PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ A BELGRADE

SERIJA: MATEMATIKA I FIZIKA - SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 64 (1961)

SUR L'ÉQUATION FONCTIONNELLE f(x) = f[g(x)]

Slaviša Prešić

(Reçu le 7 mai 1961)

Soit g une fonction qui applique l'ensemble non-vide S_1 sur lui-même d'une manière biunivoque, de sorte que sa fonction inverse g^{-1} est univoquement définie sur S_1 . Soit ensuite S_2 un ensemble non-vide et f une fonction définie sur S_1 et telle que $f(S_1) \subset S_2$. Nous allons chercher, dans l'ensemble de telles fonctions f, la solution générale de l'équation

$$(1) f(x) = f[g(x)],$$

supposant S_1 , S_2 et g donnés.

Désignons par M une application de l'ensemble $P(S_2)$ dans l'ensemble S_2 avec la propriété que pour tout $y \in S_2$ on a $M\{y\} = y$. Il existe, d'après l'axiome du choix de Zermelo, au moins une telle application. Posons encore $g^{\circ}(x) = x$, $g^{n+1}(x) = g[g^n(x)]$, $g^{-n}(x) = g^{-1}[g^{-n+1}(x)]$ (n=1, 2, ...) pour tout $x \in S_1$.

On peut démontrer le théorème suivant:

Théorème. La solution générale de l'équation (1) est

(2)
$$f(x) = M \bigcup_{v=-\infty}^{+\infty} \{ \Pi [g^{v}(x)] \},$$

où Π désigne une fonction arbitraire définie sur S_1 et telle que $\Pi(S_1) \subset S_2$. Démonstration. Soit Π une fonction quelconque définie sur S_1 et telle que $\Pi(S_1) \subset S_2$. Pour tout $x \in S_1$ on a

$$\bigcup_{\nu=-\infty}^{+\infty} \{\Pi [g^{\nu}(x)]\} \subset S_2.$$

La fonction f définie par (2) possède alors la propriété

$$f[g(x)] = M \bigcup_{v=-\infty}^{+\infty} \{\Pi[g^{v}(g(x))]\} = M \bigcup_{v=-\infty}^{+\infty} \{\Pi[g^{v+1}(x)]\}$$
$$= M \bigcup_{v=-\infty}^{+\infty} \{\Pi[g^{v}(x)]\} = f(x),$$

pour tout $x \in S_1$, c'est-à-dire elle satisfait à l'équation (1).

Démontrons encore que toute solution de l'équation (1) on peut écrire sous la forme (2). Soit f une solution de (1). Si nous posons $\Pi(x) = f(x)$ $(x \in S_1)$, on a $\Pi[g^{\vee}(x)] = f[g^{\vee}(x)] = f(x)$ $(x \in S_1)$, $(x \in S_1)$, $(x \in S_2)$ de sorte que

$$M \bigcup_{\gamma=-\infty}^{+\infty} \{\Pi [g^{\gamma}(x)]\} = M \bigcup_{\gamma=-\infty}^{+\infty} \{f(x)\} = M\{f(x)\} = f(x) (x \in S_1).$$

Le théorème est ainsi complètement démontré.

Pour illustrer le théorème en question, nous donnons quelques exemples. Exemple 1. Cherchons la solution générale de l'équation

(3)
$$f(x, y) = f(a_{11} x + a_{12} y, a_{21} x + a_{22} y),$$

où $||a_{ij}||^k = E$ pour un nombre naturel k et où x, y, a_{ij} (i, j = 1, 2) sont des nombres réels et f une fonction réelle.

En désignant les matrices

$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

par X et A respectivement, on peut écrire l'équation (3) sous la forme suivante:

$$(4) F(X) = F(AX),$$

où F(X) est une fonction réelle de la matrice variable X. Dans ce cas, la fonction g(X) est donnée par l'équation g(X) = AX. En vertu de l'hypothèse $A^k = E$, nous avons

$$g^{-1}(X) = A^{k-1} X$$
 et $g^{k}(X) = X$.

Définissons l'application M comme suit:

$$M\{a_1, a_2, \ldots, a_k\} = \frac{1}{k} (a_1 + a_2 + \cdots + a_k), M\{a_1\} = a_1,$$

 a_1, a_2, \ldots, a_k nombres réels arbitraires, M(T) = 0, pour tout autre $T \in P(S_2)$.

D'après le théorème démontré plus haut la solution générale de l'équation (4) est

$$F(X) = M \bigcup_{\nu = -\infty}^{+\infty} \{ \Pi(A^{\nu} X) \} = M \bigcup_{\nu = 0}^{k-1} \{ \Pi(A^{\nu} X) \} = \frac{1}{k} \sum_{\nu = 0}^{k-1} \Pi(A^{\nu} X),$$

où II désigne une fonction réelle de X arbitrairement choisie. On en déduit que l'équation (3) possède la solution générale de la forme

(5)
$$f(x, y) = \frac{1}{k} \sum_{v=0}^{k-1} \prod (^{v}a_{11} x + ^{v}a_{12} y, ^{v}a_{21} x + ^{v}a_{22} y),$$

avec $\| {}^{\vee}a_{ij} \| = \| a_{ij} \| {}^{\vee}$, et Π une fonction réelle, de deux variables réelles, arbitraires.

Nous citons deux cas particuliers de l'équation (3) que voici

$$(6) f(x, y) = f(y, x),$$

(7)
$$f(x, y) = f\left(-\frac{1}{2}x + \frac{1}{2}y, -\frac{3}{2}x - \frac{1}{2}y\right),$$

dont les solutions générales sont respectivement:

$$f(x, y) = \frac{1}{2} \left[\Pi(x, y) + \Pi(y, x) \right],$$

$$f(x, y) = \frac{1}{3} \left\{ \Pi(x, y) + \Pi\left(-\frac{1}{2}x + \frac{1}{2}y, -\frac{3}{2}x - \frac{1}{2}y\right) + \Pi\left(-\frac{1}{2}x - \frac{1}{2}y, -\frac{3}{2}x - \frac{1}{2}y\right) \right\}.$$

Exemple 2. L'équation (3) est un cas spécial de l'équation

(8)
$$f(x_1, x_2, \ldots, x_s) = f(a_{11} x_1 + a_{12} x_2 + \cdots + a_{1s} x_s, a_{21} x_1 + a_{22} x_2 + \cdots + a_{2s} x_s, \ldots, a_{s1} x_1 + a_{s2} x_2 + \cdots + a_{ss} x_s),$$

où a_{ij} sont des constantes réelles et f une fonction réelle dépendant de s variables indépendantes réelles x_i .

Pour le cas où $||a_{ij}||^k = E$, on peut écrire la solution générale de (8) sous la forme qui généralise celle donnée par (5). Laissons ce cas à part.

Dans le cas général, définissons l'application M de la manière suivante: si S est un ensemble de nombres réels supérieurement borné, MS désigne sa borne supérieure; en cas contraire, on pose MS = 0.

L'application M satisfait aux conditions correspondantes. D'après le théorème énoncé, on en conclut que la solution générale de (8) a la forme suivante:

$$f(x_1, x_2, \ldots, x_s) = M \bigcup_{v=-\infty}^{+\infty} \{ \Pi (^v a_{11} x_1 + ^v a_{12} x_2 + \cdots + ^v a_{1s} x_s, \ldots, ^v a_{s1} x_1 + ^v a_{s2} x_2 + \cdots + ^v a_{ss} x_s) \},$$

où Π est une fonction réelle arbitraire des arguments x_i $(i=1, 2, \ldots, s)$, et $\| {}^{\vee}a_{ij} \| = \| a_{ij} \|^{\vee}$.

Exemple 3. Soit (G, \cdot) un groupe d'ordre g et a et b deux éléments de ce groupe. Cherchons dans ce groupe toutes les opérations binaires * possédant la propriété

(9)
$$x * y = (a \cdot x) * (b \cdot y)$$
 pour tout $x, y \in G$.

Si nous posons x * y = f(x, y), l'égalité (9) devient $f(x, y) = f(a \cdot x, b \cdot y)$.

Nous pouvons définir l'application II comme suit: désignons les éléments de G par a_1, a_2, \ldots, a_g et introduisons la relation \geqslant par la convention: $a_i \geqslant a_i$ si et seulement si $i \geqslant j$. Posons ensuite

$$M\{a_{i1}, a_{i2}, \ldots, a_{is}\} = \text{Max}\{a_{i1}, a_{i2}, \ldots, a_{is}\},\ a_{i,i_1,i_2,\ldots,i_s \leq s}$$

où le maximum correspond à l'ordre déterminé par la relation ≥ introduite. On peut démontrer, à l'aide du théorème cité ci-dessus, que la forme générale de l'opération *, satisfaisant à l'equation (9), est la suivante

(10)
$$x * y = \operatorname{Max} \{ (a \cdot x) \circ (b \cdot y), (a^2 \cdot x) \circ (b^2 \cdot y) \ldots, (a^g \cdot x) \circ (b^g \cdot y) \},$$

où o désigne une opération binaire arbitraire dans G.