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SUMMARY. A variational solgtien for impedance of thin asymmetrically driven
cylindrical antenna is derived, based on a two-term trial function for current. The

impedance and current distribution parameters are expressed in terms of tabulated
functions only.

1. Introduction

The problem of asymmetrically driven cylindrical antenna was treated in
literature using iterative technique. 2 However, only the first-order solution
for current distribution and, impedance was attained. The aim of the present
paper is to give a variational solution of that problem, using a two-term trial
function for current. The variational approach was ‘choosen because in the
case of thin, symmetrically driven cylindrical antenna it yields the first-order
distribution of current together with the second order Values of the input im-
pedance. 3 :

2. The variational expression for impedance

~ Consider a .dipole of radius a driven asymmetrically by a slice-generator.
Let .the axis of the dipole coincide with the z-axis, and let the otigin coincide
with ‘the slice-generator (Flg .1). In that case the integral equation governing
the current distribution is given by «
hy

(1) US(z)':lﬂfI(z')K(z—z') iz,
4w
—h
where I(Z') is the current dlstrlbutlon functlon along the antenna, and
2 = (oleo) ,
8(z) — Dirac delta function defined at z=0,

3 K( k(1 L o2\er™

z—z el [
3 )= ( k? 022 ) r
@ F=[(z—z")+d4"2,
) k=27/A=0 (e )"

2‘
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Multiplying (1) by /(z) dz and integrating from —h, to h,, and taking
into account that

(6) U=Z1(0),
and
hy
@) j‘ Z I1(0)I(z2) 3 (z) dz=Z 1(0)?

—h>

we obtain the fundamental variational expression for impedance

B
A ®) Z1p=2"1 f f 1) 1)K (z—2') d7' dz.
l 47't:_h2 2,
b T Defining the normglized distribution function in respect
. to the current at z=0, i. e.
: ) g(z)=li((§,
i equation (8) becomes
B Ry
(10) Z=% f fg(z)g(z’)K(z—z’)dz'dz.
—hy —hy

Since K(z—z)=K(z'—z), it can be easily shown that,
as in the case of symmetrically driven dipole, Z is stationary
in respect to small changes in the relative distribution function
about the true distribution, i. e. that

Fig. 1. an 3Z=0,.

3. Expression for impedance with a two-term trial function for current

As in the case of symmetrically driven dipole, we adopt a particular
two-term trial function,®> which in the case of asymmetrically driven antenna
can be put in the form

a fi(@)+a,f,(z2) for hy>z>0

(12) g(Z):{asfs(Z)+a4_ﬁ(z) for 0>z> —h,
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where a,,..a, are complex coefficients (to be determined), and

(13) fi(@)=sink(h,—2),
(14) L, (@ =1—cosk(h,—2),
(15) fi(@)=sink(h,+2),
(16) fi(@)=1—cosk(h,+2).
Since at the feeding point the current must be continuous, i. e.
(17 I(+0)=1(—0),

the normalized function for current must satisfy the condition

(18) a, 1 (0) +a, £, (0)=a; £ (0) + a, £, (0).
From the other side, since
19) g(0)=1,
from (12) it follows that
(20) a2= lﬁalfi (0) s
1:(0)
and
@1 P VUM
f4(0)
Eliminating @, and a, from (12) using (20)-(21), we obtain
a, f,(2) +‘“_1 —;1(13)(0) £, (@) for hy>z>0
(22) g()= 1 : o
—43J3
a )+ ———"f(z for 0>z>—h
3/3(2) 7.0 f1(@ or z )
Introducing (22) in (10) the input impedance Z becomes
I 0k B 0 Ak
(23) Z=—[§ j+ j j+j' j+j”g(z)g(z')K(z—z')dz'dz
47 5, S <6 0 —m 60

2 —ha by by —h2 h =y

_f— fi=1 7+ j}g(z)g(z’) K(z—7)d7 dz

0 0 0 [ 00

in(7¢
ZE[ oy

=a? Wy +2a

1—a, £, (0) w34+[1—a3f3 (0)]2%
£:(0) 4 (0) !
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= /i®, ., =650

+aya, wy +a, 32

Wqy

£ (0) - f4(0)
n 1—a, f5(0) 1_alf1 ©) W
£O L@ "
+a a3 w3 +a l‘.—ﬂ g (0) Wy3+ a5 17440 Wis
f:(0) £ (0)

n 1—a, f1(0) I—‘asfs 0) w
12 (0) AV

1—a,£,0 +[1—-a1f1(0)]2wn.
12

24

+alw,+2a

£,© £,(0)
where
jn 't :
(24) wy = (—1)mtn— j 5 fi(@) fi (2) K (z—2') dt'dz,
dn J 4
with
(25) mz[l and h,n:{ hy for i=12
2 —h, for i=3,4
(26) n=[1 and h,,={ h, for k=12
2 —h, for k=34

The coefficients a, and a, entering (23) according to (11) can be deter-
mined by differentiating (23) with respect to a, and a;, and requiring that
@7 97 4 ana 2%_

a, da,

Hence we obtain that g, and a; are to be calculated from equations

(28) a,C+a,D=E,

(29) @ F+a,G=H,

where o

(30) C=2{w11_2f1(0) wm+[f1 (0)] wn}
1>(0) £ (0)

@D D=w31+w13_}l‘§£( 32+ 14)'—122 )(Wgs'f‘ Wyy)
HOQLO, L,

£2(0) £4(0)
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! RAC)
32 Ee o (Wytw,
32 A0 R AN A OWAC)

2 [W £(0) ]
LOL"™ Lo

(Wys+ Way)

(33) F=D,

o fp 5O [LO
G ¢ Z{W” O [ﬂ(O)] w“‘]

. G
35 H= ——r- 14 42
(33) fz(O)( P e e

_ 2[ £,0) ]
A0 RO

. Finally, if we write the non-normalized current distribution function in
the form

(36) I1(2) = UlA4, f(z2) + A, f,(2)] for h;>2z>0
{U[Asﬁ(z)+A4ﬂ(z)] for 0>z>—h,

according to (9), (6) and (12) the current distribution parameters 4,, ... 4,
are given by

a
37 A=—L,...4,=2,
(37) 1= =

4. Evaluation of the w-integrals

In order to transform the general integral w; given by (24), we shall
utilize an identity given by Storer® and cited in reference 4, equation (45).
By the help of that identity the integral wy can be transformed to the
following form:

hn h”l

(38) (_I)MH%WZ([ [kf "—jkr(ui )f,(z)dz]fk(z)dz

r k* o0z2
0

f'(O){ B f " g (z)dz}

B

! " ]krm —jkry
——f'fc”"')f <" f@ydr +f'(°)f e () dz
0
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where

39 r=[a®+ (z——z')z]‘ﬁ,

(40) ro=[rl=o=(@+2')'2,

41) Pam =M z=n, =@+ (h—2')] "2

Using (38), the integrals wy corresponding to the assumed Storer’s
current distribution, with f;(z), i=1, 2, 3, 4, given by (13)—(16), may be
calculated in a similar manner as in reference 4. Therefore only the final .
formulas will be given:

—jka
(42) AT = —sin2kh, & 1S, (h, O),
in ka
4 . e ke ]
43) —— w,, = —sin kh; (1—cos kh)) ——+ — E, (h;, 0) (1 —cos kh,),
jn ka 2
—jka
(44) A —sinkh, sin kh,*-
jn ka

—% {sink (b, + h,) Ca (hy, 0)—cos k (h, + h,) Sa (,, 0)
—sink (b + hy) [Ca (b + by, 0)—Ca(hy, 0)]
+cosk (b + hy) [S, (B + by, 0)—Sa(hy, O)]},

—Jjka
45) ﬁwH:sin kh, (1 —cos kh,) ¢
JN

A~ Eully 4, 0) + By (B, 0)+cos kb, Ey (O

+cosk (b, + hy) [Co (B + by, 0)—C,(hy, 0)]

+sin k (h, + hy) [S, (B, + by, 0)—S, (hy, 0)]

—cos k (hy+ hy) Cy(hy, 0)—sink (b, +hy) S, (h,, 0)}.
(46) W =Wy,
470 j—: W,, = kh, E; (hy, 0)—sin kh, E, (h,, 0)+ S, (h,, 0)

—Jjka
—(1—cos kh,)? %“—Zj (e-*Vath? _g-jka)
a
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(48)

(49)

(50)
(51)

(52)
(53)
(54

(55)
(56)
(57)

—Jjka
A = (1—cos khy) sin kh, ©
K

——;—{—Eu(hl + hy, 0) + E,(h,, 0) +cos kh, E, (h,, 0)

+cos k(b + 1) [Co (By -+ hy, 0)—Co(hy, 0))]
+sink (hy + hy) [Sa (hy + by, 0)—S,a (hy, 0)]
—cos k (hy+ h,) Cq(h,, 0)—sin k (h, + h,) S, (h,, 0)}

—jka
AT o= (1—cos kh,) (1—cos ki) ©
jm ka

—j[e= ik Vattuth)? _o-ikVarih? _omikVaith? 4 o—jka]

1
"7 {_khl [Ea (hl + hz ’ O) _Ea (h1 ’ 0)]

—kh, [E; (h,+ h,, 0)—E, (h,, 0)]
+ sin kh, E, (h,, 0) +sin kh, E,(h,, 0)
+sin k (b + h,) [Cq (B + Ry, 0)—C, (B, 0)]
—cos k (hy + hy) [S, (hy + by, 0)—S,(hy, 0)]
—sin k (hy + h,) Co (hy, 0) +cos k (hy+ h,) S, (h,, 0)}
wy, is obtained from w,;, changing h; to h,, and vice

w;, is obtained from w,;, changing h, to h,, and vice
except in the first term, (1—cos kh,) sin kh, e~/ /ka,
remains unaltered,

Wy is obtained from w,,, changing h, to h,,
wi, is obiained from w,,, changing A, to &,,

ws, is obtained from w,, changing A, to h,, and vice
except in the first term, sin kh, (1—cos kh,) e~*%/ka,
remains unaltered,

Wy, is obtained from w,,, changing h, to h,, and vice
w,; is obtained from w,, changing A, to h,,

w4 is obtained from w,,, changing A, to h,.

versa,

versa,
which

versa,
which

versa,
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5. Conclusion

In this paper are presented concrete variational formulas for the input
impedance and for current distribution parameters of a thin, asymmetrically
driven cylindrical antenna, based on a two-term trial function for current.
Two parts of the antenna are supposed to be of equal radii. The formulas
are applicable in cases when the length of both antena parts are smaller
than 32/4.
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