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This short note contains the history of inequality (1), which
seems to be due to serbian mathematician M. Petrovié. This history
shows once more that the rediscovery of a forgotten fact can initiate
a discovery of new results.

Theorem 1. Let a be a real number and let 0<0<nj2. If z,, ..., z, are com-
plex numbers such that
a—0<arg z,<a+0 =1, ...,n),
then
1 > zv|>(cos 0) > |zl
v=1 v=1

Proof. We have

> Re (e"'” i z,)

= > |z,| cos (—a+argz)=(cosb) 3 |z,].
ye=1 r=1
This proof is due to D. Z. Pokovié.

Inequality (1) is a complementary triangle inequality. It is difficult to
say where it appears for the first time in the literature. We have found that
the special case a-=0-=n/4 was proved by M. Petrovitch [1] in 1917. The
general case of this inequality appears in a later paper [2] of M. Petrovitch.
He also applied (1) to derive some inequalities for integrals. Inequality (1)
can be found also in Karamata’s book [3] (p. 300-—301). In [3] one can find
the following proposition:

Theorem 2. If f is a complex-valued integrable function defined in the interval
a<x<b and

—h<arg f(x)< + 0 (0<9< %)

then

b b
[ r@ydx|>os0)- | £(x)]dx.
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Karamata has also published inequality (1) in his another book [4],
(p. 155).

Old inequality (1) has been rediscovered by Wilf [5] in 1963. The gene-
ralization of (1) to Hilbert and Banach spaces has been given recently by
Diaz and Metcalf [6]. We quote their theorems holding in any Hilbert space H:

Theorem 3. Let a be a unit vector in H. Suppose the vectors x,, ..., X,, satisfy
ogrgﬁl(—"&‘ﬁ (i=1,...,n),
whenever x;7%0. Then |
r(xf s DS X,
where equality holds if and only if
T Fxp=r (x4 4 x]) a
Theorem 4. Let a,, ..., a, be orthonormal vectors in H. Suppose the vectors
Xiy ooy X, SALiSfy
ogrkg’“r%’l"’i? G=1,...,m k=1,..., m),
whenever x;#0. Then l
(e ) Tl DS
where equality holds if and only if
Xph o X=X X)) (gt A Tma).
The following variant of (1) for 6 =mx/2 appears in Marden [7] (p.1):
If each complex number z, (v=1, ..., n) has the properties that z,+0 and
a<argz,<a+ 7,
then their sum z,+ - - - +z, cannot vanish.
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