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ON THE SENSITIVITY OF LINEAR CONTINUOUS SYSTEMS*
Milié R. Stojié

Summary: This paper, based upon the application of algebraic concept for the analysis
and synthesis of linear dynamical systems, presents an analytical procedure for the sensitivity
analysis of linear continuous systems. The procedure applies to the sensitivity investigation
of system transfer function poles and zeros due to the small changes of system parameters.
The suitable defined sensitivities and application of the Chebyshev functions enable the
aforementioned sensitivity analysis and other related problems to be advantageously performed
by the proposed procedure.

An important problem of the analysis and design of linear networks
and control systems is the influence of certain parameter variations on the
system performance. This problem could be indetified as a ,,sensitivity pro-
blem‘*. There are many factors in the design of linear dynamical systems
which cause the sensitivity problem to arise. For example, in the design of
linear control systems it is often - necessary to suppose that the values of
system parameters do not deviate from the data on which the design is based.
Since it is not always possible, during the application of corresponding dy-
namical system, to maintain the nominal values of system parameters unchanged,
the validity of the above assumption should be checked in order to obtain
the information about the possible modification and improvement of system
performance. Moreover, such a sensitivity analysis should answer the question
whether the influence of some parameter variations can be neglected or not.
Thus, the sensitivity analysis may be directed toward making a new aspect
of control system synthesis. The same hold for adaptive control since the
sensitivity analysis can give highly valuable information about the controllable
parameters on which the additional adaptation loop should act in order to
make the system performance invariant despite the changes in uncontrollable
parameters.

In general, two approaches to the sensitivity analysis of linear continuous
systems have been done, both investigating the effects of certain parameters
variations on the system transfer function. The first approach is based upon
the application of the Bode definition of sensitivity function [1], which is
given as the logarithmic derivative of the system fransfer function with respect
to the logarithm of the gain constant. The socond approach uses the defi-
nition of so called pole-zero sensitivity [2—5] which is more convenient in
the sense of practical application, since the network and control system
synthesis most frequently is carried out by investigating of the pole and zero
locations of system transfer function.

* The paper has been presented by Miodrag Raki¢ on November 2, 1965.
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This paper presents an analytical procedure of sensitivity analysis of linear
continuous systems, which is based upon the application of the Chebyshev func-
tions and algebraic concept of analysis and synthesis of feedback control
systems [7]. The idea was first introduced by Mitrovi¢ who investigated the
differential changes in the relative damping coefficient and undamped natural
frequency of the roots of characteristic equation due to the differential changes
in parameters of linear continuous systems [4]. Using generalized Mitrovié’s
method and the more convenient definition of sensitivity, it has been shown [5]
that the sensitivity problem in linear continuous and sampled-data control
systems can be solved in a general but extremely effective manner. The pro-
posed procedure can be applied to any system configuration and locations of
system parameters and therefore it appears to be a general solution of the
sensitivity problem in linear control systems.

As the following will show, the proposed procedure in this paper guides
to the rather simplified definition of sensitivity and to the useful application
of the Chebyshev functions. Since the Chebyshev functions as well as their
derivatives were tabulated [7] and may be conveniently programmed on both
analog and digital computers, the proposed analytical procedure is extremely
simplified in the sense of practical application. Furthermore, by applying
this procedure, the relative stability of self-excited nonlinear oscillations and
sensitivity of sustained oscillations in nonlinear control systems as well as
the sensitivity of discrete control systems and other related problems have
been solved in a straightforward manner [8], [9]). The procedure may be ap-
plied to any system configuration whenever it is required to evaluate the
effects that the small variations of any system parameters have on the cor-
responding location of system transfer function poles and zeros.

DEFINITION OF SENSITIVITY

It is often necessary to express the transfer function of a linear dyna-
mical system as a ratio of two polinomials in complex variable 5. In these
cases, the investigation of effects that the small variations in .system para-
meters have on the poles and zeros of the system transfer function can be
reduced to the investigation of the root sensitivity of the algebraic equation

n
€)) > ask=0
: : k=0
where the coefficients @, (k=0, 1,..., n) are determined by the values of
system parameters ¢q,(r=1, 2,..., m), namely
(2) akzak(ql,qz,---’ qm) (k=0’ 19"'3 I’l)

For a pertinent set of the system parameter values ¢° (r=1,2,...,m),

by means of Eq. 2, the corresponding numerical values of the coefficients
a%(k=0, 1,..., n) which determine the root location of the algebraic equa-
tion (1), can be obtained. Evidently, the parameter variatons will cause the
corresponding perturbation in the roots location in Eq. 1. In order to eva-
luate the degree of correspondence between the system parameters variations
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and the root location, it is convenient to define the complex root sensitivity
and real root sensitivity, separately, and to focus the attention on each indi-
.vidual root indenpendently.

In order to define the complex root sensitivity, let us express the i-th
pair of complex roots s;,;,1 of Eq. 1 as

3) Siyivt = —(0,); &+ ] (,); \, 1-¢?

where (; is the relative damping coefficient and (w,); is the undamped na-
tural frequency of the corresponding pair of complex roots (in the further
developments the subscript ,,n*¢ will be omitted).

The complex root sensitivity may be conveniently defined by means of
,,complex root sensitivity matrix‘* which is introduced as

S¢
4 Si e = (S5, SE )=

The complex root sensitivity matrix elements S,{ » and S7, are respec-
tively: the relative damping coefficient sensitivity and natural frequency sen-
sitivity of complex roots s; 11 With respect to the variation of a parameter g¢,.
These sensitivities have been defined as the logarithmic derivatives of rela-
tive damping coefficient {; and undamped natural frequency w; with respect
to the logarithm of a system parameter g,, i. e.

; _Olngi @ _()11'1(,01
“""dlng,’ " olng,

In like manner, the sensitivity of the j-th real root of algebraic equation
1 with respect to the variation of system parameter g, has been defined as

dlno;
&) G r=——
dlng,

As it will be shown later, both the complex root sensitivity matrix and
real root sensitivity may be readily evaluated using the Chebyshev functions
and algebraic concept of control system analysis and synthesis [7].

COMPLEX ROOT SENSITIVITY MATRIX

To develop an expression for the complex root sensitivity matrix, it is
necessary to express the complex variable s in Eq. 1 as

6) s=wet’' - —wlitjo \/_1‘—_55, (= —cosb)
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Substituting Eq. 6 into Eq. 1 and then applying the condition that the
real and imaginary parts of Eq. 1 must go to zero indenpendently, the Eq. 1
may be rewritten as two simultaneous equations

S (~1fa o T (H)=0
k=0

(N |
V1-22 i (= D a, 0f Uy (£)=0

where k=0

®) Ty (&) = cos (karc cos £), Uy () = sin (karc cos {)

Vie
are the Chebyshev functions of first and second kind, respectively, with the

argument 0 << £ << 1. These functions can be obtained by th: well-known
reccurence formulae

(9 T (O—28 T (D) + 11 (D) =0, Up1 () =28 Up (D) + U (H)=0
with T,(O)=1, T,(0)=¢ Uy, (0)=0, and U,({)=1. The derivatives

10 a7 (0) _ dvVi=2?u, @l &

play an important role in the developments that follow.

Ty (&)

Owing to Egs. 2, Egs. 7 represent implicit relationship between the rela-
tive damping coefficient, undamped natural frequency, and system parameters.
Thus, to obtain the complex root sensitivity matrix, it is first necessary to
differenciate Eqs. 7 with respect to the parameter g,. In doing so and applying
the relationships 10, with simple manipulations it can be obtained

O ¢ S (—1Fka @b UL(0) + 202 S (- 1) kg oF T (0)

olng, = Ing, &4

— g, S (2% kT, (),

(11) k=0 24,

olnt ¢ dlne o

_ L 1y kay ok T — 1) ka,w*U

alnq,\/l—Czkzl( Yeka o* T, (0 +¢)lnq,kgl( Yekap 0* Uy (0)
n da

==q, > (-1 ok U, ()
kzo( 04q, §

Now, if the numerical values a,‘: (k=0, 1,..., n) corresponding to a
specific set of parameters ¢% (r=1, 2,..., m) are given and the attention is

focused on the i-th pair of complex roots, by sybstituting the numerical values
a) (k=0, 1,..., n), {;, and o; into Eqs. 11, one can evaluate the complex

root sensitivity matrix in the form
(12) Si, = —A7" O
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The matrix 4 is a square matrix 2 x 2 having the elements
Ay =G Z (— Drkay w:‘ U (8), Ayp= Z (— D¥kay w,(c Ty (&)
| k=1

(13)
¢

V1= 45

In the case when the i-th pair of complex roots is single, Egs. 11 are
indenpendent on account of the matrix 4, is nonsingular. However, if it is
desired to evaluate the complex root sensitivity matrix for a double or mul-
tiple i-th pair of complex roots, the matrix 4; would become singular and
therefore a rather complicated expressions, than the matrix equation 12,
should be used. These cases will not be treated here because in any but
carefully chosen examples the control system transfer function contains only
single conjugate complex poles and zeros. The same hold for the real root
sensitivity, which will be evaluated in the following section.

A= — z (— DFkaeok T, (), A= 3 (= Dkkagok Ug(Z)
k=1

The matrix @7 is a column matrix 1 x2 with the elements

oa

A9 0y, =00 3 (<1 5 b T, 0] ,=e 5 (~1F 5% oo 5 o Uu(0)
v i~o

The derivatives 0a;/0¢° (k=0, 1,..., n) appearing in the above expres-
sions of Q7 and @}, are to be evaluated by differentiating Eqs. with res-

pect to the parameter ¢, and then using the nominal numerical values of
system parameters ¢°(r=1, 2,..., m).

Eqs. 13 indicate that the elements of matrix A; stay unchanged regar-
ding a variation of any system parameter. Thus, if it is desired to evaluate
the i-th pair complex root sensitivity matrix in respect to each of m para-
meters, it is not necessary to calculate more but one matrix 4;, and only the
corresponding matrices Q; should be numerically calculated regarding each
parameéter. In most general case, when it is desired to calculate the complex
root sensitivity matrices of p pairs of complex roots with respect to each of
m system parameters, it is necessary to compute p matrices 4; (i=1, 2,..., p)
and m-p matrices @ (i=1, 2,..., p), (r=1, 2,..., m). As it was menti-
oned earlier, the numerical calculations implied in the proposed procedure is
not at all laborious, particulary if computational aids are available.

REAL ROOT SENSITIVITY

According to Eq. 6, the j-th real root (real roots have {=1) of Eq. 1
may be defined with —o;. In this case, the Chebyshev functions of first kind
become 7, ({)=1. On the other hand, the second equation of Eqs. 7 for { =1
becomes indentically equal to zero and therefore the real root sensitivity may
be achieved by handling only the first equation of Egs. 7 in the form

n

(15) S (— 1 a (o) =
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Since the coefficients @, (k=0, 1,..., n) in the above equation are the
functions of system parameters, Eq. 15 can be considered as an implicit
relationship between the real root —o; and system parameters g, (r=1,2,..., m).
By differentiating this equation with respect to the system parameter ¢, after
simple manipulations, the same result for real root sensitivity as that given in
reference 5 can be obtained

" oa
0 — k_lf AL3
qr kZO( 1) aq? UJ)

(16) s =

I r

S (= 1rka, (o)
k=0

For the given set of numerical values ¢% (r=1, 2,..., m) Egs. 2 and

Eq. 16 place in evidence the procedure of calculation of the real root sensi-
tivity. This procedure as well as the procedure of calculation of the complex
root sensitivity matrix will be illustrated by the following example.

EXAMPLE

Consider the single-loop linear control system, shown in fig. 1, which
has the following open-loop transfer function

R(s) E(s)
+

C(s)

G(s)

Fig. 1. System block diagram

C —
(17) __(s)z(;(s):Km
E s(s2+2bes + c2)

The corresponding closed-loop transfer function is obtained as
(18) ~C~(s)=K s+exp(—a)

R §3+2bes* + (> + K)s+ Kexp (—a)

According to Eq. 18, the system closed-loop transfer function has only
one zero z= —exp(—a) and three poles which are determined by the system
characteristic equation
(19) $3+2bcs? +(c*+K)s+Kexp)(—a)=0

The coefficients a, of the above characteristic equation are not given in nu-
merical form, but they are the functions of system parameters ¢,=a, ¢,=5,
gs=c, and g,=K. For the parameter values a=1.45, 5=0.9, ¢=0.5, and
K=0-389 the system closed-loop transfer function has the real zero z;, = —0-23,
real pole 6, = —0-18, and two conjugate complex poles s;,=—0-36+j 0.62
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which are determined by {;=0.5 and w,=0.72. Using the previously defi-
ned sensitivities, it is necessary to investigate how the small changes in system
parameters a, b, ¢, and K effect the poles and zero of system closed-loop
transfer function.

To calculate, for example, the complex root sensitivity matrix S, , cor-
responding to the small variation of system parameter a=1.45, the follo-
wing terms of Eqgs. 13 and Eqgs. 14 should be calculated using Egs. 2, va-
lues £,=0.5 and w,;=0.72, table of the Chebyshev functions, and numeri-
cal values of system parameters

A,=0.23, A,,=042, A4,=-028, A4,,=047, Q4 ,=-0.135 Qf,=0
Now, finding the inverse of A; and then using Eq. 12, one obtains
(20a) Si,,=(0.28,0.18)

To calculate the sensitivity matrices S, ,, S, and S, the procedure
is to be repeated bearing in mind that the inverse of 4; stays unchanged
regarding each parameter. In doing so, one obtains

(20b) S, 5=(1.35, —0.19), S, ,=(1.08, i 0.41), S, g=(—0.43, 0.36)

The correspondiig real root (o,= —0.18) sensitivities may be calculated
applying Egs. 2 and Eq. 16, to obtain
21 S7 ,=—0.65 S§7,=0.15 87 =0.59, S} =0.87

In like manner, the real zero sensitivities are:
(22) S; =145, 5, =] =5} (0

Comparing the obtained results in Eqs. 20a, 20b, 21, and 22, one can
conclude how the small changes in system parameters effect the correspon-
ding poles and zero and therefore these results may advantageously be used
in system synthesis and adaptation. For example, according to the definition
of both complex root sensitivity matrix and real root sensitivity (Egs. 4 and 5,
respectively), the calculated sensitivities indicate that a decrease in the values
of parameters a, b, and ¢ or an increase in the gain factor K will lead to a
lower system stability and so on.

CONCLUSION

The proposed sensitivity analysis of linear continuous systems was used
in the study of system performance characteristics due to small system para-
meter perturbations. Applying the suitable defined sensitivities, the effects of
small parameter variations on the poles and zeros of system transfer function
has been considered and therefore the presented sensitivity analysis may appear
useful whenever it is possible to describe a system with a location of poles
and zeros of a corresponding system transfer function. A significant advan-
tage of the proposed sensitivity analysis lies in the fact that the Chebyshev
functions are introduced. Thus, the analytical procedure, which may be performed
in the real domain, is extremely simplfied and becomes convenient for the
straightforward application of both analog and digital computers.
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