PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechnique de l'universite a belgrade

213. ON INEQUALITIES CONNECTING ARITHMETIC MEANS AND GEOMETRIC MEANS OF TWO SETS
 OF THREE POSITIVE NUMBERS, II.*

A. Oppenheim

1. In a note [1] with the same title I proved some inequalities about the arithmetic means and geometric means of two sets of three numbers which satisfy the following condition
$\mathrm{H}: c_{1}, c_{2}, c_{3}$ lie between the least and greatest of the three positive numbers a_{1}, a_{2}, a_{3}.
(Without loss of generality we can assume that

$$
0<a_{1} \leqslant a_{2} \leqslant a_{3}, \quad 0<c_{1} \leqslant c_{2} \leqslant c_{3} ;
$$

so that H means $a_{1} \leqslant c_{1}, c_{3} \leqslant a_{3}$.)
I. If $c_{1}+c_{2}+c_{3} \geqslant a_{1}+a_{2}+a_{3}$, then $c_{1} c_{2} c_{3} \geqslant a_{1} a_{2} a_{3}$: equality is possible if and only if $a_{i}=c_{i}(i=1,2,3)$.
II. If $a_{1} a_{2} a_{3} \geqslant c_{1} c_{2} c_{3}$, then $a_{1}+a_{2}+a_{3} \geqslant c_{1}+c_{2}+c_{3}$: equality is possible if and only if $a_{i}=c_{i}(i=1,2,3)$.

In this note I show that I can be strengthened but not II.
III. Suppose that $0 \leqslant n \leqslant 2$, that the c_{i}, a_{i} satisfy H and that $c_{1}+c_{2}+c_{3} \geqslant$ $\Rightarrow a_{1}+a_{2}+a_{3}$. Then

$$
\left(a_{1}+a_{2}+a_{3}\right)^{n} c_{1} c_{2} c_{3} \geqslant\left(c_{1}+c_{2}+c_{3}\right)^{n} a_{1} a_{2} a_{3} ;
$$

equality implies equality of the c_{i} and a_{i}.
For any $n>2$ the inequality fails for appropriately chosen a_{i}, c_{i}.

[^0]IV. Let δ be an arbitrarily small positive number. Numbers c_{i}, a_{i} satisfying H and $a_{1} a_{2} a_{3}>c_{1} c_{2} c_{3}$ exist such that
although (by II)
$$
\left(a_{1}+a_{2}+a_{3}\right)\left(c_{1} c_{2} c_{3}\right)^{\delta}<\left(c_{1}+c_{2}+c_{3}\right)\left(a_{1} a_{2} a_{3}\right)^{\delta}
$$
$$
a_{1}+a_{2}+a_{3} \geqslant c_{1}+c_{2}+c_{3} .
$$
2. The negative part of III is settled by the sets
$$
\left(a_{i}\right)=(1, G-1, G), \quad\left(c_{i}\right)=(1, G, G) \quad(G>2)
$$
which satisfy H when we take G sufficiently large.
Let $n=2+\varepsilon, \quad \varepsilon>0$. Then
$$
\log \left\{\left(a_{1}+a_{2}+a_{3}\right)^{n} c_{1} c_{2} c_{3} /\left(c_{1}+c_{2}+c_{3}\right)^{n} a_{1} a_{2} a_{3}\right\}=-\frac{\varepsilon}{G}+O\left(\frac{1}{G^{2}}\right)<0
$$
if G is sufficiently large.
To prove IV take

Then

$$
\left(a_{i}\right)=(1,9, K), \quad\left(c_{i}\right)=(2,3, K) \quad(K \text { large })
$$

$$
\frac{a_{1}-a_{2} a_{3}}{c_{1}+c_{2}+c_{3}}\left(\frac{c_{1} c_{2} c_{3}}{a_{1} a_{2} a_{3}}\right)^{\delta}=\left(1+\frac{5}{K+5}\right)\left(\frac{2}{3}\right)^{\delta}<1
$$

for sufficiently large K.
3. To prove III I assume I and use the inequalities below about two pairs of positive numbers which throughout satisfy the conditions

$$
0<a \leqslant b, \quad 0<\alpha \leqslant \beta .
$$

Lemma 1. If $b \alpha \geqslant a \beta$, then

$$
\alpha \beta(a+b)^{2} \geqslant a b(\alpha+\beta)^{2} ;
$$

equality if and only if $b \alpha=a \beta$.
We have

$$
\alpha \beta(a+b)^{2}-a b(\alpha+\beta)^{2}=(b \beta-a \alpha)(b \alpha-a \beta) .
$$

But $b \beta-a \alpha \geqslant b \alpha-a \beta \geqslant 0$. The result follows.
Lemma 2. If $b \alpha \geqslant a \beta$ and $\alpha+\beta \geqslant a+b$, then

$$
\alpha \beta(a+b)^{n} \geqslant a b(\alpha+\beta)^{n} \quad(0 \leqslant n \leqslant 2) ;
$$

equality if and only if $a=\alpha, b=\beta$.
For $n=2$ the result follows from Lemma 1 since $b \alpha \geqslant a \beta$. For $0 \leqslant n<2$ use $\alpha+\beta \geqslant a+b$. Equality occurs if and only if $b \alpha=a \beta, \alpha+\beta=a+b$ whence

$$
a \approx \alpha, \quad b=\beta .
$$

Lemma 3. If $0<a \leqslant \alpha \leqslant \beta \leqslant b$ and $\alpha+\beta \geqslant a \div b$, then

$$
\alpha \beta(a+b)^{n} \geqslant a b(\alpha+\beta)^{n} \quad(0 \leqslant n \leqslant 2):
$$

equality holds if and only if $a=\alpha, b=\beta$.
The conditions imply that $b \alpha \geqslant a \beta$ so that Lemm? 3 follows from Lemma 2.
4. Proof of III. Two cases arise according as

$$
\begin{equation*}
c_{1}\left(a_{1}+a_{2}+a_{3}\right) \geqslant a_{1}\left(c_{1}+c_{2}+c_{3}\right) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
c_{1}\left(a_{1}+a_{2}+a_{3}\right)<a_{1}\left(c_{1}+c_{2}+c_{3}\right) \tag{ii}
\end{equation*}
$$

If (i) holds we prove that $c_{1}+c_{2}+c_{3} \geqslant a_{1}+a_{2}+a_{3}$ implies

$$
\left(a_{1}+a_{2}+a_{3}\right)^{3} c_{1} c_{2} c_{3} \geqslant\left(c_{1}+c_{2}+c_{3}\right)^{3} a_{1} a_{2} a_{3}
$$

(which is stronger than the inequality in III).
Consider the two sets b_{i}, d_{i} defined by

$$
b_{i}=a_{i} /\left(a_{1}+a_{2}+a_{3}\right), \quad d_{i}=c_{i} /\left(c_{1}+c_{2}+c_{3}\right) .
$$

Plainly $\quad 0<b_{1} \leqslant b_{2} \leqslant b_{3}, \quad 0<d_{1} \leqslant d_{2} \leqslant d_{3}, \quad \Sigma b_{i}=\Sigma d_{i}=1, \quad d_{3} \leqslant b_{3} \quad$ since $d_{3} \leqslant a_{3} / \Sigma c \leqslant a_{3} / \Sigma a=b_{3}, \quad b_{1} \leqslant d_{1}$ by the assumption (i).

Thus the b_{i}, d_{i} satisfy the conditions of 1 so that

$$
d_{1} d_{2} d_{3} \geqslant b_{1} b_{2} b_{3} \text {, i.e. }\left(a_{1}+a_{2}+a_{3}\right)^{3} c_{1} c_{2} c_{3} \geqslant\left(c_{1}+c_{2}+c_{3}\right)^{3} a_{1} a_{2} a_{3}
$$

as required.
We come now to case (ii). Here necessarily

$$
c_{1}\left(a_{2}+a_{3}\right)<a_{1}\left(c_{2}+c_{3}\right) \leqslant c_{1}\left(c_{2}+c_{3}\right)
$$

so that

$$
a_{2}+a_{3}<c_{2}+c_{3} \leqslant c_{2}+a_{3}, \quad a_{2}<c_{2}
$$

Thus the two pairs of positive numbers $a_{2}, a_{3} ; c_{2}, c_{3}$ satisfy the conditions of Lemma 3 so that

$$
c_{2} c_{3}\left(a_{2}+a_{3}\right)^{n} \geqslant a_{2} a_{3}\left(c_{2}+c_{3}\right)^{n} \quad(0 \leqslant n \leqslant 2)
$$

(with strict inequality since $c_{2}+c_{3}>a_{2}+a_{3}$). We apply the inequalities to appropriately grouped terms in expansion of

$$
\left(a_{1}+a_{2}+a_{3}\right)^{2} c_{1} c_{2} c_{3}-\left(c_{1}+c_{2}+c_{3}\right)^{2} a_{1} a_{2} a_{3}=L+M+N
$$

where

$$
\begin{aligned}
L & =c_{1} a_{1}\left(a_{1} c_{2} c_{3}-c_{1} a_{2} a_{3}\right), \\
M & =2 c_{1} a_{1}\left\{c_{2} c_{3}\left(a_{2}+a_{3}\right)-a_{2} a_{3}\left(c_{2}+c_{3}\right)\right\} \\
N & =c_{1} c_{2} c_{3}\left(a_{2}+a_{3}\right)^{2}-a_{1} a_{2} a_{3}\left(c_{2}+c_{3}\right)^{2}
\end{aligned}
$$

Then (using $a_{1}\left(c_{2}+c_{3}\right)>c_{1}\left(a_{2}+a_{3}\right)$)

$$
\begin{aligned}
L\left(c_{2}+c_{3}\right) & >c_{1} a_{1} c_{1}\left\{c_{2} c_{3}\left(a_{2}+a_{3}\right)-a_{2} a_{3}\left(c_{2}+c_{3}\right)\right\}>0 & & (\text { Lemma 3) }, \\
M & >0 & & (\text { Lemma 3) } \\
N & >a_{1}\left\{c_{2} c_{3}\left(a_{2}+a_{3}\right)^{2}-a_{2} a_{3}\left(c_{2}+c_{3}\right)^{2}\right\}>0 & & (\text { Lemma 3) } .
\end{aligned}
$$

Thus case (ii) is settled: if $c_{1}\left(a_{1}+a_{2}+a_{3}\right)<a_{1}\left(c_{1}+c_{2}+c_{3}\right)$, then III holds with strict inequality.
5. An application of $I I I$.

Suppose that $A B C, A^{\prime} B^{\prime} C^{\prime}$ are two triangles such that (i) the perimeter of $A^{\prime} B^{\prime} C^{\prime}$ is at least equal to the perimeter of $A B C$, (ii) the lengths of the tangents from $A^{\prime}, B^{\prime}, C^{\prime}$ to the incircle of $A^{\prime} B^{\prime} C^{\prime}$ lie between the least and greatest of the tangents from A, B, C to the incircle of $A B C$.

Then
(1)
(2)

$$
\text { inradius of } A^{\prime} B^{\prime} C^{\prime} \geqq \text { inradius of } A B C \text {, }
$$

$$
\text { area of } A^{\prime} B^{\prime} C^{\prime} \geqq \text { area of } A B C
$$

Equality occurs if and only if $A B C, A^{\prime} B^{\prime} C^{\prime}$ are congruent.
Taking $A^{\prime} B^{\prime} C^{\prime}$ to be an equilateral triangle of the same perimeter as $A B C$ yields the well-known inequality

$$
S^{2} \geqslant 3 \sqrt{3} \Delta .
$$

where S is the semi-perimeter and Δ the area of $A B C$.
Equality holds if and only if $A B C$ is equilateral.

REFERENCE

[1] A. Oppenheim, On inequalities connecting arithmetic means and geometric means of two scts of three positive numbers, Math. Gazette, 49 (1965), 160-162.

Author's address:
The University of Reading
Reading, England

[^0]: * Presented January 5, 1968 by D. S. Mitrinović.

