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FUSION FRAMES AND G-FRAMES IN TENSOR

PRODUCT AND DIRECT SUM OF HILBERT SPACES

Amir Khosravi, M. Mirzaee Azandaryani

In this paper we study fusion frames and g-frames for the tensor products

and direct sums of Hilbert spaces. We show that the tensor product of a

finite number of g-frames (resp. fusion frames, g-Riesz bases) is a g-frame

(resp. fusion frame, g-Riesz basis) for the tensor product space and vice

versa. Moreover we obtain some important results in tensor products and

direct sums of g-frames, fusion frames, resolutions of the identity and duals.

1. INTRODUCTION

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer

[10] in 1952 to study some problems in nonharmonic Fourier series, reintroduced
in 1986 by Daubechies, Grossmann and Meyer [8]. Frames are very useful in
characterization of function spaces and other fields of applications such as filter
bank theory, sigma-delta quantization, signal and image processing and wireless
communications.

Fusion frame is a generalization of frame which was introduced in [5] and
investigated in [2, 6, 21]. Fusion frames have important applications e.g., in sensor
networks and packet encoding.

Sun in [23] introduced g-frame as a generalization of frame. He showed that
oblique frames, pseudo frames and fusion frames are special cases of g-frames.

Note that fusion frames and g-frames have been introduced in Hilbert C∗-
modules and Banach spaces, see [18, 19].
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Let H be a Hilbert space and let I be a finite or countable index set. A
family {fi}i∈I ⊆ H is a frame for H, if there exist 0 < A ≤ B < ∞, such that

A‖f‖2 ≤
∑

i∈I

|〈f, fi〉|
2 ≤ B‖f‖2,

for each f ∈ H. A family {fi}i∈I ⊆ H is complete if the span of {fi}i∈I is dense in
H. We say that {fi}i∈I is a Riesz basis for H, if it is complete in H and there exist
two constants 0 < A ≤ B < ∞, such that

A
∑

i∈F

|ci|
2 ≤ ‖

∑

i∈F

cifi‖
2 ≤ B

∑

i∈F

|ci|
2,

for each sequence of scalars {ci}i∈F , where F is a finite subset of I. For more study
about frames see [7].

For each i ∈ I, let Hi be a Hilbert space and L(H,Hi) be the set of all
bounded, linear operators from H to Hi. We call Λ = {Λi ∈ L(H,Hi) : i ∈ I} a
g-frame for H with respect to {Hi}i∈I if there exist two positive constants A and
B such that

A‖f‖2 ≤
∑

i∈I

‖Λif‖
2 ≤ B‖f‖2,

for each f ∈ H. In this case we say that Λ is an (A,B) g-frame. A and B are the
lower and upper g-frame bounds, respectively. If A = B, then Λ is called an A-tight

g-frame. We call Λ a Parseval g-frame if A = B = 1. If only the second inequality
is required, we call it a g-Bessel sequence. If Λ is a g-Bessel sequence with upper

bound B, then the g-frame operator SΛ is defined by SΛf =
∑

i∈I

Λ∗
i Λif. In this

case SΛ is bounded and 0 ≤ SΛ ≤ B.IdH . If Λ is an (A,B) g-frame, then SΛ is a
bounded, positive and invertible operator such that A.IdH ≤ SΛ ≤ B.IdH . Recall
that if Λ is a g-Bessel sequence such that SΛ is invertible, then Λ is a g-frame. In
this case ‖S−1

Λ
‖−1 is a lower bound for Λ.

Let {Hi}i∈I be a sequence of Hilbert spaces. Then by considering K =
⊕i∈IHi, we can assume that each Hi is a closed subspace of K, therefore if fi1 ∈ Hi1

and fi2 ∈ Hi2 , for i1, i2 ∈ I, then 〈fi1 , fi2〉 is well-defined.
We say that {Λi ∈ L(H,Hi) : i ∈ I} is g-complete if {f : Λif = 0, ∀i ∈ I} =

{0}, and we call it a g-orthonormal basis for H, if

〈Λ∗
i1
fi1 ,Λ

∗
i2
fi2〉 = δi1,i2〈fi1 , fi2〉, i1, i2 ∈ I, fi1 ∈ Hi1 , fi2 ∈ Hi2 ,

and
∑

i∈I

‖Λif‖
2 = ‖f‖2, ∀f ∈ H.

Λ = {Λi ∈ L(H,Hi) : i ∈ I} is a g-Riesz basis for H, if it is g-complete and there
exist two constants 0 < A ≤ B < ∞, such that for each finite subset F ⊆ I and
fi ∈ Hi, i ∈ F,

A
∑

i∈F

‖fi‖
2 ≤ ‖

∑

i∈F

Λ∗
i fi‖

2 ≤ B
∑

i∈F

‖fi‖
2.
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In this case we say that Λ is an (A,B) g-Riesz basis.
Let {Wi}i∈I be a family of closed subspaces of a Hilbert space H. Let {ωi}i∈I

be a family of weights, i.e., ωi > 0 for each i ∈ I. Then W = {(Wi, ωi)}i∈I is a
fusion frame, if there exist A,B > 0 such that

A‖f‖2 ≤
∑

i∈I

ω2

i ‖πWi
(f)‖2 ≤ B‖f‖2,

for each f ∈ H, where πWi
is the orthogonal projection onto the subspace Wi.

Hence W = {(Wi, ωi)}i∈I is a fusion frame if and only if ΛW = {ωiπWi
}i∈I is a

g-frame for H and we say that W is an (A,B) fusion frame (resp. a Bessel fusion

sequence, a tight fusion frame, a Parseval fusion frame) if ΛW is an (A,B) g-frame
(resp. a g-Bessel sequence, a tight g-frame, a Parseval g-frame). If W is a Bessel
fusion sequence with upper bound B, then the fusion frame operator SW is defined

by SW (f) = SΛW
(f) =

∑

i∈I

ωi
2πWi

(f).

Tensor products of frames, fusion frames and g-frames have been studied by
some authors recently, see [15, 3, 17, 12]. In this paper, by using operator theory
methods, we present different proofs for the results obtained in the above papers
and by these methods we get some important properties of the tensor products of
fusion frames and g-frames.

Also direct sums of fusion frames and g-frames have been considered by some
authors, see [16, 21, 24, 1, 20]. In this paper we get more useful information
about them.

The content of the present note is as follows: In Section 2 we study tensor
products of g-frames, fusion frames, g-orthonormal bases and g-Riesz bases and we
obtain some relations between direct sums and tensor products of these concepts.
Also we consider exact fusion frames and approximation method of the inverse
frame operators.

In Section 3 we present some new examples of resolutions of the identity and
atomic resolutions of the identity by using tensor products and direct sums of fusion
frames and g-frames. We also consider tensor products and direct sums of atomic
resolutions of the identity and their atomic resolution operators and we get some
results in tensor products and direct sums of duals.

In this paper I, J and Ik, for each 1 ≤ k ≤ n, are finite or countable index
sets. H, Hj , Hk, Hkj , Hi(k) and Hi(k)j are separable Hilbert spaces for each j ∈ J,

k ∈ {1, . . . , n} and i(k) ∈ Ik.

2. TENSOR PRODUCTS AND DIRECT SUMS OF FUSION
FRAMES AND G-FRAMES

Recall that if Hk is a Hilbert space for each 1 ≤ k ≤ n, then the (Hilbert)
tensor product ⊗n

k=1
Hk = H1 ⊗ . . .⊗Hn is a Hilbert space. The inner product for

simple tensors is defined by 〈⊗n
k=1

fk,⊗n
k=1

gk〉 = Πn
k=1

〈fk, gk〉, where fk, gk ∈ Hk.

If Uk is a bounded linear operator on Hk, then the tensor product ⊗n
k=1

Uk is a
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bounded linear operator on ⊗n
k=1

Hk. Also (⊗n
k=1

Uk)∗ = ⊗n
k=1

U∗
k and ‖⊗n

k=1
Uk‖ =

Πn
k=1

‖Uk‖. Note that if Mk is a closed subspace of Hk, for each 1 ≤ k ≤ n, then it
is easy to see that π⊗n

k=1
Mk

= ⊗n
k=1

πMk
.

Also recall that if A and B are C∗-algebras, then A ⊗ B is a C∗-algebra
with the spatial norm and for each a ∈ A, b ∈ B, we have ‖a⊗ b‖ = ‖a‖‖b‖. The
multiplication and involution on simple tensors are defined by (a⊗b)(c⊗d) = ac⊗bd

and (a⊗ b)∗ = a∗ ⊗ b∗, respectively. As we know if a, b ≥ 0, then a⊗ b ≥ 0.

Tensor products have important applications, for example tensor products are
useful in the approximation of multi-variate functions of combinations of univariate
ones. For more results about tensor products see [13, 14, 22].

Note that if A and A′ are unital C∗-algebras and a ∈ A, a′ ∈ A′ with 0 ≤
a ≤ 1A, and 0 ≤ a′ ≤ 1A′ , then

0 ≤ a⊗ a′ ≤ ‖a⊗ a′‖1A ⊗ 1A′ = ‖a‖‖a′‖1A ⊗ 1A′ ≤ 1A ⊗ 1A′ .

Also note that if L = {ℓ1, . . . , ℓp, . . .} and K = {k1, . . . , kq, . . .} are two index sets

and fℓk ∈ H, for each ℓ ∈ L, k ∈ K, then the series
∑

(ℓ,k)∈L×K

fℓk is defined by

lim
p,q

s(p, q), where s(p, q) =
p

∑

r=1

q
∑

t=1

fℓrkt
. If clk is a nonnegative number for each

ℓ ∈ L, k ∈ K, then we have

∑

(ℓ,k)∈(L×K)

cℓk =
∑

ℓ∈L

∑

k∈K

cℓk =
∑

k∈K

∑

ℓ∈L

cℓk.

In this paper Φ(k) = {Λi(k) ∈ L(Hk, Hi(k))}i(k)∈Ik , W
(k) = {(Wi(k), ωi(k))}i(k)∈Ik ,

where Wi(k) is a closed subspace of Hk and we define ⊗n
k=1

Φ(k), ⊗n
k=1

W(k) by

{Λi(1) ⊗ . . .⊗ Λi(n) ∈ L(⊗n
k=1Hk, Hi(1) ⊗ . . .⊗Hi(n))}(i(1),...,i(n))∈(I1×...×In),

{(Wi(1) ⊗ . . .⊗Wi(n), ωi(1) . . . ωi(n))}(i(1),...,i(n))∈(I1×...×In),

respectively.

Now we consider tensor products of g-frames and fusion frames.

Theorem 2.1. (i) Φ(k) is a g-frame for each 1 ≤ k ≤ n if and only if ⊗n
k=1

Φ(k) is

a g-frame. In this case S⊗n

k=1
Φ(k) = ⊗n

k=1
SΦ(k) . If Ak and Bk are lower and upper

bounds of Φ(k), respectively, then ⊗n
k=1

Φ(k) is an (Πn
k=1

Ak,Π
n
k=1

Bk) g-frame.

(ii) W(k) is a fusion frame for each 1 ≤ k ≤ n if and only if ⊗n
k=1

W(k) is a

fusion frame. In this case S⊗n

k=1
W(k) = ⊗n

k=1
SW(k) . If Ak and Bk are lower and

upper bounds of W(k), respectively, then ⊗n
k=1

W(k) is an (Πn
k=1

Ak,Π
n
k=1

Bk) fusion

frame.

Proof. (i) It is enough to prove the theorem for n = 2.
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Let Φ(k) be an (Ak, Bk) g-frame. Then 0 ≤
1

Bk

SΦ(k) ≤ IdHk
, and so we have

0 ≤ SΦ(1) ⊗ SΦ(2) ≤ B1B2.Id(H1⊗H2)
. Hence for each z =

m
∑

l=1

xℓ ⊗ yℓ ∈ H1 ⊗aℓg H2,

we have
∑

(i(1),i(2))∈(I1×I2)

‖(Λi(1) ⊗ Λi(2))z‖
2 =

∑

i(1)∈I1

∑

i(2)∈I2

‖(Λi(1) ⊗ Λi(2))z‖
2

=

〈 m
∑

l=1

∑

i(1)∈I1

∑

i(2)∈I2

Λ∗
i(1)Λi(1)xl ⊗ Λ∗

i(2)Λi(2)yl, z

〉

= 〈(SΦ(1) ⊗ SΦ(2))z, z〉 ≤ B1B2‖z‖
2.

Now let z ∈ H1 ⊗H2, F1 and F2 be finite subsets of I1 and I2, respectively, and let
{zm}∞m=1

⊆ H1 ⊗aℓg H2 such that limm zm = z. Then
∑

i(1)∈F1

∑

i(2)∈F2

‖(Λi(1) ⊗ Λi(2))z‖
2 = lim

m

∑

i(1)∈F1

∑

i(2)∈F2

‖(Λi(1) ⊗ Λi(2))zm‖2

≤ lim
m

〈(SΦ(1) ⊗ SΦ(2))zm, zm〉 ≤ B1B2‖z‖
2.

Since F1 and F2 are arbitrary, then ⊗2

k=1
Φ(k) is a g-Bessel sequence with upper

bound B1B2. For each z ∈ H1 ⊗alg H2

〈S⊗2

k=1
Φ(k)z, z〉 =

∑

i(1)∈I1

∑

i(2)∈I2

‖(Λi(1) ⊗ Λi(2))z‖
2 = 〈(SΦ(1) ⊗ SΦ(2))z, z〉,

and since the operators are bounded, then S⊗2

k=1
Φ(k) = ⊗2

k=1
SΦ(k) . Now since SΦ(1)

and SΦ(2) are invertible, then S⊗2

k=1
Φ(k) is invertible. Hence ⊗2

k=1
Φ(k) is a g-frame

with lower bound ‖S−1

⊗2

k=1
Φ(k)

‖−1 = ‖S−1

Φ(1)
‖−1‖S−1

Φ(2)
‖−1, and since A1 ≤ ‖S−1

Φ(1)
‖−1

and A2 ≤ ‖S−1

Φ(2)
‖−1, then A1A2 is a lower bound for ⊗2

k=1
Φ(k).

Conversely let ⊗2

k=1
Φ(k) be an (A,B) g-frame and let x ∈ H1. Then for each

y ∈ H2, we have

A‖x‖2‖y‖2 = A‖x⊗ y‖2 ≤

(

∑

i(1)∈I1

‖Λi(1)x‖
2

)(

∑

i(2)∈I2

‖Λi(2)y‖
2

)

=
∑

i(1)∈I1

∑

i(2)∈I2

‖(Λi(1) ⊗ Λi(2))(x⊗ y)‖2 ≤ B‖x⊗ y‖2 = B‖x‖2‖y‖2.

Hence we can choose an element y ∈ H2 such that ‖y‖ = 1 and C =
∑

i(2)∈I2

‖Λi(2)y‖
2

is a positive number. Thus Φ(1) is an
(

A

C
,
B

C

)

g-frame. Similarly Φ(2) is a g-frame.

(ii) We can get the result by using the fact that Φ(k) = {ωi(k)πWi(k)
}i(k)∈Ik

is a g-frame for each 1 ≤ k ≤ n if and only if

⊗n
k=1Φ(k) = {ωi(1) . . . ωi(n)π(Wi(1)⊗...⊗Wi(n))

}(i(1),...,i(n))∈(I1×...×In)
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is a g-frame.

Now by using the above theorem we obtain the following result that will have
useful consequences in the rest of this note.

Corollary 2.2. (i) If Φ(k) is a Parseval g-frame (resp. tight g-frame, g-Bessel

sequence) for each 1 ≤ k ≤ n, then ⊗n
k=1

Φ(k) is a Parseval g-frame (resp. tight

g-frame, g-Bessel sequence).
(ii) If W(k) is a Parseval fusion frame (resp. tight fusion frame, Bessel fusion

sequence) for each 1 ≤ k ≤ n, then ⊗n
k=1

W(k) is a Parseval fusion frame (resp.
tight fusion frame, Bessel fusion sequence).

Proof. (i) Since Φ(k)’s are Parseval, then Ak = Bk = 1, for each 1 ≤ k ≤ n in
Theorem 2.1. Hence ⊗n

k=1
Φ(k) is a Parseval g-frame. Also if Φ(k) is an Ak-tight

g-frame, for each 1 ≤ k ≤ n, then ⊗n
k=1

Φ(k) is (Πn
k=1

Ak)-tight. It is also obvious
from the first part of the proof of Theorem 2.1 that if Φ(k)’s are g-Bessel sequences,
then ⊗n

k=1
Φ(k) is a g-Bessel sequence.

(ii) The result follows from part (i) as in Theorem 2.1.

Note that [17, Theorem 3.7] is a special case of parts (ii) of Theorem 2.1 and
Corollary 2.2.

Remark 2.3. If each Φ(k) contains a nonzero operator and⊗
n

k=1Φ
(k) is a g-Bessel sequence,

then similar to the proof of Theorem 2.1, we can obtain that each Φ(k) is a g-Bessel
sequence. Now let {αn}

∞

n=1 and {βm}
∞

m=1 be sequences of positive numbers with c =
∞
∑

n=1

α2
n > 1, d =

∞
∑

m=1

β2
m < 1 and cd = 1. Hence if Φ(1) = {αn · IdH1

: n ∈ N} and

Φ(2) = {βm · IdH2
: m ∈ N}, then ⊗

2
k=1Φ

(k) is a Parseval g-frame, but Φ(1) and Φ(2) are
not Parseval.

Proposition 2.4. If Φ(k) is a g-orthonormal basis for each 1 ≤ k ≤ n, then

⊗n
k=1

Φ(k) is a g-orthonormal basis for ⊗n
k=1

Hk.

Proof. Let n = 2. By Corollary 2.2, ⊗2

k=1
Φ(k) is a Parseval g-frame. Now let

(i(1), i(2)), (j(1), j(2)) ∈ I1 × I2, and let z =
∞
∑

ℓ=1

x1ℓ ⊗ x2ℓ ∈ Hi(1) ⊗ Hi(2), w =

∞
∑

r=1

y1r ⊗ y2r ∈ Hj(1) ⊗Hj(2). Then we have

〈(Λi(1) ⊗ Λi(2))
∗z, (Λj(1) ⊗ Λj(2))

∗w〉

=

∞
∑

ℓ=1

∞
∑

r=1

〈Λ∗
i(1)(x1ℓ),Λ

∗
j(1)(y1r)〉〈Λ∗

i(2)(x2ℓ),Λ
∗
j(2)(y2r)〉

= δ(i(1),i(2)),(j(1),j(2))〈z, w〉.

This means that ⊗2

k=1
Φ(k) is a g-orthonormal basis for ⊗2

k=1
Hk.
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Proposition 2.5. Φ(k) is a g-Riesz basis for each 1 ≤ k ≤ n, if and only if

⊗n
k=1

Φ(k) is a g-Riesz basis.

Proof. Let n = 2 and Φ(k) be a g-Riesz basis for each k ∈ {1, 2}. Hence by [23,
Corollary 3.4], there is a g-orthonormal basis {Qi(k)}i(k)∈Ik , for Hk and an invertible
operator Uk on Hk, such that Λi(k) = Qi(k)Uk, for each i(k) ∈ Ik. Therefore we
have Λi(1) ⊗ Λi(2) = (Qi(1) ⊗Qi(2))(U1 ⊗ U2). It follows from Proposition 2.4 that
{Qi(1) ⊗Qi(2)}(i(1),i(2))∈I1×I2 is a g-orthonormal basis for ⊗2

k=1
Hk, and it is clear

that U1 ⊗ U2 is an invertible operator on ⊗2

k=1
Hk. Now we can get the result by

using Corollary 3.4 in [23].
Conversely suppose that ⊗2

k=1
Φ(k) is an (A,B) g-Riesz basis and f ∈ H1,

such that Λi(1)f = 0, for each i(1) ∈ I1. Let g be a nonzero element of H2. Then we

have (Λi(1) ⊗Λi(2))(f ⊗ g) = (Λi(1)f)⊗ (Λi(2)g) = 0. Since ⊗2

k=1
Φ(k) is g-complete,

then ‖f‖‖g‖ = ‖f ⊗ g‖ = 0. Hence f = 0, and this means that Φ(1) is g-complete.
Now let F1 be a finite subset of I1 and gi(1) ∈ Hi(1), for each i(1) ∈ F1. Suppose
that F2 is a finite subset of I2 and gi(2) ∈ Hi(2), for each i(2) ∈ F2 such that
∑

i(2)∈F2

‖gi(2)‖
2 = 1. Now we have

A

(

∑

i(1)∈F1

‖gi(1)‖
2

)(

∑

i(2)∈F2

‖gi(2)‖
2

)

= A
∑

(i(1),i(2))∈F1×F2

‖gi(1) ⊗ gi(2)‖
2

≤

∥

∥

∥

∥

∑

(i(1),i(2))∈F1×F2

(Λ∗
i(1) ⊗ Λ∗

i(2))(gi(1) ⊗ gi(2))

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∑

i(1)∈F1

Λ∗
i(1)gi(1)

∥

∥

∥

∥

2∥
∥

∥

∥

∑

i(2)∈F2

Λ∗
i(2)gi(2)

∥

∥

∥

∥

2

≤ B

(

∑

i(1)∈F1

‖gi(1)‖
2

)(

∑

i(2)∈F2

‖gi(2)‖
2

)

.

Meaning that Φ(1) is an
(

A

C
,
B

C

)

g-Riesz basis, where C =
∥

∥

∥

∑

i(2)∈F2

Λ∗
i(2)

gi(2)

∥

∥

∥

2

.

Note that all of the results in tensor product of g-frames obtained in [12]
are special cases of the above results. Also by using Theorem 2.1, Proposition 2.5
and [23, Examples 1.1 and 3.1], we can obtain the main results of [3] ([3, Theorem
4.1]):

Corollary 2.6. Let f (k) = {fi(k)}i(k)∈Ik be a sequence in Hk. Then f (k) is a frame

(resp. Riesz basis) for each 1 ≤ k ≤ n if and only if ⊗n
k=1

f (k) which is defined by

{fi(1)⊗ . . .⊗fi(n)}(i(1),...,i(n))∈(I1×...×In) is a frame (resp. Riesz basis) for ⊗n
k=1

Hk.

Let Φj = {Λij ∈ L(Hj , Hij) : i ∈ I} be a g-Bessel sequence for Hj , j ∈ J,

with upper bound Bj such that B = sup{Bj : j ∈ J} < ∞. Then {Φj}j∈J is called
a B-Bounded family of g-Bessel sequences or shortly B-BFGBS.

Let Φj = {Λij ∈ L(Hj, Hij) : i ∈ I} be an (Aj , Bj) g-frame (resp. g-Riesz
basis) for Hj , j ∈ J, such that A = inf{Aj : j ∈ J} > 0 and B = sup{Bj : j ∈
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J} < ∞. Then we say that {Φj}j∈J is an (A,B)-bounded family of g-frames (resp.
bounded family of g-Riesz bases) or shortly (A,B)-BFGF (resp. BFGRB).

Note that a B-bounded family of Bessel fusion sequences or shortly B-BFBFS

and an (A,B)-bounded family of fusion frames or shortly (A,B)-BFFF for a family
of fusion frames can be defined by using the g-frames generated by the fusion frames.
We denote a family of Parseval fusion frames by FPFF.

In the rest of this note Φ
(k)
j = {Λi(k)j ∈  L(Hkj , Hi(k)j)}i(k)∈Ik ,Wj = {(Wij , ωi)}i∈I ,

W
(k)

j = {(Wi(k)j , ωi(k))}i(k)∈Ik , ⊕j∈JWj = {(⊕j∈JWij , ωi)}i∈I , where Wij and
Wi(k)j are closed subspaces of Hj and Hkj , respectively and

⊕j∈JΦ
(k)

j = {⊕j∈JΛi(k)j ∈ L(⊕j∈JHkj ,⊕j∈JHi(k)j)}i(k)∈Ik .

Note that if Wij ’s are closed subspaces of Hj , then it is clear that ⊕j∈JπWij
=

π⊕j∈JWij
, for each i ∈ I, now as a consequence of [20, Theorems 2.3 and 2.5] and

the above results, we have the following. Part (iii) of the following corollary is also
a generalization of [16, Theorem 2.3 and Corollary 2.2] to a countable number of
fusion frames.

Corollary 2.7. (i) {Φ
(k)
j }j∈J is a BFGF (resp. BFGRB), for each 1 ≤ k ≤ n if

and only if ⊗n
k=1

(⊕j∈JΦ
(k)
j ) is a g-frame (resp. g-Riesz basis) for ⊗n

k=1
(⊕j∈JHkj).

Also if {Φ
(k)
j }j∈J is an (Ak, Bk)-BFGF, then ⊗n

k=1
(⊕j∈JΦ

(k)
j ) is an

(Πn
k=1

Ak,Π
n
k=1

Bk) g-frame.

(ii) If Φ
(k)
j is a g-orthonormal basis for each j ∈ J and 1 ≤ k ≤ n, then

⊗n
k=1

(⊕j∈JΦ
(k)
j ) is a g-orthonormal basis for ⊗n

k=1
(⊕j∈JHkj).

(iii) {Wj}j∈J is a BFBFS (resp. BFFF, FPFF) if and only if ⊕j∈JWj is a

Bessel fusion sequence (resp. fusion frame, Parseval fusion frame) for ⊕j∈JHj . In

this case S⊕j∈JWj
= ⊕j∈JSWj

.

(iv) {W
(k)
j }j∈J is a BFFF, for each 1 ≤ k ≤ n, if and only if ⊗n

k=1
(⊕j∈JW

(k)
j )

is a fusion frame for ⊗n
k=1

(⊕j∈JHkj).

Recall that a frame (resp. fusion frame) is exact, if it ceases to be a frame
(resp. fusion frame) whenever any of its elements is removed. A frame is exact if
and only if it is a Riesz basis (see [4, Proposition 4.3]). Hence by Corollary 2.6,
the tensor product of a finite number of frames is exact if and only if each of the
frames is exact. We show that the same result holds for fusion frames. Note that
if W = {(Wi, ωi)}i∈I is an exact fusion frame, then Wi 6= (0), for each i ∈ I and if
J is a proper subset of I, then {(Wi, ωi)}i∈J is not a fusion frame.

Proposition 2.8. Let W(k) be a fusion frame for each 1 ≤ k ≤ n. Then W(k) is

exact for each k ∈ {1, . . . , n} if and only if ⊗n
k=1

W(k) is exact.

Proof. Let n = 2 and W(1), W(2) be exact fusion frames. Suppose that (i1, i2) ∈
I1 × I2 such that {(Wi(1) ⊗ Wi(2), ωi(1)ωi(2))}(i(1),i(2))∈(I1×I2−{(i1,i2)}) is a fusion

frame with lower bound A. Since W(k)’s are exact, then by [5, Proposition 3.6],
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there exist two nonzero elements f1 ∈ H1 and f2 ∈ H2 which are orthogonal to
span{Wi(1)}i(1)∈I1−{i1} and span{Wi(2)}i(2)∈I2−{i2}, respectively. Therefore

A‖f1‖
2‖f2‖

2 ≤

(

∑

i(1)∈I1

ω2

i(1)‖πWi(1)
f1‖

2

)(

∑

i(2)∈I2

ω2

i(2)‖πWi(2)
f2‖

2

)

− ω2

i1
ω2

i2
‖πWi1

f1‖
2‖πWi2

f2‖
2 = 0,

which is a contradiction. Hence ⊗2

k=1
W(k) is exact.

Conversely suppose that ⊗2

k=1
W(k) is exact. If W(1) is not exact, then there

exists some i1 ∈ I1 such that Z = {(Wi(1), ωi(1))}i(1)∈I1−{i1} is a fusion frame.
Hence by part (ii) of Theorem 2.1,

Z ⊗W(2) = {(Wi(1) ⊗Wi(2), ωi(1)ωi(2))}(i(1),i(2))∈(I1−{i1})×I2

is a fusion frame which is a contradiction, since ⊗2

k=1
W(k) is exact and

(I1 − {i1}) × I2 is a proper subset of I1 × I2.

Suppose that W = {(Wi, ωi)}i∈I is a fusion frame for H such that Wi is a
finite-dimensional subspace of H, for each i ∈ I. Let {Im}∞m=1

⊆ I such that Im
is finite for each m ∈ N and I1 ⊆ I2 ⊆ . . . ⊆ Im ր I.

For each m ∈ N we assume that Wm = {(Wi, ωi)}i∈Im
is a fusion frame

for Hm = span{Wi}i∈Im
with operator SWm

: Hm −→ Hm which is defined by

SWm
(f) =

∑

i∈Im

ω2
i πWi

(f). We say that the approximation method of S−1

W works if

lim
m→∞

S−1

Wm
πHm

(f) = S−1

W (f),

for each f ∈ H. For more results see [16].
As we know the inverse of the frame operator plays an important role in frame

theory mostly because of the reconstruction, but it is often difficult to find it. In
this case if we can approximate this inverse, then we can approximately reconstruct
the signals which is useful in applications. Here since Hm is finite-dimensional, then
SWm

can be inverted using linear algebra. Therefore if the approximation method of
S−1

W works, then S−1

W (f) can be approximated by the sequence {S−1

Wm
πHm

(f)}∞m=1,

for each f ∈ H, and we have

lim
m→∞

SW (S−1

Wm
πHm

f) = SWS−1

W f = f = S−1

W SW (f) = lim
m→∞

S−1

Wm
πHm

(SW f).

In the following proposition all of the subspaces in the fusion frames are finite-
dimensional.

Proposition 2.9. Suppose that W(k)’s are fusion frames. If the approximation

method of S−1

W(k)
works for each k ∈ {1, . . . , n}, then the approximation method of

S−1

⊗n

k=1
W(k)

works.
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Proof. Let n = 2 and let the approximation method of S−1

W(k)
work for each

k ∈ {1, 2}. Then there exist {Γ1
m}∞m=1 ⊆ I1 and {Γ2

m}∞m=1 ⊆ I2 such that Γk
m is a

finite set for each m ∈ N and k ∈ {1, 2},

Γ1

1
⊆ Γ1

2
⊆ . . . ⊆ Γ1

m ր I1, Γ2

1
⊆ Γ2

2
⊆ . . . ⊆ Γ2

m ր I2,

and W k
m = {(Wi(k), ωi(k))}i(k)∈Γk

m
is a fusion frame for Hk

m = span{Wi(k)}i(k)∈Γk
m
.

Hence (Γ1
1
× Γ2

1
) ⊆ (Γ1

2
× Γ2

2
) ⊆ . . . ⊆ (Γ1

m × Γ2
m) ր (I1 × I2), and it is easy to see

that
H1

m ⊗H2

m = span{Wi(1) ⊗Wi(2)}(i(1),i(2))∈(Γ1
m
×Γ2

m
).

Since W 1
m and W 2

m are fusion frames for H1
m and H2

m, respectively, then by
part (ii) of Theorem 2.1, W 1

m⊗W 2
m = {(Wi(1)⊗Wi(2), ωi(1)ωi(2))}(i(1),i(2))∈(Γ1

m
×Γ2

m
)

is a fusion frame for H1
m ⊗ H2

m. Now by using part (iii) of [16, Theorem 3.2], we
have

sup
m∈N

{‖S−1

(W 1
m
⊗W 2

m
)
π(H1

m
⊗H2

m
)‖} = sup

m∈N

{‖(S−1

W 1
m

πH1
m

) ⊗ (S−1

W 2
m

πH2
m

)‖}

≤ sup
m∈N

{‖S−1

W 1
m

πH1
m
‖} sup

m∈N

{‖S−1

W 2
m

πH2
m
‖} < ∞.

Hence supm∈N
{‖S−1

(W 1
m
⊗W 2

m
)
‖} = supm∈N

{‖S−1

(W 1
m
⊗W 2

m
)
π(H1

m
⊗H2

m
)‖} < ∞, and the

result follows from Theorem 3.2 in [16].

3. RESOLUTIONS OF THE IDENTITY AND DUALS

Resolution of the identity was defined in [5], and afterwards the first author
and Asgari introduced atomic resolution of the identity in [2] for more applications
in fusion frames:

Definition 3.1. Let {ωi}i∈I be a family of weights. A family of bounded operators

{Ti}i∈I on H is called an atomic (unconditional) resolution of the identity with

respect to {ωi}i∈I for H if there exist two positive numbers A and B such that for

each f ∈ H,

(i) f =
∑

i∈I

Ti(f) (and the series converges unconditionally),

(ii) A‖f‖2 ≤
∑

i∈I

ω2
i ‖Ti(f)‖2 ≤ B‖f‖2. In this case we say that {(Ti, ωi)}i∈I

is an (A,B) atomic (unconditional) resolution of the identity or shortly an (A,B)
ARI(AURI). If we only know that {Ti}i∈I satisfies in (i), then {Ti}i∈I is called a

(unconditional) resolution of the identity.

Let T = {(Ti, ωi)}i∈I be an (A,B) ARI for H. Then the atomic resolution

operator RT : H −→ H is defined by RT (f) =
∑

i∈I

ω2
i T

∗
i Ti(f). By Theorem 3.4 in

[2], we have A.IdH ≤ RT ≤ B.IdH .
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If Tj = {(Tij , ωi)}i∈I is an (Aj , Bj) ARI (resp. AURI) for Hj such that
A = inf{Aj : j ∈ J} > 0 and B = sup{Bj : j ∈ J} < ∞, then we call {Tj}j∈J

an (A,B)-bounded family of atomic (unconditional) resolutions of the identity or
shortly an (A,B)-BFARI (resp. BFAURI).

Example 3.2. Let {Wj}j∈J be a BFFF and W
(k) be a fusion frame, for each 1 ≤ k ≤ n.

Then by Theorem 2.1 and Corollary 2.7, ⊗n

k=1W
(k) and ⊕j∈JWj are fusion frames for

⊗
n

k=1Hk and ⊕j∈JHj , respectively. Therefore by [2, Proposition 3.7], {(Ti, ω
−1
i

)}i∈I and
{(T ∗

i , ω
−1
i

)}i∈I are AURI for ⊕j∈JHj , where

Ti = ω
2
i π⊕j∈JWij

S
−1
⊕j∈JWj

= ⊕j∈J(ω
2
i πWij

S
−1
Wj

).

Also

{

(

Ui(1),...,i(n), (ωi(1) . . . ωi(n))
−1

)

}(i(1),...,i(n))∈(I1×...×In)

and

{

(

U
∗

i(1),...,i(n), (ωi(1) . . . ωi(n))
−1

)

}(i(1),...,i(n))∈(I1×...×In)

are AURI, for ⊗
n

k=1Hk, where

Ui(1),...,i(n) = (ωi(1) . . . ωi(n))
2
π(Wi(1)⊗...⊗Wi(n))

S
−1

⊗
n

k=1
W

(k)
= ⊗

n

k=1(ω
2
i(k)πWi(k)

S
−1

W
(k)

).

Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be an (A,B) g-frame. Then the canonical

dual g-frame for Λ is defined by Λ̃ = {Λ̃i ∈ L(H,Hi) : i ∈ I}, where Λ̃i = ΛiS
−1

Λ
,

which is an
(

1

B
,
1

A

)

g-frame for H. If Λ is a g-Bessel sequence, then the g-Bessel

sequence {Γi ∈ L(H,Hi) : i ∈ I} is called a g-dual of Λ if f =
∑

i∈I

Γ∗
i Λif, for each

f ∈ H.

Example 3.3. Let Ri(k)’s be finite or countable index sets, Φ(k) be a g-frame for Hk and
{(Wi(k)r(k), ωi(k)r(k))}r(k)∈Ri(k)

be a Parseval fusion frame for Hi(k). Then by Theorem

2.1, ⊗n

k=1Φ
(k) is a g-frame for ⊗n

k=1Hk. Also by Corollary 2.2,

{(Wi(1)r(1) ⊗ . . .⊗Wi(n)r(n), ωi(1)r(1) . . . ωi(n)r(n))}(r(1),...,r(n))∈(Ri(1)×...×Ri(n))

is a Parseval fusion frame for ⊗n

k=1Hi(k). Now define Ti(1)r(1),...,i(n)r(n) by

(ωi(1)r(1) . . . ωi(n)r(n))
2(Λi(1) ⊗ . . .⊗ Λi(n))

∗

π(Wi(1)r(1)⊗...⊗Wi(n)r(n))
˜Λi(1) ⊗ . . .⊗ Λi(n),

where ˜Λi(1) ⊗ . . .⊗ Λi(n) = (Λi(1) ⊗ . . .⊗ Λi(n))S
−1

⊗
n

k=1
Φ(k)

. Hence by [21, Corollary 2.6],

{Ti(1)r(1),...,i(n)r(n)}(i(1),...,i(n))∈(I1×...×In),(r(1),...,r(n))∈(Ri(1)×...×Ri(n))

is a resolution of the identity for ⊗
n

k=1Hk.

Example 3.4. Let {emj}
∞

m=1, {em(k)}
∞

m(k)=1 be orthonormal bases for Hj , Hk and Wmj ,

Wm(k) be the Hilbert spaces generated by emj , em(k), respectively, for each j ∈ J, 1 ≤

k ≤ n. If πmj = πWmj
and πm(k) = πWm(k)

, then by using Example 3.2, we can see that

{

(

⊕j∈J πmj , 1
)

}
∞

m=1 and {

(

πm(1) ⊗ . . . ⊗ πm(n), 1
)

}(m(1),...,m(n))∈(N×...×N) are AURI for
⊕j∈JHj and ⊗

n

k=1Hk, respectively.
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Note that in the above example each πmj is a positive operator and if Tj =
{(πmj , ωm)}∞m=1

, ωm = 1, for each m ∈ N, then {Tj}j∈J is a BFARI and we see
that {(⊕j∈Jπmj , ωm)}∞m=1 is an AURI for ⊕j∈JHj . The following proposition shows
that this result holds for each BFARI with positive elements:

Proposition 3.5. Let Tij : Hj −→ Hj be a positive operator, for each i ∈ I and

j ∈ J. If {Tj = {(Tij , ωi)}i∈I}j∈J is an (A,B)-BFARI, then {(⊕j∈JTij , ωi)}i∈I is

an (A,B) AURI for ⊕j∈JHj . Conversely if {(⊕j∈JTij , ωi)}i∈I is an AURI, then

{Tj}j∈J is a BFAURI.

Proof. Note that
∑

i∈I

∥

∥T
1

2
ij fj

∥

∥

2
= 〈

∑

i∈I Tijfj , fj〉 = ‖fj‖2, for each fj ∈ Hj .

Since {Tj}j∈J is an (A,B)-BFARI, then sup{‖Tij‖ : j ∈ J} ≤

√

B

ωi

, for each

i ∈ I, therefore ⊕j∈JTij is a bounded operator on ⊕j∈JHj . Let F be a finite subset
of I. Then for each f = {fj}j∈J , g = {gj}j∈J ∈ ⊕j∈JHj , we have

∑

i∈F

|〈(⊕j∈JTij)f, g〉| =
∑

i∈F

∣

∣

∣

∣

∑

j∈J

〈

T
1

2

ij fj, T
1

2

ij gj
〉

∣

∣

∣

∣

≤
∑

j∈J

∑

i∈F

‖T
1

2

ij fj‖‖T
1

2

ij gj‖

≤
∑

j∈J

(

(

∑

i∈I

‖T
1

2

ij fj‖
2

)

1

2
(

∑

i∈I

‖T
1

2

ij gj‖
2

)

1

2

)

=
∑

j∈J

‖fj‖‖gj‖ ≤ ‖f‖‖g‖.

So
∑

i∈I

(⊕j∈JTij)f is weakly unconditionally Cauchy and hence unconditionally con-

vergent in ⊕j∈JHj (see [9], page 44, Theorems 6 and 8). Also

sup

{

∣

∣

∣

〈

∑

i∈I

(⊕j∈JTij)f, g
〉∣

∣

∣
: g ∈ ⊕j∈JHj , ‖g‖ = 1

}

≤ ‖f‖,

thus the operator
∑

i∈I

(⊕j∈JTij) which is defined on ⊕j∈JHj by

(

∑

i∈I

(⊕j∈JTij)

)

({fj}j∈J) =
∑

i∈I

(⊕j∈JTij){fj}j∈J ,

is bounded. Now we have
〈

∑

i∈I

(⊕j∈JTij)f, f

〉

=
∑

i∈I

∑

j∈J

〈Tijfj, fj〉 =
∑

j∈J

〈
∑

i∈I

Tijfj, fj〉

=
∑

j∈J

〈fj , fj〉 = 〈{fj}j∈J , {fj}j∈J〉.

This means that
∑

i∈I

(⊕j∈JTij){fj}j∈J converges unconditionally to {fj}j∈J , for
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each {fj}j∈J ∈ ⊕j∈JHj . Also we have
∑

i∈I

ω2

i ‖(⊕j∈JTij)({fj}j∈J)‖2 =
∑

i∈I

∑

j∈J

ω2

i ‖Tijfj‖
2

=
∑

j∈J

∑

i∈I

ω2

i ‖Tijfj‖
2 ≤ B

∑

j∈J

‖fj‖
2,

similarly
∑

i∈I

ω2

i ‖(⊕j∈JTij)({fj}j∈J )‖2 ≥ A
∑

j∈J

‖fj‖
2. So {(⊕j∈JTij , ωi)}i∈I is an

(A,B) AURI. The converse is clear.

Proposition 3.6. If T (k) = {(Ti(k), ωi(k))}i(k)∈Ik is an AURI, for each 1 ≤ k ≤ n,

then ⊗n
k=1

T (k) = {(Ti(1) ⊗ . . . ⊗ Ti(n), ωi(1) . . . ωi(n))}(i(1),...i(n))∈(I1×...×In) is an

AURI, for ⊗n
k=1

Hk. In this case R⊗n

k=1
T (k) = ⊗n

k=1
RT (k) .

Proof. Let n = 2 and σ be a permutation of I1×I2. Then for each z =
m
∑

ℓ=1

xℓ⊗yℓ ∈

H1 ⊗aℓg H2, we have

(1)
∑

(i(1),i(2))∈σ

(Ti(1)⊗Ti(2))z = lim
p,q

S(p, q, z) =
m
∑

l=1

( ∞
∑

r=1

Tαr
xℓ

)

⊗

( ∞
∑

t=1

Tβt
yℓ

)

= z,

where S(p, q, z) =
p

∑

r=1

q
∑

t=1

(Tαr
⊗ Tβt

)z and

α = {α1, . . . , αp, . . .}, β = {β1, . . . , βq, . . .}

are permutations of I1, I2, respectively. Suppose that Sαp =
p

∑

r=1

Tαr
and Sβq =

q
∑

t=1

Tβt
. Since T (k)’s are AURI, then lim

p
Sαpx = x and lim

q
Sβqy = y, for each

x ∈ H1 and y ∈ H2. Hence by using the uniform boundedness principle, we can
get that Kα = supp∈N

{‖Sαp‖} < ∞ and Kβ = supq∈N
{‖Sβq‖} < ∞. Now for each

z ∈ H1 ⊗H2, by choosing some element z0 ∈ H1 ⊗alg H2 close to z, and by using
(1) and the inequality

‖(Sαp ⊗ Sβq)z − z‖ ≤ KαKβ‖z − z0‖ + ‖(Sαp ⊗ Sβq)z0 − z0‖ + ‖z − z0‖,

we obtain that lim
p,q

(Sαp ⊗ Sβq)z = z, which is equivalent to the convergence of

∑

(i(1),i(2))∈σ

(Ti(1)⊗Ti(2))z to z. This means that
∑

(i(1),i(2))∈(I1×I2)

(Ti(1)⊗Ti(2))z converges

to z unconditionally. If Bk is an upper bound for T (k), then similar to the proof
of Theorem 2.1, we can obtain that 0 ≤ RT (1) ⊗ RT (2) ≤ B1B2.Id(H1⊗H2)

and for
each z ∈ H1 ⊗H2,

∑

(i(1),i(2))∈(I1×I2)

ω2

i(1)ω
2

i(2)‖(Ti(1) ⊗ Ti(2))z‖
2 = 〈(RT (1) ⊗RT (2))z, z〉 ≤ B1B2‖z‖

2.
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Since RT (1) and RT (2) are positive and invertible, then ⊗2

k=1
RT (k) is also positive

and invertible. Thus for each z ∈ H1 ⊗H2, we have

∥

∥(⊗2

k=1RT (k))−
1

2

∥

∥

−2
‖z‖2 ≤

∥

∥(RT (1) ⊗RT (2))
1

2 z
∥

∥

2

=
∑

i(1)∈I1

∑

i(2)∈I2

ω2

i(1)ω
2

i(2)‖(Ti(1) ⊗ Ti(2))z‖
2.

Therefore ⊗2

k=1
T (k) is an AURI. From the above conclusions it is clear that

R⊗2

k=1
T (k) = ⊗2

k=1
RT (k) .

Corollary 3.7. Suppose that Ti(k)j : Hkj −→ Hkj is a positive operator for each

j ∈ J and 1 ≤ k ≤ n, such that {T
(k)
j = {(Ti(k)j , ωi(k))}i(k)∈Ik}j∈J is a BFARI, for

each k ∈ {1, . . . , n}. Then
{(

(⊕j∈JTi(1)j) ⊗ . . .⊗ (⊕j∈JTi(n)j), ωi(1) . . . ωi(n)

)}

(i(1),...,i(n))∈(I1×...×In)

is an AURI for ⊗n
k=1

(⊕j∈JHkj).

Let V = {(Vi, υi)}i∈I be a fusion frame and W = {(Wi, ωi)}i∈I be a Bessel

fusion sequence for H. If f =
∑

i∈I

υiωiπWi
S−1

V πVi
f, for each f ∈ H, then W is called

an alternate dual of V ([11, Definition 2.7]).
In the rest of this section Vj = {(Vij , υi)}i∈I , V(k) = {(Vi(k), υi(k))}i(k)∈Ik ,

V
(k)
j = {(Vi(k)j , υi(k))}i(k)∈Ik , Ψ(k) = {Γi(k) ∈ L(Hk, Hi(k))}i(k)∈Ik ,Ψ

(k)
j = {Γi(k)j ∈

 L(Hkj , Hi(k)j)}i(k)∈Ik , where Vij , Vi(k) and Vi(k)j are closed subspaces of Hj , Hk

and Hkj , respectively.

Corollary 3.8. (i) Suppose that W(k)’s and V(k)’s are Bessel fusion sequences

and fusion frames, respectively. If W(k) is an alternate dual of V(k), for each

k ∈ {1, . . . , n}, then ⊗n
k=1

W(k) is an alternate dual of ⊗n
k=1

V(k).

(ii) Suppose that Φ(k)’s and Ψ(k)’s are g-Bessel sequences. If Φ(k) is a g-dual

of Ψ(k), for each k ∈ {1, . . . , n}, then ⊗n
k=1

Φ(k) is a g-dual of ⊗n
k=1

Ψ(k).

(iii) If Φ(k)’s are g-frames, then ˜⊗n
k=1

Φ(k) = ⊗n
k=1

˜Φ(k) ( ∼ is used for showing

the canonical dual of a g-frame).

Proof. (i) First note that by Theorem 2.1 and Corollary 2.2, we have that ⊗n
k=1

V(k)

and ⊗n
k=1

W(k) are fusion frame and Bessel fusion sequence, respectively. Now if we
define Ti(k) = υi(k)ωi(k)πWi(k)

S−1

V(k)
πVi(k)

, then it can be obtained from [5, Lemma

3.9] that T (k) = {Ti(k)}i(k)∈Ik is an unconditional resolution of the identity for

Hk. Now by using the first part of the proof of Proposition 3.6, ⊗n
k=1

T (k) is an
unconditional resolution of the identity for ⊗n

k=1
Hk, which is equivalent to say that

⊗n
k=1

W(k) is an alternate dual of ⊗n
k=1

V(k).

(ii) If we define Ti(k) = Γ∗
i(k)

Λi(k), then T (k) = {Ti(k)}i(k)∈Ik is an uncondi-

tional resolution of the identity for Hk, see [21, Definition 3.2]. Now similar to part
(i), by using Proposition 3.6, we can get the result.
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(iii) Since S−1

⊗n

k=1
Φ(k)

= ⊗n
k=1

S−1

Φ(k)
, then for each (i(1), . . . , i(n)) ∈ I1×. . .×In,

we have

(Λi(1) ⊗ . . .⊗ Λi(n))S
−1

⊗n

k=1
Φ(k)

= (Λi(1)S
−1

Φ(1)
) ⊗ · · · ⊗ (Λi(n)S

−1

Φ(n)
).

This shows that ˜⊗n
k=1

Φ(k) = ⊗n
k=1

˜Φ(k).

Note that if W = {(Wi, ωi)}i∈I is a Bessel fusion sequence with upper bound
B and V = {(Vi, υi)}i∈I is a (C,D) fusion frame for H, then by [5, Lemma 3.9], for

each f ∈ H,
∑

i∈I

υiωiπWi
S−1

V πVi
f converges unconditionally and for each f, g ∈ H,

∣

∣

∣

∣

〈

∑

i∈I

υiωiπWi
S−1

V πVi
f, g

〉

∣

∣

∣

∣

≤

(

∑

i∈I

‖S−1

V ‖2υ2

i ‖πVi
f‖2

)

1

2
(

∑

i∈I

ω2

i ‖πWi
g‖2

)

1

2

≤

√
BD

C
‖f‖‖g‖.

Hence the operator
∑

i∈I

υiωiπWi
S−1

V πVi
which is defined on H by

(

∑

i∈I

υiωiπWi
S−1

V πVi

)

(f) =
∑

i∈I

υiωiπWi
S−1

V πVi
f,

is bounded.

Proposition 3.9. Let {Wj}j∈J be a BFBFS and {Vj}j∈J be a BFFF. Then Wj is

an alternate dual of Vj , for each j ∈ J if and only if ⊕j∈JWj is an alternate dual

of ⊕j∈JVj .

Proof. By Corollary 2.7, ⊕j∈JVj and ⊕j∈JWj are fusion frame and Bessel fusion
sequence, respectively. Let {fj}j∈J , g = {gj}j∈J ∈ ⊕j∈JHj and let F be a finite
subset of J. Put fF = {χF (j)fj}j∈J , then we have

〈

∑

i∈I

υiωiπ⊕j∈JWij
S−1

⊕j∈JVj
π⊕j∈JVij

fF , g

〉

=
∑

j∈F

〈

∑

i∈I

υiωiπWij
S−1

Vj
πVij

fj , gj

〉

= 〈fF , g〉.

Since the operator
(

∑

i∈I

υiωiπ⊕j∈JWij
S−1

⊕j∈JVj
π⊕j∈JVij

)

is bounded, then

∑

i∈I

υiωiπ⊕j∈JWij
S−1

⊕j∈JVj
π⊕j∈JVij

= Id(⊕j∈JHj)
,

and the result follows. The converse is obvious.
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As a consequence of the above results and [20, Propositions 3.4 and 3.5], we
have the following:

Corollary 3.10. (i) Let {W
(k)
j }j∈J and {V

(k)
j }j∈J be BFBFS and BFFF, for each

1 ≤ k ≤ n, respectively and let W
(k)
j be an alternate dual of V

(k)
j , for each j ∈ J and

k ∈ {1, . . . , n}. Then ⊗n
k=1

(⊕j∈JW
(k)
j ) is an alternate dual of ⊗n

k=1
(⊕j∈JV

(k)
j ).

(ii) Let {Φ
(k)
j }j∈J and {Ψ

(k)
j }j∈J be BFGBS, for each 1 ≤ k ≤ n and let Φ

(k)
j

be a g-dual of Ψ
(k)
j , for each j ∈ J and k ∈ {1, . . . , n}. Then ⊗n

k=1
(⊕j∈JΦ

(k)
j ) is a

g-dual of ⊗n
k=1

(⊕j∈JΨ
(k)

j ).

(iii) Let {Φ
(k)

j }j∈J be a BFGF, for each 1 ≤ k ≤ n. Then ⊗n
k=1

(⊕j∈J
˜

Φ
(k)

j ) is

the canonical dual of ⊗n
k=1

(⊕j∈JΦ
(k)
j ).
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