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SUMMARY: A new class of low-pass filters with all transmission zeros at infinity
is described in this paper. The transfer function of the filters is derived algebraicly
from Bessel polynomials by using a well-known recurrence formula for orthogonal
polynomials and introducing a variabiIe parameter which controls the even derivatives of
the magnitude and group delay responses of the network at the origin. The transient and
steady-state responses of this class of filters for various values of the controllable para-
meter are studied and compared with other known systems. It is shown that these filters,
referred to as quasi-Bessel filters, provide an improvetnent over the Butterworth,
Transitional Butterworth-Thomson and other types of filters including that due to
Ghausi and Adamowicz, especially in those applicatiolJs where the rise-time, over-
shoot and bandwidth of the magnitude response are all of importance.

Introduction

A great deal has b~en written on the characteristics of the low-pass
filters with all transmission zeros at infinity, which are designed to have
either maximally flat magnitude or maximally flat group delay responses. In
pulse applications, Butterworth filters [l], approximating the uniform magni-
tude characteristic in the maximally flat manner, have fast rif>e-time in response
to a unit step input, but exibit excessive transient overshoot which increases
with the increase in the order of the filter. On the other hand, Thomson fil-
ters [2], which have maximally flat group delay response, are characterized by
small transient overshoot, but the rise-time is exceedingly slow when compa-
red to that for the Butterworth filters.

Subsequently, other classes of low-pass filters have been studied by va-
rious authors in order to obtain a more favorable transient characteristic than
that of either the Butterworth or Thomson networks. Mullick [3] has investi-
gated a class of ladder filters with parabolic distribution of poles in the com-
plex frequency plane, while Scanlan [4] proposed a similar class of transfer
functions with all zeros at infinity and poles located on an ellipse with equal
spacings along the imaginary axis. Both these filters give an improvement over
Thomson networks since they provide greater bandwidth while retaining a fai-
rly good approximation to the idee! group delay characteristic in the pass-
band. In the so-called transitional Butterworth-Thomson filters, which have
been described by Peless and Murakami [5], the pole locations of the transfer
function in the complex frequency plane can be varied smoothly from those
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of the Butterworth to those of the Thomson filters by varying a parametar
which controls the pole positions. Although a large variety of filter specifi-
cations can be satisfied by an appropriate choice of the variabile parametar,
this class of filters offers no advantages over Butterworth or Thomson filters in re-
spect of transient responses. Quite recently, Ghausi and Adamowicz [6] have
described low-pass filters, the transfer functions of which have their poles
located on catenary curves in the complex frequency plane at equal angular
spacings, and found that this class of filters offers some advantages when the
rise-time, overshoot and 3 db frequency of the magnitude response (with no
frepuency peaking) are all of importance simultaneously.

In this paper a new class of polynomial filters is derived by a purely
analytical approach to the problem of determining the suitable transfer function.
The Lransfer functions of these filters Me generated from a class of polyno-
mials which have been obtained from Bessel polynomials by using a reccurence
formula and introducing a variabile parametar which controls the values of
the even-ordered derivatives of the magnitude and group delay characteristics
with respect to 6) at the origin. Of course, the odd-ordered derivatives are
automatically zero at 6)= 0 because the magnitude and group delay are even
functions of 6). These polynomials have previously been derived and used by
the present authors in a study of the problem of phase equalization [7].

The general expressions for the normalized transfer function, magnitude
and group delay characteristics are der!ved and the final results are presented
in the form of tables and curves which give the data on the bandwidth, rise-
time, overshoot and pole locations for filters of the order n = 3 - 6, and dif-
ferent values of the variabile parameter. The comparison shows th'lt the results
obtained with these filters are competitive with those of other known systems,
especially when fast rise-time with only moderate overshoot and greater band-
width are required. For example, these filters yield a transient response with
equal rise-time and smaller overshoot than the Butterworth-Thomson filters.
When compared on equal overshoot basis, they provide shorter rise-time than
the Butterworth filters. They also show an improvement over the class of
filters proposed by Ghausi and Adamowicz both in the transient response and
in 3 db frequency of the magnitude response.

Transfer Functions of the Filter

Bassel polynomials, first investigated by Krall and Fink [8], and then
used by Storch [9] in describing the characteristics of the ladder networks with
maximally flat group delay response, are defined by

n (n + k)!

(X )
k

Yn(x)=k~(n-k)! k! 2
from which the polynomials used by Storch are obtained by substituting

x = + and then defining a new set of polynomials B~ (s) = snYn (+)
Bn (s)= i (2n-k)! Sk

- i bk Sk
k~o2n-kk!(n-k)! k~O

(1)

(2)
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Using the well-known recurrence relation for the orthogonal polynomials

B~ (s) = (2 n-l) Bn-l + s2 Bn-z (3)

and substituting a new variable p for (2n-l) in Eq. 3, we obtain a new
polynomial function

(4)

The transfer function of the n-th order ladder filter can now be defined as

F (s)=
bop

n
pBn-l(s)+szBn-z(s)

wl1cte b =-
(2n-2)!

.o 211-1(n-l)!

For Bn (s, p) to be a Hurwitz polynomial the necessary and sufficient condi-
tion is p>O.

(5)

General expressions for Magnitude and
Group-Delay Characteristics

The transfer function, Eq. 5, can be transfered in a more suitable form
for determining the general expressions of the magnitude and group-delay
characteristics by means of the following formula connecting the Bessel poly-
nomials and Bessel functions of half-integral order [8]

(6)

Thus we obtain from Eqs. 2, 5 and 6 and substituting s = j <0

(7)
bo p eJ6>

<on-l ~7t 2<0{(-l)n [p J -(n-'/2) (<0)+ cuJ -(n-3/2) (<0) ]-j [PJ"-'h (<o)-<oJ,,-3/2 (<o)])

from which the magnitude and group delay characteristics can be easely
derived

bop

~ ~
<oZn-l {[pJ -(n-l/2) (<0)+ <0J-(11-312) (<0)]2+ [pJn-'I2(<o)-<oJn_3/2 (<o)]2}'12

Dn (<0)= l-~
[

tg-l(-l)n-l pJn-'h (<0)-<0 In-312 (<0)
]d <0 P J -(n- 1/2)(<0)+ <0J -(n-3/2) (<0)

(8)

(9)
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Further useful transformations of the last two expressions can be obtained
by using some relationships between Bessel functions of half-integral order and
the Lommel polynomials which are defined by (10)

m

R2m.I/2-m (<.u)= 2:
o

(1
) (1 )

2m+2k
(-I)k(2m-k)!r 2+m-k 2<.u

k! (2m-2k)! r( ~-m+k)
(10)

Using the recurrence formulas for Lommel polynomials

Jy+m (<.u) =Jy (<.u) Rm. y (<.u)-JY-l (<.u)Rm-l. y-l (<.u)

(-l)m J -y-m (<.u)= Ly (<.u) Rm. y (<.u) + J-Y+l (<.u) Rm-l. y+l (<.u)

(11)

(12)

and the following relationship

2 ( J 2 ( ) 2 ( R2m 112-m(<.u)
J m+112 <.u)+ -(m+11z) <.u = -l)m .

1t<.u
(13)

we obtain, after some manipulation, the expression for the magnitude squared
function in the following form

A; (<.u) = n
Co

2: Ck <.u2
k

k=O

(14)

where

Ck=(-I)n-l-k(2n-2-k)!
[(

_1/2 )
p2

n-l-k r(k+ 1)
(15)

(
_1/2

)2p (
_1/2

)

1
]n-l-k r(k) n-k r(k-l)

Similarly, the following recurrence formulas for the Bessel functions

(16)

(17)<.uJv' (<.u) -v Jy (<.u) = -<.u JY+l (<.u)

and the Lommel formulas (10)

I
I 2 sin V1tJ_y(<.u)Jy(<.u)-Jy (<.u)Ly(<.u)= -

1t<.u
(18)

(19)
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are employed to obtain the group delay characteristic in the form

(20)

The magnitude squared function Eq. 14 is analitic at the origin and
may be expanded into a Maclaurin series. Obtaining this expansion by long
division and retaining only the first few terms we get

(21)
p-2 n-3 ( 3 (2n-5» )= 1--- CU2+ p2-4p+ CU4+ . . .

p(2n-3) (2n-3)2(2n-5)p2 n-3

In a similar way, the first few terms of the series expansion for the group
delay function, Eq. 20, are obtained

p-(2n-1)
Dn (cu)= 1- p[(2n-3)!!j2

where

2n-2 p2-(2n-l)p+2n+ 1 2ncu + cu +...
2n-3

(22)

(2n-3)!!=1.3.5.. .(2n-5)(2n-3)

The lowest power of cu in the Maclaurin series of the group delay
function is cu2n-2, which means that the first 2 n-3 derivatives are equal to
zero at the origin. If p = 2 n-l, the coefficient of CU2n-2is also equal to zero
and the maximally flat delay characteristic is obtained. On the other hand,
all the powers of cu2 are present in the Maclaurin series of the squared magni-
tude function (Eq. 21). For maximally flat delay approximation (p = 2 n-l),
the coefficient of CU2in the series expansion of the squared magnitude is
equal lip = 1/(2 n-1). On the other side, if p = 2, the coefficient of CU2in
Eq. 21 is zero, i. e., one condition for the flat magnitude response is obtained
in addition to the (n-2) similar flatness conditions imposed on the group
delay function. The class of polynomial filters satisfying these conditions was
studied by Golay [11]. He found that these filters have magnitude
and delay characteristics which are quite flat for lower frequencies but
have undesirable peaks at the end of the passband. Since these peaks are
excessive, especially for higher order filters, they cause a large transient
overshoot, so that the practical values of p are higher than 2.

Steady-State and Transient
Characteristics of the Filters

The derived equations have then been used to calculate the magnitude
and group delay responses of the filters for order n = 3-6 and for different
values of the parameter p. The unit-step responses of the filters have also



TABLE I

THIRD-ORDER FILTERS

P 2.5 3.0 3.2 3.5 4.0 4.0

$1 ~0.8627 -0.8573 -0.8576 -0.8607 -0.8736 -0.8985

-0.4627 -0.5329 -0.5593 -0.5971 -0.6552 -0.7057
$2' $3

-J:.j 0.9722 -J:.j 0.9394 -J:.j 0.9237 -J:.j 0.8973 -J:.j 0.8458 -J:.j 0.7842

B 1.10 1.00 0.98 0.93 0.85 0.78

-r 2.15 2.33 2.41 2.53 2.70 2.89

r% 8.37 5.21 4.27 3.15 1.87 1.13
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been calculated by standard method and the values of rise-time (10 to 90
percent) and overshoot are summarized. In order to enable the comparison
of these filters with similar systems, the DC gain is taken to be identical and
equal to unity in all cases.

Third-order Filters

The transfer function of the third order filter, as obtained from Eq. 5, is

3p
F3(s) =

3p+ 3ps+ (p+ l)s2+ S3
.(23)

From Eqs. 14, 15 and 20 the magnitude and group delay characteristics are
obtained in the following forms

(24)

D3 (6.» = 1-
CJ}4(P:-5 p + CJ}2)

L Ck CJ}2k

o

(25)

where
3

L Ck
CJ}2k

= 9 p2 + (3 p2-6 p) CJ}2+ (p2-4p + 1) CJ}4+ CJ}6

o

The steady-state and transient responses of the third order filters for
several different values of the parameter p are show in Figs. 1, 2 and 3, while
Table I contains the data on the normalized pole locations, the normalized
3 db bandwidth (B). ~he normalized rise-time (-r) and the percent overshoot (y).
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Fourth-Order Filters

The fourth order transfer function may be found in the same way as
in the previous case and can be expressed as

(26)

The magnitude and group delay responses can be found from Eqs. 14, 15
and 20

(27)

CJ}6(P2- 7 p + CJ}2)

4

L: Ck CJ}2k

o

(28)

where
4

L:
CkCJ}2k= 225p2+ (45p2_90p) CJ}2+

o

The magnitude, group delay and trasient responses for various values of p
are presented in Figs. 4-6. The pole positions and other important parame-
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ters, the normalized rise-time (1"), the per cent overshoot (y), and the norma-
lized 3 db bandwidth (B) are given in Table II.
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Fig. 6 - Step responses of the 4th order filters.

TABLE II

FOURTH-ORDER FILTERS

3.2 3.5 5.0

Fifth-Order Filters

3.7 4.0 4.5

The transft:r function of the fifth-order filter is given by

Fs (s) = .

105p

10.5p+ 105ps + (45 p+ 15) S2+ (10p+ 15)s3 +(p+ 6) S4+ SS
(29)
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Using Eqs. 14, 15 and 20, the magnitude and group delay' functions are ob-
tained in the following forms

A, (",j~

['
105

PrL Ck CJ}2k 2

o

where

(30)

CJ}8(p2- 9 p + CJ}2)

5

L Ck CJ}2k

o

(31)

5 . ,"

L Ck
CJ}2k = 11025 p2 + (1575 p2-3150 p) CJ}2+ (135 p2- 540 p t 225) CJ}4+

o

Again, the steady-state and transent responses for different values of pare
plotted in Figs. 7 -9 and the data on the locations of the poles, the norma-
lized 3 db bandwidth. (n), the per cent overshoot (y) are the normalized rise-
time ('t") are summarized in Table III.
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TABLE III

FIFTH-ORDER FILTERS

p 3 3.3 35 4.0 5.0 6.0 7.0

SI - 0.8999 -0.8929 -0.8890 -0.8810 -0.8720 -0.8704 -0.8765

-0.7747 -0.7719 -0.7704 -0.7683 -0.7691 -0.7765 -0.7912
$2' S3

:!::j 0.5452 :!::j 0.5377 :!::j 0.5333 :!::j 0.5236 :!::j 0.5084 :!::j 0.4965 :!::j 0.4853

-0.1994 -0.2254 -0.2427 -0.2851 -0.3665 -0.4414 -0.5070
8'0 Ss

:!::j 1.0947 :!::j 1.1021 :!::j 1.1056 :!::j 1.1099 :!::j 1.1022 :!::j 1.0759 :!::j 1.0331

B 1.18 1.16 1.13 1.02 0.87 0.75 0.68

" 2.34 2.42 2.46 2.59 2.82 3.04 3.24
Y% 12.56 10.31 9.02 6.43 3.23 1.70 1.06

Sixth-Order Filters

A class of polynomial filters having controllable group-delay. . . 13

Using the same equations as in the previous cases the transfer function,
the magnitude and group delay responses of the sixth-order filters are found as

945p

945 p-945 ps+ (420 p+ 105)s2+ (l05p+ 105)s3+ (15p+ 45)S4+ (p+ 10)s5+ S6
(32)

(33)

D6 «(,» = 1-
(,)10

(~-11 p+ (.U2)

2 Ck
(,)2k

o

(34)

where

6

2 Ck
(,)2k

= 893025 p2 + (99022p2-198050 p) (,)2+ (6300 p2-25200 P + 11025)(,)4+
o

The magnitude, group delay and transient responses for different values of p
are shown in Figs. 10, 11 and 12. For convenience, the pole positions, the
normalized rise-time ('t") the normalized 3 db bandwidth (B) and the per cent
overshoot (y) are tabulated in Table IV.
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Fig. 10 - Magnitude responses of the 6th order filters
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TABLE IV

SIXTH-ORDER FILTERS
---~-_.~

3.5 4.0 9.04.5 5.0 6.0 6.0

- 0.8941 - 0.8838 - 0.8759 - 0.8698 - 0.8652 - 0.8597 - 0.8584 - 0.8689
Sl'S2 ::!::j 0.2265 ::!::j 0.2219 ::!::j 0.2181 :!::j 0.2148 :i::j 0:2121::!::j 0.2076 ::!::j 0.2041 ::!::j 0.1980

- 0.7120 - 0.7099 - 0.7090 - 0.7090 - 0.7099 - ,0.7142 - 0.7219 - 0.7504
sJ' s.

::!::j 0.6855 ::!::j 0.6724 ::!::j 0.6618 :!::j 0.6530 ::!::j 0.6455::!::j 0.6334 ::!::j 0.6234::!::j 0.6040

- 0.1217 - 0.1550 - 0.188i - 0.2224 - 0.2558 -0.3206 - 0.3815- 0.4834
S" S6 ::!::j 1.0902 ::!::j 1.1116 :!::j 1.1266 ::!::j 1.1364 ::!::j 1.1416 ::!::j 1.1416 ::!::j 1.1253 ::!::j 1.0599

B 1.20 1.19 1.14 1.02 0.89 0.75 0.69 0.62

1:' 2.43 2.54 2.65 2.76 2.86 3.07 3.26 3.56

Y % 14;79 10.86 7.91 5.71 4.10 2.10 1.15 0.'65

Discussion of the Results and
Comparison with Other Systems

It can be seen from the foregoing description that the proposedcJass
of function enables a large variety of filter specifications to b~ met in prac-
tical design, both with regard to the transient response and steady-state cha-
racteristics. In this respect th-;:se filters are similar to the so-called transitional
Butterworth- Thomson filters, but unlike the latter, they provide an improvement
over the Butterworth and other types of filters especially when simultaneous
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TABLE V

COMPARISON OF THiRD-ORDER FILTERS

Type of Filter Normalized Rise Time Percent Overshoot Normalized Bandwidth

" Y% 6), db

MFM Filters 2.29 8.15 1.00

TBT Filters 2.59 3.87 0.86(m ~0.4)

TBT Filters 2.74 2.45 0.81(m ~0.6)

C Filters 2.30 7.24 0.99(b ~2)

C Filters 2.34 5.61 0.98b~2.5)

QB Filters
2.15 8.37 1.10(p ~2.5)

QB Filters
2.33 5.21 1.00(p ~3)

QB Filters
2.53 3.15 0.93(p ~3.5)

TABLE VI

COMPARISON OF FIFTH-ORDER FILTERS

Type of Filter Normalized Rise Time Percent Overshoot Normalized Bandwidth

" Y% 6), db

MFM Filters 2.56 12.8 1.00

TBT Filters 2.94 5.71 0.82(m ~0.4)

TBT Filters 3.15 3.46 0.74(m = 0.6)

C Filters 2.64 8.78 0.97
(b= 2)

C Filters 2.73 5.11 0.92(b = 2.5)

QB Filters
2.46 9.02 1.13(p ~3.5)

QB Filters
2.59 6.43 1.02(p ~4)

QB Filters 2.82 3.23 0.87(p ~5)
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stipulations on the transient response and the bandwidth of the steady-state
magnitude characteristic are made. In tables V and VI a few important para-
meters of interest in the transient and steady-state responses for 3 th and 5 th
order Butterworth (MFM), Transitional Butterworth-Thomson (TBT), for
m = 0.4 and m = 0.6, filters with catenary distribution of poles (C) for b = 2
and b = 2.5 and the described class of filters, which will be referred to ~s
quasi-Bessel filters (QB), are compared.

.

It can be seen from Table VI that the quasi-B~~sel filter of the fifth order
with p = 4 when compared with the Butterworth filter on the basis of equal
rise-time and 3 db bandwidth yields the percent overshoot which is just one
half of that for the Butterworth filter. These filters also offer substantial im-
provement in the transient resposes over the transitional Butterworth-Thomson
filters and to a smaller degree, over the filters with catenary distribution of
poles which can be noticed from the results summarized in tables V and VI.

In those ap~lications where small transient overshoot of only 1- 2 per-
cent can be toleratied, the quasi-Bessel filters yield in some cases virtually the
same results as the filters with elliptic distribution of poles proposed by
Scanlan, while in some other cases they are slightly inferior to them. For
example, the third order filter with elliptic distribution of poles and with the
eccentricity ratio a = 0.4 has the normalized rise time 't'= 2.31 with the tran-
sient overshoot of only 1.10/0, However, this overshoot is followed by an
undershoot of 3.2 p~rcent. In order to reduce th~ undershoot to a values of
less than 10/0, the eccentricity ratio must be increased to a = 0.6. For this
value of a the per cent overshoot is equal 2.22 and the normalized rise-time
is ":'= 2.56. These results are quite similar to those obtained with the third
order quasi-Bessel filter having p = 3. 5. In this connection some very interes-
ting results which have been obtained by Jess and Schuessler [12] should be
mentioned. They have studied the problem of optimizing th~ transient response
of pulse networks by means of analog and digital computers and found that,
if ringing in time response can be tolerated, the rise-time is shortest if the
step response approximates its final value in a Chebyshev sense.
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