PUBLIKACIJE ELEKTROTEHNICKKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechnique de l'universite a belgrade

D. S. Mitrinović

(Received May 6, 1967)
0. The elementary symmetric functions c_{r} of x_{1}, \ldots, x_{n} are defined by

$$
\left(x+x_{1}\right)\left(x+x_{2}\right) \cdots\left(x+x_{n}\right)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots+c_{n} .
$$

If x_{1}, \ldots, x_{n} are real, then the following inequality holds [1]

$$
\begin{equation*}
c_{r-1} c_{r+1} \leqslant c_{r}^{2} \quad(1 \leqslant r<n), \tag{1}
\end{equation*}
$$

with $c_{0}=1$.
In what follows, we exclude the case in which equality occurs in (1).

1. Suppose that all x_{r} are different. If \bar{c}_{r} denotes the r-th elementary symmetric function of x_{1}, \ldots, x_{n-1}, we have

$$
\begin{equation*}
c_{r}=\bar{c}_{r}+x_{n} \bar{c}_{r-1} \tag{2}
\end{equation*}
$$

We shall consider the difference

$$
\begin{equation*}
f\left(x_{n}\right)=c_{r-1} c_{r+1}-c_{r}^{2} \tag{3}
\end{equation*}
$$

as a function of the variable x_{n}. Using (2), we get

$$
\begin{align*}
f\left(x_{n}\right)= & \left(\bar{c}_{r-1}+x_{n} \bar{c}_{r-2}\right)\left(\bar{c}_{r+1}+x_{n} \bar{c}_{r}\right)-\left(\bar{c}_{r}+x_{n} \bar{c}_{r-1}\right)^{2} \tag{4}\\
= & \left(\bar{c}_{r-1} \bar{c}_{r+1}-\bar{c}_{r}^{2}\right)+\left(\bar{c}_{r-2} \bar{c}_{r+1}-\bar{c}_{r-1} \bar{c}_{r}\right) x_{n} \\
& +\left(\bar{c}_{r-2} \bar{c}_{r}-\bar{c}_{r-1}^{2}\right) x_{n}^{2} .
\end{align*}
$$

By differentiation we obtain

$$
\begin{equation*}
f^{\prime}\left(x_{n}\right)=\left(\bar{c}_{r-2} \bar{c}_{r+1}-\bar{c}_{r-1} \bar{c}_{r}\right)+2\left(\bar{c}_{r-2} \bar{c}_{r}-\bar{c}_{r-1}^{2}\right) x_{n}, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime \prime}\left(x_{n}\right)=2\left(\bar{c}_{r-2} \bar{c}_{r}-\bar{c}_{r-1}^{2}\right) \tag{6}
\end{equation*}
$$

From (1) we conclude that $f^{\prime \prime}\left(x_{n}\right)<0$. The only extreme point of f is the maximum for

$$
\begin{equation*}
x_{n}=-\frac{\bar{c}_{r-2} \bar{c}_{r+1}-\bar{c}_{r-1} \bar{c}_{r}}{2\left(\bar{c}_{r-2} \bar{c}_{r}-\bar{c}_{r-1}^{2}\right)} . \tag{7}
\end{equation*}
$$

The maximal value is

$$
\max f\left(x_{n}\right)=\bar{c}_{r-1} \bar{c}_{r+1}-\bar{c}_{r}^{2}-\frac{1}{4} \frac{\left(\bar{c}_{r-2} \bar{c}_{r+1}-\bar{c}_{r-1} \bar{c}_{r}\right)^{2}}{\bar{c}_{r-2}} \bar{c}_{r}-\bar{c}_{r-1}{ }^{2} .
$$

Hence, we have established the inequality

$$
\begin{equation*}
c_{r-1} c_{r+1}-c_{r}^{2} \leqslant \bar{c}_{r-1} \bar{c}_{r+1}-\bar{c}_{r}^{2}-\frac{1}{4} \frac{\left(\bar{c}_{r-2} \bar{c}_{r+1}-\bar{c}_{r-1} \bar{c}_{r}\right)^{2}}{\bar{c}_{r-2} \bar{c}_{r}-\bar{c}_{r-1}^{2}}, \tag{8}
\end{equation*}
$$

where $r<n-1$.
2. If all x_{r} are positive, we shall prove that

$$
\begin{equation*}
c_{r-2} c_{r+1}-c_{r-1} c_{r}<0 \tag{9}
\end{equation*}
$$

From (1) we have

$$
c_{r-2} c_{r}<c_{r-1}{ }^{2}
$$

Multiplying bo $\frac{t}{}$ sides by $c_{r+1}\left(c_{r+1}>0\right.$ since all x_{r} are positive), we get

$$
c_{r-2} c_{r} c_{r+1}<c_{r-1} c_{r-1} c_{r+1}
$$

Using (1) we obtain
q. e. d.

$$
c_{r-2} c_{r} c_{r+1}<c_{r-1} c_{r}^{2}, \quad \text { i. e., } \quad c_{r-2} c_{r+1}<c_{r-1} c_{r}
$$

Since $x_{n}>0$, from (1) and (9) we conclude that $f^{\prime}\left(x_{n}\right)<0$, i. e., $f\left(x_{n}\right)$ is decreasing for $x_{n}>0$. As $f(0)=\bar{c}_{r-1} \bar{c}_{r+1}-\bar{c}_{r}^{2}$ we obtain the following inequality

$$
c_{r-1} c_{r+1}-c_{r}^{2} \leqslant \bar{c}_{r-1} \bar{c}_{r+1}-\bar{c}_{r}^{2}
$$

which is sharper than (8), since

$$
-\frac{1}{4} \frac{\left(\bar{c}_{r-2} \bar{c}_{r+1}-\bar{c}_{r-1} \bar{c}_{r}\right)^{2}}{\bar{c}_{r-2}} \overline{\bar{c}}_{r}-\bar{c}_{r-1}{ }^{2}{ }^{2}>0
$$

If all x_{r} are positive, it follows that

$$
c_{r-1} c_{r+1}-c_{r}^{2} \leqslant \min _{1 \leqslant i \leqslant n}\left({ }^{i} c_{r-1}{ }^{i} c_{r+1}-{ }^{i} c_{r}^{2}\right),
$$

where ${ }^{i} c_{r}$ is r-th elementary symmetric function of $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$.
All inequalities remain valid if not all x_{r} are different.
We have not met these inequalities in the literature.

Remark 1. Using the suggestion of a referee from USA, we deduce from $c_{r-1} c_{r+1} \leqslant c_{r}^{2} \quad(1 \leqslant r<n)$ and (8) the following inequality:

$$
\begin{equation*}
4\left(c_{r-1} c_{r+1}-c_{r}^{2}\right)\left(c_{r-2} c_{r}-c_{r-1}^{2}\right) \geqslant\left(c_{r-2} c_{r+1}-c_{r-1} c_{r}\right)^{2} \quad(r<n-1) \tag{10}
\end{equation*}
$$

This inequality is perhaps of some interest since all the factors are familiar expressions.
Remark 2. J. MA尺̌IK [2] gives the following result:
Let $n \geqslant 3$ be an integer number and let $a_{0}, a_{1}, \ldots, a_{n}$, with $a_{0} a_{n} \neq 0$, be real numbers such that $f(x)=\sum_{j=0}^{n} \frac{1}{j!} \frac{1}{(n-j)!} a_{j} x^{n-j}$ is the polynomial, all of whose zeros are real. Then

$$
\begin{equation*}
4\left(a_{j+1}^{2}-a_{j} a_{j+2}\right)\left(a_{j+2}^{2}-a_{j+1} a_{j+3}\right) \geqslant\left(a_{j+1} a_{j+2}-a_{j} a_{j+3}\right)^{2}, \tag{11}
\end{equation*}
$$

for $j=0,1, \ldots, n-3$.
It would be of some interest to examine the connection between of the inequalities (10) and (11).
Remark 3. See also [3] and [4].

REFERENCES

[1] G. H. Hardy, J. E. Littlewood and G. Pólya: Inequalities, Cambridge, 1952, p. 52.
[2] J. Mařik: Über Polynome, deren sämtliche Wurzeln reell sind, Casopis pro pěstování matematiky, 89 (1964), 5--9.
[3] D. S. Mitrinović, Certain inequalities for elementary symmetric functions, these Publications, № 181-186 (1967), 17-20.
[4] D. S. Mitrinović, Some inequalities involving elementary symmetric functions, these Publications, № 181-196 (1967), 21-27.

