
decreases steadily.

— Using the elementary functions, the analytical solution for G=f(y), G being the
generalized concentration gradient and y — normalized carrier concentration, has been obtained.
It is interesting to note that, though this function has been derived by using a mathematical
treatment which can hardly be considered quite justified, it yields quite correct results for
reverse polarizations, while for direct polarizations these solutions can be successfully ap-
plied to solving the problems of the limiting regimes (for y=y°< 1.5, the error is less than
10%; see Sec. 4.4.2, and also our more recent Reference [47].

*) This problem has been thoroughly treated for U,(N) in the Reference [46].
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APPENDIX A — List of Symbols*)

A — Constant

a — Lattice Constant; Length

B — Constant; number; B, , Effective Density of States

b — Constant; Ratio of Mobilities wa/u,

C — Capacitance; Constant

¢ — Velocity of Light

D — Diffusion Coefficient; Electric Indution

d — Interatomic Distance; Diameter

E — Ener%y (known with accurazy of one constant); E; — Electrochemical potential, Fermi
eve

e — Magnitude of Eleztroaic Charge — Absolute Value

F — Force; Function

f — Probability Distributon Function; Function; Frequency

G — Electric Conducztance (1/R); Total Generation (current); generalized concentration

gradient
g — Generation Rate
h — Plank’s Constant (h=2nh)
I — Integral; Intensity (of el. current)
i — Number; ,,i-th*
J — Electric Current Density**)
j — Imaginary Unit (v/—I); Number; ,,j-th*
K — Electric Field Intensity*)
k — Bolzmann’s Constant (as a difference from 4 — wave number)
| — Length; number; ,,/-th*
M— A certain function or an abbreviation for various expressions; Avalanche multiplication

factor
m — Mass (of electron if it is without subscript) m* — Effective mass of carriers (or m, ;)
. N—-P | . . .
N — Total donor concentration; number; -4 =-—— dimensionless impurity concentration
n;
n — Ele:tron concentration in conduction band (n, — equilibrium) n;, — Intrinsic concentration;
number

P — Acceptor impurity concentration; probability; power

p — Hole concentration (p, — equilibrium); number

Q — Coefficient; Heat quantity

q — Electric charge

R — Electric resistance (1/G); Radius

r — Radius, Position vector; number, coefficient; Recombination Rate
S — Area (Surface); Saturation (in subscript)

S = |yN| — Slope of Impurity Transition Profile

s — ,,5-th* of ,,s’s, kinds (in subscript)
T — Absolute Temperature
t — Time

*) Only the symbols that are found throughout the text are given here, while the ,,local*
symbols are left out (but they are explained in their sections), although they may coincide

with the general ones.
The MKSA system is used and the relations are noted in a rationalized form. Electric

" field is denoted with K, not with E or ¢.
**) Only ,,current* is frequently written down instead of this full term, (we think that
there will not be any ambiguity).
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U — Voltage*) (pot. difrerence), U’ — Voltage drop at transition itself
u — Number; Coefficient

V — Volume; Potential energy

v — Velocity (vy — drift velocity, vg — Velocity of sound)

W— Energy difference (kinetic energy); W,=(E;—E,) ~ chemical potential — Relative Fermi
level (E, is ref. point)

w — Transition rate probability
X — Reactance, x — coordinate

P . .
Y — Admittance; y=N — Normalized hole concentration

Z — Impedance; z=y'= p’/N — Normalized gradient concentration
o — coefficient (of temperature); Carrier ionization coefficient
a,B,y — Current gain coefficients; angles

Ratio (need not be dimensionless)

— Laplacian

— Finite difference sign; Delta-function

— Relative dielectric constant (g, — absolute — for the free space)
— Coefficient

— Coefficient; some function

Characteristic (absolute) temperature

— Angle (of scattering)

— Reserve symbol

— Characteristic length (A, , — mean free path of carriers; A, — barriers)
— Mobility: p,=C*—E,

— Frequency; Coefficient

Coefficient; Function

— Product symbol

— Space charge density; density

— Electric conductivity (abbreviated — ,,conductivity*)

— Time interval (lifetime; relaxation time)

— Element of volume

— Some (potential) function; flux; Work function

— (Electric) potential: (=) E; ¢=—eT +cte

— See eqns. (2.16)

— Electrostatic potential

— Solid angle; Elementary cell volume

— Angular frequency

=
l
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l

Some symbols for subscripts

a — acceptor dir — direct polar.

b — breakdown I — ionic, ionization

¢ — conduction band n — conduction electron

D — Debye’s; diffusion N — Region with donors dominating

d — donor 0 — equilibrium; initial; zero

e — electronic p — of holes

f — Fermi’s P — Region with acceptors dominating
g — gap S — surface; saturation

{ — intrinsic v — valence band

rev — reverse polarization p — space charge

. Other letters (or these letters) have the same meaning as the quantity symbol.

*) In order to avoid ambiguity, we have chosen the symbols for electric field and
voltage less frequently used: K and U (not E and V).
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Abbreviations

A, , or A,;p means that two quantities are concerned — ,,4,* and ,,4,%
T — in text — ,,Table*, e.g. TL2: ,,Table 1 in Chapt. 2%, or

TB.a: ,,Table a in Appendix B

IR — intermediate region

NR — neutral region

sC — Space charge (region)

Appendix B — SOME EXPRESSIONS FOR ¢
Expressions for <-Plv according to eqn.(2.24b) TB.a
A
3 12¢,¢  Di

Pu— 5 v= ; 3 Npi= Am/ \/ 2C05h“i’u s
X/ADi -
(C,-e +tanh @,)?—3

- - = = = - _ Al
€, =(6—dy tanh, + \/ 3ay?+ 36— 12aytanh gy ) - (Gy)—1-¢ ¥/ *Di,

a=ay=¢,=¢y for x=xy=x,=0,

Expressions for C-};IIe according to eqn. (2.24¢) and for q).n — (2.244) TB.b
x'—xeo . \/ 2 CN €Xp q;I[e
————=sinh—! ————————-, where:
Api My _ _
- - - 1/ -~ -~ v
Cy =9y sinh gy—cosh gy +v=0; 0Kv<l and My = \/— ((@N tanh @y —1+ _—)~
2 cosh oy
X—x° oI + (@ —2 tanh ¢ : = -
=sinh—! it (@ (PN), where M= \/cpN tanh ¢y —tanh? @, .
Ay 2M

Expressions for c}e, according to (2.24¢) TB.c

F[sin*1 (——tanh %) , Ky ]
2

. N
=— s (Cu>1, 1.e.—:5.78)

(+C)\? n,
X—X;
A B — -~
b V2 . cosh @, —1 . N
=————Flsin-'\/—— %,], (—1<Cu’<1, ie. —=0.26);
2 cosho, +C,’ n;
C, =, sinh p,—cosh ¢,, C,’ =4, sinh p,~cosh g, +V;
C,—1 1-C,’
kl = > kz = °
C,+1 2
Expressions for x°, ¢°, np, y and inversion point x;;; and x;,, TB.d

(2tanh q;zv—q?o)—éi;zv cosh q;p—COSh q;N + 5P Np+ q;zv N .

x°=A'pg-sinh—1 TV T T TR g0
o 2M NptNn
P - N .
Np=x—=sinh (—@p), My=-—=sinhey;
2n, 2n;
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X; oy—2tanho. °
f” —sinh—! PN PN + X i
Ap; 2M A py
6—@y tanh o py—tanh ¢,y—3/tanh g,
olZLAFNIN RS . A %',r +sinh—1 -2 v/ P
Ay, M

q;N \/?’—tanh2 ®x
Expressions for x,° (see TB.b), ¢, and x;;;,, X;;v, and °x;

.. sinh—'\/2Cyexp®® - - 6
X == Ny Q=
M tanh @y

Npp
Xirre = ~Mi sinh—14/2Cy +x,°,
N

X; . 6—¢y tanh g . — °
A/IVE s quilv;%nL(smh—‘\/ZCN expcpﬂ)/MN-%ifﬁ;
pe ¢y \V3—tanh? gy i

P 2n; NP1/2 1+ N/P 1/2
°xi=—ﬂ./\m(—‘(P+N)In—2 - — .
N+P PN n; 1+ |op |fon
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