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FUSION FRAMES AND G-FRAMES IN TENSOR
PRODUCT AND DIRECT SUM OF HILBERT SPACES

Amir Khosravi, M. Mirzaee Azandaryani

In this paper we study fusion frames and g-frames for the tensor products
and direct sums of Hilbert spaces. We show that the tensor product of a
finite number of g-frames (resp. fusion frames, g-Riesz bases) is a g-frame
(resp. fusion frame, g-Riesz basis) for the tensor product space and vice
versa. Moreover we obtain some important results in tensor products and
direct sums of g-frames, fusion frames, resolutions of the identity and duals.

1. INTRODUCTION

Frames for Hilbert spaces were first introduced by DUFFIN and SCHAEFFER
[10] in 1952 to study some problems in nonharmonic Fourier series, reintroduced
in 1986 by DAUBECHIES, GROSSMANN and MEYER [8]. Frames are very useful in
characterization of function spaces and other fields of applications such as filter
bank theory, sigma-delta quantization, signal and image processing and wireless
communications.

Fusion frame is a generalization of frame which was introduced in [5] and
investigated in [2, 6, 21]. Fusion frames have important applications e.g., in sensor
networks and packet encoding.

SUN in [23] introduced g-frame as a generalization of frame. He showed that
oblique frames, pseudo frames and fusion frames are special cases of g-frames.

Note that fusion frames and g-frames have been introduced in Hilbert C*-
modules and Banach spaces, see [18, 19].
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Let H be a Hilbert space and let Z be a finite or countable index set. A
family {fi}iez C H is a frame for H, if there exist 0 < A < B < 00, such that

AIFIP < D1 < BIFI

i€l

for each f € H. A family {fi}icz C H is complete if the span of { f;}icz is dense in
H. We say that {f;}icz is a Riesz basis for H, if it is complete in H and there exist
two constants 0 < A < B < oo, such that

A el <D afil? < BY el
i€F icF icF
for each sequence of scalars {¢;};cr, where F is a finite subset of Z. For more study
about frames see [7].

For each i € Z, let H; be a Hilbert space and L(H, H;) be the set of all
bounded, linear operators from H to H;. We call A = {A;, € L(H,H;) :i € I} a
g-frame for H with respect to {H;}iez if there exist two positive constants A and
B such that

AIFIP < DI I1? < BIFI
i€T
for each f € H. In this case we say that A is an (A, B) g-frame. A and B are the
lower and upper g-frame bounds, respectively. If A = B, then A is called an A-tight
g-frame. We call A a Parseval g-frame if A = B = 1. If only the second inequality
is required, we call it a g-Bessel sequence. If A is a g-Bessel sequence with upper
bound B, then the g-frame operator Sy is defined by Spf = ZA;‘Aif. In this
i€

case S is bounded and 0 < Sy < B.Idgy. If A is an (A, B) g-frame, then Sy is a
bounded, positive and invertible operator such that A.Idy < Sy < B.Idy. Recall
that if A is a g-Bessel sequence such that Sy is invertible, then A is a g-frame. In
this case ||Sy'||~! is a lower bound for A.

Let {H;};cz be a sequence of Hilbert spaces. Then by considering K =
@iczH;, we can assume that each H; is a closed subspace of K, therefore if f;, € H;,
and f;, € H;,, for i1,i3 € Z, then (f;,, fi,) is well-defined.

We say that {A; € L(H, H;) :i € I} is g-complete if {f : A;f =0,Vi e I} =
{0}, and we call it a g-orthonormal basis for H, if

<Azlfi1aAz2fi2> = 5i1,i2<fi15fi2>a 11,12 € I7 fi1 € Hiufiz € Hi2a

and

DoINFIP =117 Ve H

i€l
A={A, € L(H,H;):i €I} is a g-Riesz basis for H, if it is g-complete and there
exist two constants 0 < A < B < oo, such that for each finite subset F C 7 and

fi € HlaZ € Fa
AY ISP <Y oATRIP < BY DIl

el ieF i€l
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In this case we say that A is an (A4, B) g-Riesz basis.

Let {W,}icz be a family of closed subspaces of a Hilbert space H. Let {w;}icz
be a family of weights, i.e., w; > 0 for each ¢ € Z. Then W = {(W;,w;)}icz is a
fusion frame, if there exist A, B > 0 such that

AIFIP <Y willmw, (D117 < BIFI?,

€T

for each f € H, where my, is the orthogonal projection onto the subspace W;.
Hence W = {(W;,w;)}iez is a fusion frame if and only if Aw = {w;mw, }icz is a
g-frame for H and we say that W is an (A, B) fusion frame (resp. a Bessel fusion
sequence, a tight fusion frame, a Parseval fusion frame) if Ay is an (A, B) g-frame
(resp. a g-Bessel sequence, a tight g-frame, a Parseval g-frame). If W is a Bessel
fusion sequence with upper bound B, then the fusion frame operator Sy is defined
by SW(f) = SAw (f) = ZwiQWWi(f)'
€T

Tensor products of frames, fusion frames and g-frames have been studied by
some authors recently, see [15, 3, 17, 12]. In this paper, by using operator theory
methods, we present different proofs for the results obtained in the above papers
and by these methods we get some important properties of the tensor products of
fusion frames and g-frames.

Also direct sums of fusion frames and g-frames have been considered by some
authors, see [16, 21, 24, 1, 20]. In this paper we get more useful information
about them.

The content of the present note is as follows: In Section 2 we study tensor
products of g-frames, fusion frames, g-orthonormal bases and g-Riesz bases and we
obtain some relations between direct sums and tensor products of these concepts.
Also we consider exact fusion frames and approximation method of the inverse
frame operators.

In Section 3 we present some new examples of resolutions of the identity and
atomic resolutions of the identity by using tensor products and direct sums of fusion
frames and g-frames. We also consider tensor products and direct sums of atomic
resolutions of the identity and their atomic resolution operators and we get some
results in tensor products and direct sums of duals.

In this paper I, J and I, for each 1 < k < n, are finite or countable index
sets. H, H;, Hy, Hyj, H;) and H;,); are separable Hilbert spaces for each j € J,
ke{l,...,n} and i(k) € I.

2. TENSOR PRODUCTS AND DIRECT SUMS OF FUSION
FRAMES AND G-FRAMES

Recall that if Hy is a Hilbert space for each 1 < k < n, then the (Hilbert)
tensor product ®}_,Hy = H1 ® ... ® H, is a Hilbert space. The inner product for
simple tensors is defined by (®7_; fx, ®7_19x) = I7_, (fx, gx), where fi, gr € Hy.
If Uy is a bounded linear operator on Hy, then the tensor product ®}_,Uj is a



290 Amir Khosravi, M. Mirzaee Azandaryani

bounded linear operator on ®}_; Hy. Also (7_,Ux)* = ®@F_, U} and ||@}_, Uk|| =
IT}_, |Ux||. Note that if M} is a closed subspace of Hy, for each 1 < k < n, then it
is easy to see that Ty My, = Q1T M, -

Also recall that if 2 and % are C*-algebras, then 2 ® B is a C*-algebra
with the spatial norm and for each a € A, b € B, we have ||a ® b|| = ||a|||b||- The
multiplication and involution on simple tensors are defined by (a®b)(c®d) = ac®bd
and (a ® b)* = a* ® b*, respectively. As we know if a,b > 0, then a ® b > 0.

Tensor products have important applications, for example tensor products are
useful in the approximation of multi-variate functions of combinations of univariate
ones. For more results about tensor products see [13, 14, 22].

Note that if 2 and 2’ are unital C*-algebras and a € 2, o’ € A" with 0 <
a <1y, and 0 < a’ < 1y, then

0< a®a < ||a®a/||191 ® 1y = ||a||||a/||191 R Ly <1y ®1g.

Also note that if L = {¢1,...,4,,...} and K = {k1,...,kq,...} are two index sets
and fg, € H, for each ¢ € L,k € K, then the series Z fer is defined by

(L,k)ELXK
P

q
lim s(p, ¢), where s(p,q) = szhkt' If ¢ is a nonnegative number for each
p.q

r=1t=1

{e L, ke K, then we have

=D cn=Y_> cu.

(6,k)e(LXK) (ELkEK kEK (eL

In thiS paper (I)(k) = {Az(k) S L(Hk;Hi(k))}i(k)Elkv W(k) = {(Wi(k),wi(k))}i(k)gk,
where Wj ) is a closed subspace of Hy and we define or_ ®®) gr_ Wk by

Ay ® ... @ Ny € L(@f=1Hp, Hi1y ® ... @ Hi()) }i1),....i(n)) (1 x ... x 1) »

{Wi)y @ .. @ Wign), Wi(1) + - - Wi(n)) }(6(1),nsi(n)) € (T X v X I )

respectively.
Now we consider tensor products of g-frames and fusion frames.

Theorem 2.1. (i) ®*) is a g-frame for each 1 < k < n if and only if ®Z':1<I>(k) is
a g-frame. In this case S®;Cl=1q>(k) = ®p_15w . If Ay and By, are lower and upper
bounds of ®F) | respectively, then @7_, &%) is an (TI7_, Ag, TI7_, By,) g-frame.

(ii) W) is a fusion frame for each 1 < k < n if and only if ®Z:1W(k) s a
fusion frame. In this case S®;€1=1W(;€) = ®p_1Swa . If Ay and By are lower and
upper bounds of W) | respectively, then ®Z:1W(k) is an (II7_, A, II}_, By,) fusion
frame.

Proof. (i) It is enough to prove the theorem for n = 2.
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Let ®®*) be an (A, Bi) g-frame. Then 0 < BLSq,(k) < Idp, , and so we have
&

0 < Spm) ®Sep < B1B2.Id(g,gmH,)- Hence for each z = er ®yr € Hi Qarg Ho,

=1
we have
S i@ Mi)zlP= Y0 D (M) ® Aye)2ll
(i(1),i(2)) €1 % I2) i(1)el i(2)€ly

- <Z Z Z Afu)Ai(l)xl ®A;‘k(2)/\i(2)yz,z>

I=1 i(1)el, i(2)el,
= ((Sp) ® Sp@)2,2) < B1Bsl|z|?.

Now let z € Hy ® Hy, Fy and F; be finite subsets of I; and I», respectively, and let
{#m}>_1 € Hi Qqug Ha such that lim,, z,, = z. Then

Z Z [(Ai1) @ Aigz))z —hm Z Z A1) ® Ny2))zm)?

i(l)EFl i(Q)EFQ 1(1)€F1 l(Q)EFQ
S 1i7£n<(5¢(1) X Sq,(z))zm, Zm> S B1B2||ZH2

Since F} and F, are arbitrary, then ®i:1¢(k) is a g-Bessel sequence with upper
bound By Bs. For each z € Hi ®qq Ho

(Sg2_ 202, 2) Z Z Ay ® i)z ]I = ((Se) ® Sp)2, 2),

(1)l i(2)€l2

and since the operators are bounded, then S®i_lq>(k) = ®i:15¢(k). Now since Sg)

and Sg2) are invertible, then S®2 LBk is invertible. Hence ®% 1<I>(k) is a g-frame
with lower bound ”Seg q>(k)|| L= ||S;(1)|| 1||S (2)|| 1 and since 4; < ||S<D(1)|| L
and A < ||S<D(2> |1 then Aj As is a lower bound for ®2 L),

Conversely let ®2 1®®) be an (A, B) g-frame and 1et x € Hy. Then for each
y € Ho, we have

A||x||2||y||2=A||x®y||2<( > ||Ai<1>x||2)( > ||Ai<2>y||2)

i(l)EIl i(Q)GIQ

> Y g @ M) e y)|? < Blz @yl = Bllz|*|y|*.
i(l)e]l i(Q)EIQ

Hence we can choose an element y € Hy such that [|y]| =1and C = [[Ajyl?
i(2)El
is a positive number. Thus ®() is an (g, g) g-frame. Similarly ®(®) is a g-frame.
(i) We can get the result by using the fact that ®*) = {Witk)TW g Vi),
is a g-frame for each 1 < k < n if and only if

®Z:1‘I’(k) = {%‘(1) .- ~wz’(n)W(Wi(l)®...®Wi(n))}(i(l),...,i(n))e(h><...><In)
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is a g-frame. O

Now by using the above theorem we obtain the following result that will have
useful consequences in the rest of this note.

Corollary 2.2. (i) If ®®) is a Parseval g-frame (resp. tight g-frame, g-Bessel
sequence) for each 1 < k < n, then ®Z:1<I>(k) is a Parseval g-frame (resp. tight
g-frame, g-Bessel sequence).

(ii) If W) is a Parseval fusion frame (resp. tight fusion frame, Bessel fusion
sequence) for each 1 < k < n, then ®Z:1W(k) is a Parseval fusion frame (resp.
tight fusion frame, Bessel fusion sequence).

Proof. (i) Since & )’s are Parseval, then A, = By, = 1, for each 1 < k < n in
Theorem 2.1. Hence ®Z:1<I>(k) is a Parseval g-frame. Also if ®*) is an Aj-tight
g-frame, for each 1 < k < n, then ®}_, ®*) is (I}_, Ay)-tight. Tt is also obvious
from the first part of the proof of Theorem 2.1 that if ®*)’s are g-Bessel sequences,
then ®Q:1<I>(k) is a g-Bessel sequence.

(ii) The result follows from part (i) as in Theorem 2.1. O

Note that [17, Theorem 3.7] is a special case of parts (i) of Theorem 2.1 and
Corollary 2.2.

REMARK 2.3. If each ®*) contains a nonzero operator and k=1 &) is a g-Bessel sequence,
then similar to the proof of Theorem 2.1, we can obtain that each d™* is a g-Bessel
sequence Now let {an}n 1 and {Bm}om—1 be sequences of positive numbers with ¢ =

Zan >1,d= Zﬂm < 1 and ¢d = 1. Hence if &V = {an - Idg, : n € N} and
n=1 m=1

&3 = {B,, - Idu, : m € N}, then ®@7_,®*) is a Parseval g-frame, but &) and ®® are
not Parseval.

Proposition 2.4. If ®*) is a g-orthonormal basis for each 1 < k < n, then
@n_,®*) s a g-orthonormal basis for @7_, Hy.

Proof. Let n = 2. By Corollary 2.2, ®£:1<I>(k) is a Parseval g-frame. Now let

oo

(i(1),i(2)), (§(1),4(2)) € Iy x Iz, and let z = wa ® z20 € Hi(1) ® Hyoy, w =

=1

Zylr & Yor € Hj(l) & Hj(g). Then we have

r=1

<(Ai(1) ® A1(2))* (A‘(l) ® Aj(2))*w>

= Z ¢(1 (#10), (1)(y1r)></\f(2) (w20), A;‘(?) (y2r))
(=1 r=1

= 0(i(1),i(2)),(i(1),4(2)) (%> W)

This means that @?_, ®*) is a g-orthonormal basis for @?_, H.
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Proposition 2.5. ®*) s a g-Riesz basis for each 1 < k < n, if and only if
@n_,®*) s a g-Riesz basis.

Proof. Let n = 2 and ®*) be a g-Riesz basis for each k € {1,2}. Hence by [23,
Corollary 3.4], there is a g-orthonormal basis {Q;(x) }i(k)er, » for Hx and an invertible
operator Uy on Hy, such that A;) = Q;)Uk, for each i(k) € Ir. Therefore we
have A1y ® Aj2) = (Qi(1) ® Qi2)) (U1 @ Uz). It follows from Proposition 2.4 that
{Qi(1) ® Qi2)} 5(1),i(2))er x 1, 18 a g-orthonormal basis for ®i:1H;€, and it is clear
that Uy ® Uy is an invertible operator on ®?%_, Hy. Now we can get the result by
using Corollary 3.4 in [23].

Conversely suppose that ®Z:1<I>(k) is an (A, B) g-Riesz basis and f € Hy,
such that A;;)f = 0, for each i(1) € I;. Let g be a nonzero element of Hs. Then we
have (A1) @ Ai2))(f @ g9) = (Aj1) f) @ (Aj(2)9) = 0. Since ®i:1¢(k) is g-complete,
then || f||[lg]l = || f ® g|| = 0. Hence f = 0, and this means that ®1) is g-complete.
Now let F| be a finite subset of I and g;1) € H;(y), for each i(1) € Fy. Suppose
that F» is a finite subset of Iy and g;2) € Hj(), for each i(2) € F» such that

Z l9:2)I* = 1. Now we have

i(2)€Fy

A( T ||gi<1>|2)( > ||gi<2>|2)=A Y e @ sl

i(1)eFy i(2)€F2 (i(1),i(2))€F1L X F»
2
< Z (Al1y ® Aj2))(9i(1) @ 9i(2))
(i(1),i(2)) € FL X F2
2 2
= Y. Aago > Agygie) <B< > |9¢(1)||2>< > |9¢(2)||2>-
i(l)GFl i(Q)GFQ i(l)GFl i(Q)GFQ
Meaning that &) i A B\ o Riesz basis, where ' — A* ‘O
eaning that 1S an (5’5) g-Riesz basis, where ' = Z 1(2)91(2) .

i(2)€Fy

Note that all of the results in tensor product of g-frames obtained in [12]
are special cases of the above results. Also by using Theorem 2.1, Proposition 2.5
and [23, Examples 1.1 and 3.1], we can obtain the main results of [3] ([3, Theorem
4.1]):

Corollary 2.6. Let f*) = {fie) Yiwyer, be a sequence in Hy. Then f*) is a frame
(resp. Riesz basis) for each 1 < k < n if and only if ®z:1f(k) which is defined by
{fi) ®- . ® fitm) Yi(1),....i(m))e (I x...x1,,) 5 @ frame (resp. Riesz basis) for @y _; Hy.

Let ®; = {A;; € L(H;, H;;) : i € I} be a g-Bessel sequence for Hj, j € J,
with upper bound B, such that B =sup{B, : j € J} < co. Then {®;};c; is called
a B-Bounded family of g-Bessel sequences or shortly B-BFGBS.

Let ®; = {Ai; € L(Hj,H;j) : i € Z} be an (A;, Bj) g-frame (resp. g-Riesz
basis) for H;, j € J, such that A = inf{A4; : j € J} > 0and B =sup{B; : j €
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J} < 0o. Then we say that {®;};cs is an (A, B)-bounded family of g-frames (resp.
bounded family of g-Riesz bases) or shortly (A, B)-BFGF (resp. BFGRB).

Note that a B-bounded family of Bessel fusion sequences or shortly B-BFBFS
and an (A, B)-bounded family of fusion frames or shortly (A,B)-BFFF for a family
of fusion frames can be defined by using the g-frames generated by the fusion frames.
We denote a family of Parseval fusion frames by FPFF.

In the rest of this note <I>§k) = {Aiw); € L(Hrj, Hiiyj) Yiwyer» Wi = {(Wig,wi) bier,
WJ(»k) = {Witkyj»witk)) Yitkyeros ©jeaW; = {(®jesWij,wi)bier, where W;; and
Wik); are closed subspaces of H; and Hy;j, respectively and

k
EBjeJ(I)é ) = {@jeshin); € L(®jesHrj, ©jesHi);) Yitker, -

Note that if W;;’s are closed subspaces of Hj, then it is clear that Djesmw,;; =
Tg,e Wiy for each i € I, now as a consequence of [20, Theorems 2.3 and 2.5] and
the above results, we have the following. Part (iii) of the following corollary is also
a generalization of [16, Theorem 2.3 and Corollary 2.2] to a countable number of
fusion frames.

Corollary 2.7. (i) {@gk)}jej is a BFGF (resp. BFGRB), for each 1 < k < n if
and only if ®Z:1(@jej¢§-k)) is a g-frame (resp. g-Riesz basis) for @p_,(®jerHi;)-
Also if {¢)§k)}jej is an (Ag, By)-BFGF, then ®Z:1(@jej¢§»k)) is an

(I}, Ap 15, By g-frame.

(i) If @;k) is a g-orthonormal basis for each j € J and 1 < k < n, then
®Z':1(@jej(b§k)) is a g-orthonormal basis for Q7_, (®jc Hy;).

(iii) {W,}jes is a BFBFS (resp. BFFF, FPFF) if and only if ®;csW; is a
Bessel fusion sequence (resp. fusion frame, Parseval fusion frame) for @;jcsH;. In
this case Sg .., W, = ®jcsSw;.

(iv) {W;k)}jeJ is a BFFF, for each 1 < k < n, if and only if®g':1(@jEJWj(.k))
is a fusion frame for @7_,(®jesHij).

Recall that a frame (resp. fusion frame) is ezact, if it ceases to be a frame
(resp. fusion frame) whenever any of its elements is removed. A frame is exact if
and only if it is a Riesz basis (see [4, Proposition 4.3]). Hence by Corollary 2.6,
the tensor product of a finite number of frames is exact if and only if each of the
frames is exact. We show that the same result holds for fusion frames. Note that
if W = {(W;,w;)}iez is an exact fusion frame, then W; # (0), for each ¢ € Z and if
J is a proper subset of Z, then {(W;,w;)}ic s is not a fusion frame.

Proposition 2.8. Let W) be a fusion frame for each 1 < k < n. Then W) is
evact for each k € {1,...,n} if and only if @7_ W®) is eract.

Proof. Let n = 2 and W), W) be exact fusion frames. Suppose that (i,i5) €
Il X I2 such that {(Wz(l) ® VV?Z(Z)awi(l)wi(Q))}(i(l),i(Q))E([lXIQ—{(il,iQ)}) is a fusion
frame with lower bound A. Since W*)’s are exact, then by [5, Proposition 3.6],
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there exist two nonzero elements f; € H; and fo € Hs which are orthogonal to
spar{ Wi Yiyen—{iy and 3pan{ Wi }i2)er,—{is} > respectively. Therefore

A||f1|2||f2||2é( ) wf(mwm)fln?)( ) w?@)llﬂwi(z)lez)

i(1)el, i(2)€l2

- wglwlzzHﬂWil leQHﬂ-WiQ f2||2 =0,

which is a contradiction. Hence ®i:1W(k) is exact.

Conversely suppose that ®i:1W(k) is exact. If W) is not exact, then there
exists some 4; € I; such that Z = {(W;n),wi1))}icyern iy} is a fusion frame.
Hence by part (ii) of Theorem 2.1,

Z@W = {(Wig) ® Wigay, wi)Wi(2)) } (1) i(2))e (11— {ir}) x I

is a fusion frame which is a contradiction, since ®i:1W(k) is exact and
(I1 — {i1}) x I is a proper subset of I1 X I5. O

Suppose that W = {(W;,w;) }iez is a fusion frame for H such that W; is a
finite-dimensional subspace of H, for each i € Z. Let {Z,,,}2°_; C 7 such that Z,,
is finite foreachme Nand 7, CZ, C ... CZ,, " T.

For each m € N we assume that W, = {(W;,w;)}iecz,, is a fusion frame
for Hy,, = span{W,}iez,, with operator Sw._, : H,, — H,, which is defined by
Sw,, (f) = Z w?mw, (f). We say that the approximation method of S;;! works if

1€Lm

dim Syt (f) = Syt ()),
for each f € H. For more results see [16].

As we know the inverse of the frame operator plays an important role in frame
theory mostly because of the reconstruction, but it is often difficult to find it. In
this case if we can approximate this inverse, then we can approximately reconstruct
the signals which is useful in applications. Here since H,, is finite-dimensional, then
Sw,, can be inverted using linear algebra. Therefore if the approximation method of
Syt works, then S;;!(f) can be approximated by the sequence {Sv}}n 7w, ()},
for each f € H, and we have

i Sw(Sy) m, f) = SwSy' f = f =Sy Sw(f) = lim Sy wa, (Swi).
In the following proposition all of the subspaces in the fusion frames are finite-
dimensional.

Proposition 2.9. Suppose that W*)’s are fusion frames. If the approzimation
method of S;\}(,c) works for each k € {1,...,n}, then the approzimation method of

S 1

Q;;LlW("') works.
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Proof. Let n = 2 and let the approximation method of S’;Vl(,c) work for each

k € {1,2}. Then there exist {T'} }>°_, C I and {I'2}5°_, C I such that T'¥, is a
finite set for each m € N and k € {1,2},

rtcric...crl ~n, r2cric...cr? Ao,

and Wk = {(Wigry, wiky) Yi(kyers 1s a fusion frame for HF = span{ Wiy Yigryers -
Hence (T1 xT2) C (T4 xI3) C ... C(T'L xT2) /(I x I3), and it is easy to see
that

H,, ® H7, = span{ Wiy ® Wi }(1),i(2)e(r, x12,)-

m m

Since W, and W2 are fusion frames for H}, and H2,, respectively, then by
part (ii) of Theorem 2.1, Wy, @ W, = {(Wi() & Wi(z), wiy@i()) }i(1).i(2)e (T, x12,)

is a fusion frame for H}, ® HZ. Now by using part (iii) of [16, Theorem 3.2], we
have

Slé%{||5(v;1/;®wgi)7f(H,ln,®H3n) 1} = S%%{H (S ma3,) © (S w2, )1}

< sup {1y w1} sup {15 7wz ||} < oo
meN m meN m

Hence SqueN{HS(_V[l/%L@WgL)”} = SqueN{||S(_I/11/71L®W§L)7T(H%L®H§L)H} < o0, and the
result follows from Theorem 3.2 in [16].

3. RESOLUTIONS OF THE IDENTITY AND DUALS

Resolution of the identity was defined in [5], and afterwards the first author
and ASGARI introduced atomic resolution of the identity in [2] for more applications
in fusion frames:

Definition 3.1. Let {w;}icx be a family of weights. A family of bounded operators
{T;}icx on H is called an atomic (unconditional) resolution of the identity with
respect to {w;}icx for H if there exist two positive numbers A and B such that for
each f € H,

(i) f= Zﬂ(f) (and the series converges unconditionally),

ez
(i) Allf]|* < z:o.)?HTl(f)H2 < B||f|I?. In this case we say that {(T;,w;)}ier
ieT

is an (A, B) atomic (unconditional) resolution of the identity or shortly an (A, B)
ARI(AURI). If we only know that {T;}iez satisfies in (i), then {T;}iez is called a
(unconditional) resolution of the identity.

Let T = {(Ti,w;) }iez be an (A, B) ARI for H. Then the atomic resolution
operator Ry : H — H is defined by Ry (f) = > w?T;T;(f). By Theorem 3.4 in

i€l

[2], we have A.Idy < Ry < B.Idg.
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If 7, = {(Tij,wi)}ier is an (A;, B;) ARI (resp. AURI) for H; such that
A=inf{4; :j€ J} >0and B =sup{B, : j € J} < oo, then we call {T;};cs
an (A, B)-bounded family of atomic (unconditional) resolutions of the identity or
shortly an (A, B)-BFARI (resp. BFAURI).

ExXAMPLE 3.2. Let {W,},cs be a BFFF and W) be a fusion frame, for each 1 < k < n.
Then by Theorem 2.1 and Corollary 2.7, @F_;W® and @jcsW;j are fusion frames for
®p_1Hy and ®;csHj, respectively. Therefore by [2, Proposition 3.7], {(T},w; ) }ier and
{(T},w; ") Yier are AURI for @jesH;, where

_ 2 -1 o 2 —1
Ti = wima;e Wi; Sp e w; = Djes (WiTwi; Sy,;)-

Also

{(Uiqy,....imy» (i1 - - Wign)) ™ ) Y1) i)y € Ty 5o x T
and

LUy, ity i1 -+ - Wign) ™) ()i (m)) (T X oo I
are AURI, for ®j_, H, where

2 -1 n 2 -1
Uin),..csit) = (Wia) -+ @im)) T Wiy @ 0Wig) Sgn_ i = @h=1 (Wit TWi Sy )-

Let A = {A; € L(H,H;) : i € I} be an (A, B) g-frame. Then the canonical
dual g-frame for A is defined by A = {A; € L(H, H;) : i € T}, where A; = Ainl,

which is an (%, %) g-frame for H. If A is a g-Bessel sequence, then the g-Bessel
sequence {I'; € L(H, H;) : i € T} is called a g-dual of A if f = ZF;AJ, for each

ieZ
feH.

EXAMPLE 3.3. Let R;(y’s be finite or countable index sets, ®*) be a g-frame for Hy and
{(Wi(k)r(k),wi(k)r(k))},«(k)eRi(k) be a Parseval fusion frame for Hj). Then by Theorem
2.1, ®Z:1<I>(k) is a g-frame for ®)_; Hy. Also by Corollary 2.2,

{Wiyr) ® -+ @ Witnyr(n)> Wi1yr(1) - - - Wign)r(n)) }(r(1),er0,m(0) € (Ri 1y X oo X Rigmy)

is a Parseval fusion frame for ®}_; H;x). Now define Tj(1yr(1),...,i(n)r(n) bY

2 * -
(@iyr(1) - - - Witnyr(n))” (A1) @ -+ @ Ni(n)) T (W, (1), (1) 8.0 @Wi gy () Ni(1) @ -+ @ A,

—~

where Aj1) ® ... ® Ajny = (A1) ® ... ® Ayeny)S () Hence by [21, Corollary 2.6],
1

-1
®k—

{Ti1)r(1),eensinyr () F (L) i () € (T X X T ) (P (1) (R))E (R 1) X eo: X R (1))
is a resolution of the identity for ®j_; Hy.

EXAMPLE 3.4. Let {em; }rm=1, {em(k)}f,f(k)zl be orthonormal bases for Hj;, Hy and Wi,;,
W) be the Hilbert spaces generated by emj, €mx), respectively, for each j € J, 1 <
k<n. If mmj = mw,,; and Tk = TW (k) then by using Example 3.2, we can see that
{(@jes mmj, 1) =1 and {(Tm@) @ -+ ® Tom(n)> 1) Hm().....m(n))eix...x) are AURI for
®jesH; and ®;_; Hy, respectively.
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Note that in the above example each m,,; is a positive operator and if 7; =
{(Tmj, wm) }oo_q, wm = 1, for each m € N, then {7,},cs is a BFARI and we see
that {(Bje Tmj,wm)} ey is an AURI for @;¢ s H;. The following proposition shows
that this result holds for each BFARI with positive elements:

Proposition 3.5. Let T;; : Hj — H; be a positive operator, for each i € I and
jeJ If{T; = {( ”,wl)}le[}je] is an (A, B)-BFARI, then {(®;csTij,w;)}ier is
an (A,B) AURI for ®,c H;. Conversely if {(®jesTij,wi)}icr is an AURI then
{T;};es is a BFAURL

Proof. Note that Z |T; fJH ier Tigfis fi) = | f5]12, for each f; € Hj.

i€l
Since {7;};es is an (A,B)-BFARI, then sup{||T;;| : j € J} < £ for each

i € I, therefore ®je ;T35 is a bounded operator on @;esH;. Let F' be a ﬁmte subset
of I. Then for each f = {f;}jes,9 ={9;}jcs € jesH,;, we have

1
S K@eaTi f )l =D 1D AT2 £, T2g5)| <D DT, fJHH gjn

ieF ieF ! jeg jeJieF
1
sz((DTi?fjn) (> gjn)) > lfillgsl < 119l
Jj€J iel iel jeJ

So Z (@jesT5;)f is weakly unconditionally Cauchy and hence unconditionally con-
i€l

vergent in ey H; (see [9], page 44, Theorems 6 and 8). Also

Sup{’<z(@j6JTij)f,g>’ 19 € BjesHj, |9l = 1} < Il
el
thus the operator Z (®jesTi;) which is defined on &,c 7 H; by
iel
(Z(@jeJTij)) {fi}ien) =D _(@iesTij){fiYier,
iel iel

is bounded. Now we have

<Z(@j€Jsz f7 > ZZ Tl]fj7fj Z Zlefj7fj

el el jed jeJ el
- Z fis 1) = {Fitiea A fitien)-
jedJ

This means that Y (BjesTi;){f;}jes converges unconditionally to {f;};ec, for

iel
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each {f;}jcs € PjesH;. Also we have
ZWQH @JGJT’U)({JC]}JGJ ||2 ZZWQHTUJCJHQ

iel iel jeJ
=N WITS£17 < BY %
jed iel jed
similarly > w?[[(©jesTi) ({ fi}ien)lI? = A _1fill?. So {(®jesTij,wi)}ier is an
i€l jeJ

(A,B) AURI. The converse is clear.

Proposition 3.6. If 7+ = {(Tiwy, witk)) Yicwyer, s an AURI, for each 1 < k < n,
then @F_ 1 T® = {(Ti1) @ ... ® Ti(n), Wi(1) - - - Win)) }6(1),..i(n)) (I . x 1) 05 an
AURI, for ®}_Hy. In this case R®Z:1T(k) =Qp_1Rrm.

Proof. Let n = 2 and ¢ be a permutation of I; X I5. Then for each z = Z Ty RYp €

=1

Hi ®q0q Ha, we have

m

(1) Z (E(l) ®E(2))Z = lll)l'ng(p, q, Z) = Z (ZTarxf) ®<2Tﬁty4> =z,
’ r=1 t=1

(i(1),i(2)) €0 =1 “r=

where S(p, q, 2 ZZ To, ® T3,)z and

r=1t=1

a:{al,...,ap,...},ﬁ:{61,...,6(1,...}

p
are permutations of Iy, I, respectively. Suppose that S,, = ZT% and Sg, =

r=1

ZTﬁt Since 7*)’s are AURI, then hm Sapr = x and hm Sgqy = vy, for each

t=1
x € Hy and y € Hs. Hence by using the uniform boundednebs principle, we can

get that K, = sup,en{|[Sapll} < 0o and Kg = sup,enil[Spqll} < oo. Now for each
z € Hy ® Ho, by choosing some element zg € H; ®q4 H2 close to z, and by using
(1) and the inequality

1(Sap @ Spq)z — 2| < KaKgllz — 20/l + [[(Sap @ Sq)20 — 20l + ||z — 20|,
we obtain that lim(Sa, ® Sgq)z = z, which is equivalent to the convergence of
P.q
Z (Ti(1) ®Tj(2y)z to z. This means that Z (Ti(1) ®Tj(2))z converges
(i(1),i(2)) € (i(1),i(2))e(I1 x I2)
to z unconditionally. If By, is an upper bound for 7(*) then similar to the proof

of Theorem 2.1, we can obtain that 0 < Rya) ® Ry < BlBQ.Id(H1®H2) and for
each z € H; ® Ho,

> Wiy Wiy (T @ T2zl = ((Rroy ® Ry@)z, 2) < BiBel|z||*.
(1(1),i(2)) €(I1 xI2)
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Since Ry and Ry are positive and invertible, then ®7_, Ry is also positive
and invertible. Thus for each z € H; ® Hs, we have

1
|| RT(U ®R7—(2) 52H2

S Wl win (T ® Ti))z)l*.

i(1)el i(2)€l

IN

1 _
[(®3_1 Rroo) 72| 712112

Therefore ®i:17'(k) is an AURI. From the above conclusions it is clear that
Rg2 700 = Qi1 Ry

Corollary 3.7. Suppose that Tyy; : Hy; — Hyj is a positive operator for each

jeJ and1 <k <n, such that {T") = {(Ty); wit) Yiwer, }ies is a BFARI, for
each k € {1,...,n}. Then

{(®jesTi1);) ® - .- @ (BjeaTi(ny;)> wic1) - - 'wi(n))}(i(l),...,i(n))e(h><...><In)
is an AURI for @}_,(PjesHrj).

Let V = {(V;,v;) }iez be a fusion frame and W = {(W;,w;)}iez be a Bessel
fusion sequence for H. If f = ZUMﬂWi SV my, f, for each f € H, then W is called

ez
an alternate dual of V ([11, Definition 2.7]).
In the rest of this section V = {(Vij,vi) Yier, VP = {(V(k),vl(k))}l(k)elk,
k
Vj( )= {Vitwyg»vig)) Yimern,, ¥ = {Tiwy € L(Hr, Hir)) Yickyers ¥ v = {R(k)J
L(Hgj, Hik);) Yikyer,» where Vw, Vi) and Vj); are closed subbpaces of H;, Hy
and Hy;j, respectively.

Corollary 3.8. (i) Suppose that W) s and V*) ’s are Bessel fusion sequences
and fusion frames, respectively. If W) is an alternate dual of V¥, for each
ke{l,...,n}, then ®Z:1W(k) is an alternate dual of ®Z:1V(k).

(ii) Suppose that ®*)’s and ¥ *) ’s are g-Bessel sequences. If ®*) is a g-dual
of W) for each k € {1,...,n}, then ® <I>(k) is a g- dual of ®p_ \I!(k).

iii s are g-frames, then ®}_ = ~ 1s used for showing
i) If @F) f h <I><k> n_d d for showi
the canonical dual of a g-frame).

Proof. (i) First note that by Theorem 2.1 and Corollary 2.2, we have that ®Z:1V(k)
and ®Z:1W(k) are fusion frame and Bessel fusion sequence, respectively. Now if we
define Ty = Ui(k)wi(k)ﬂw,;mS;(I;C)W\/,;(k), then it can be obtained from [5, Lemma
3.9] that 7(*) = {Ti(k) }itkyer, is an unconditional resolution of the identity for
Hy. Now by using the first part of the proof of Proposition 3.6, ®Z:1T(k) is an
unconditional resolution of the identity for ®}'_, H, which is equivalent to say that
®”:1W(k) is an alternate dual of ®}_ V(k).

(ii) If we define Tj() = Fz(k)Az(k), then 7") = {Tiy }icwyer,, is an uncondi-
tional resolution of the identity for Hy, see [21, Definition 3.2]. Now similar to part
(i), by using Proposition 3.6, we can get the result.
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cee . —1
(iii) Since S®7§

we have

o) = 2215&1,‘,), then for each (i(1),...,i(n)) € I1 x...x I,
=1

(Ai(l) ®...0 Ai(n))S@g»g:lq)(k) = (Ai(l)Sq:<11)) @ (Ai(n)Sq:(ln))'

—~—

This shows that ®@7_, &%) = Zzlq:(vk), 0

Note that if W = {(W;,w;)}icz is a Bessel fusion sequence with upper bound
Band V = {(V;,vi) }iez is a (C,D) fusion frame for H, then by [5, Lemma 3.9], for

each f € H, Zviwmwi S;lwvi f converges unconditionally and for each f,g € H,

€L
1 1
2 2
(C sy t.o)| < (Sl PR 1?)” (Setimweal?
1€ET 1€L 1€T
BD
< Y2 gl

Hence the operator ZUMNTW,; S;lﬂ'w which is defined on H by

ez
-1 1
( g viwTW, Sy, ﬂm)(f) = g viwiTw, Sy v, f,
i€T i€l
is bounded.

Proposition 3.9. Let {W;}jecs be a BFBFS and {V;};c; be a BFFF. Then W is
an alternate dual of Vj, for each j € J if and only if ®jcsW; is an alternate dual
Of @jeJVj.

Proof. By Corollary 2.7, ®;c;V; and @;csW; are fusion frame and Bessel fusion
sequence, respectively. Let {f;}jcs,9 = {9;}jes € ®jesH; and let F be a finite
subset of J. Put fr = {xr(j)f;};es, then we have

71 P— . . 71 . .
< E :iniﬂ-@jeJWijS@jEJVjWGBJQJV’UfF’g> = E :< E :UlwﬂWijSVj 7T‘/'ijfj’gj>

el jeF i€l

= (fr,9)-

. -1 .
Since the operator (Z ViliT@ e Wi Sg e, v, W@jeJ‘/ij) is bounded, then
iel

1 N
E :iniﬂ'@jeJWijS@_jEJV_jWEB_y‘eJVij =Id(e,c,m;)
el

and the result follows. The converse is obvious. O
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As a consequence of the above results and [20, Propositions 3.4 and 3.5], we
have the following:

Corollary 3.10. (i) Let {Wj('k)}jeJ and {V;k)}je] be BFBFS and BFFF, for each
1 < k < n, respectively and let Wj(.k) be an alternate dual of Vj(.k), for each j € J and
ke{l,...,n}. Then ®Z:1(@j€JW§k)) is an alternate dual of ®Z:1(@jejvj(k)).
(ii) Let {@gk)}jej and {\I!;k)}je] be BFGBS, for each 1 <k <mn and let <I>§-k)
be a g-dual of \Ilg.k), foreach j € J and k € {1,...,n}. Then ®Z’Zl(@jej(b§k)) is a
g-dual of ®Z:1(@jeJ‘II§k))-
(iii) Let {‘Dg‘k)}jej be a BFGF, for each 1 <k <n. Then ®z:1(@jej(1)§k)) is
the canonical dual of ®Z:1(@jeJ@;k)).
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