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LIE SYMMETRIES AND NOETHER SYMMETRIES

PGL Leach

We demonstrate that so-called nonnoetherian symmetries with which a

known first integral is associated of a differential equation derived from a

Lagrangian are in fact noetherian. The source of the misunderstanding lies

in the nonuniqueness of the Lagrangian.

1. INTRODUCTION

In 1918 Noether [24] published a fundamental paper on the relationship
between the existence of a symmetry of the Action Integral and the existence of a
corresponding first integral when the variational principle of Hamilton was applied
to produce the Euler-Lagrange equation. The symmetry was a consequence of the
invariance of the Action Integral,

(1) A =

∫ t1

t0

L(t, q, q̇, . . .)dt,

under an infinitesimal transformation of the independent variable and the depen-
dent variables generated by the differential operator

(2) Γ = τ(t, q, q̇, . . .)∂t + ηi(t, q, q̇, . . .)∂qi ,

where the order of the derivatives of the dependent variables in the coefficient
functions was less than or equal to the order of the derivatives occurring in the
Lagrangian. In the present article we restrict ourselves to one independent variable,
but q may denote many dependent variables. Naturally Noether [24] allowed for
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t to be a multivariable thereby enabling the theorem to apply to Lagrangian field
theories. The corresponding first integral is given by

(3) I = f(t, q, q̇, . . .)−

[

τL+ (ηi − q̇iτ)
∂L

∂q̇i
− . . .

]

,

where the function f(t, q, q̇, . . .) is called the boundary function since its origin is
in the contribution to the variation of the Action Integral due to the infinitesimal
variation of the endpoints of the integral because of the transformation in the inde-
pendent variable. We remind the reader that the invariance of the Action Integral
under the infinitesimal transformation generated by Γ has nothing to do with the
application of Hamilton’s Principle which specifies zero end-point variations.

Over the intervening years Noether’s Theorem has become the stuff of text-
books. Unfortunately it is generally misrepresented (for a modest sampling see
[2, 18, 3]) as applying to point symmetries only and in a mechanical context to
Lagrangians of the form L = T − V which, as everyone should know, is a rather
specialised and restricted form, certainly in the context of the Calculus of Varia-
tions to which Noether’s Theorem refers. Despite the thorough review by Sarlet

and Cantrijn [29] of 1981 we find a later writer [3] claiming the authority of
Courant and Hilbert [2] the further to propagate the bowdlerised form of the
theorem. Since Hilbert was present at the Festschrift in honour of Felix Klein when
Noether presented her theorem, it is surprising that the presentation in the text is
incomplete until one learns that Hilbert’s contribution was his name.

If one uses the point form of (2) to determine the symmetries of (1), be the
Lagrangian of the specific form above or more general, it is not surprising that
the Theorem can fail to produce integrals, such as the Laplace-Runge-Lenz vector,
well known from other, often elementary, considerations. This then becomes ‘The
Failure of Noether’s Theorem’! This failure led later workers diligently to seek
new methods to overcome the deficiencies of the theorem. A notable example
of this is to be found in the s- and g-symmetries proposed by Hojman and his
collaborators [4, 5, 6, 7, 8]. Later it was demonstrated [15] that the first integrals
for the examples considered in their papers could easily be obtained by a proper
application of Noether’s Theorem. A more recent illustration is to be found in the
paper by Luo and Jia [19] in their determination of an integral for a problem
in relativistic mechanics which, again, could not be obtained by an application of
Noether’s Theorem. Their problem possessed a Lagrangian of the form above, albeit
decorated with asterisks which, we suspect, had no great bearing on their analysis.
The Lie symmetries used to determine the integral were termed nonnoetherian.
Some point was made of the fact that the symmetry analysis was recast in terms
of the canonically conjugate variables of the corresponding Hamiltonian. This was
not a particularly original approach (see [27]).

It is the central theme of this work to demonstrate, by means greatly elemen-
tary, how allegedly nonnoetherian Lie symmetries can in fact be recast as noetherian
symmetries provided that one goes to the trouble to read Noether’s original work.
It is well known that the first integrals of a first-order Lagrangian can be obtained



240 PGL Leach

from a single Lagrangian – usually the ‘standard’ Lagrangian – by the use of gen-
eralised, or velocity-dependent, symmetries. It is not the point of this paper to do
this. Rather it is to demonstrate that to all Lie point symmetries which lead to
a nonzero Jacobi Last Multiplier there corresponds a Lagrangian for which those
symmetries are Noetherian and so can be used to construct first integrals accord-
ing to the prescription of Noether’s Theorem. In a more sophisticated elaboration
we demonstrate the direct connection between our results simply obtained and the
fundamental relationship between Jacobi’s Last Multiplier [9, 10, 11, 12, 13] and
a Lagrangian and the connection between the Last Multiplier and Lie symmetries
demonstrated so long ago by Lie [16].

In §2 we provide an analysis in terms of the Lagrangian for the free particle.
This enables a ready appreciation of the fact which we wish to emphasise which
is that Noether’s Theorem necessarily relates a symmetry and its integral to a
Lagrangian. In §3 we relate the results of the previous section to the relationship
between Lie symmetries and a Lagrangian through the Last Multiplier of Jacobi.
We provide a brief Discussion in §4.

2. THE FREE PARTICLE: THE MYTH OF NONNOETHERIAN
SYMMETRIES

The free particle has the equation of motion

(4) q̈ = 0

with the Lie point symmetries and associated first integrals (obtained using the
standard method for determining a first integral using a Lie point symmetry)

Symmetry First Integral

Γ1 = ∂q I1 = q̇

Γ2 = t∂q I2 = tq̇ − q

Γ3 = ∂t I3 = q̇

Γ4 = 2t∂t + q∂q I4 = q̇ (tq̇ − q)
Γ5 = t2∂t + tq∂q I5 = tq̇ − q

Γ6 = q∂q I6 =
tq̇ − q

q̇

Γ7 = q∂t I7 =
tq̇ − q

q̇

Γ8 = qt∂t + q2∂q I8 =
tq̇ − q

q̇
.

The free particle has the standard Lagrangian

(5) L =
1

2
q̇2.
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The Noether point symmetries of the corresponding Action Integral and their as-
sociated first integrals are

Symmetry Boundary term First Integral

ΓN1 = ∂q f1 = 0 IN1 = −q̇

ΓN2 = t∂q f2 = q IN2 = q − tq̇

ΓN3 = ∂t f3 = 0 IN3 = −

1

2
q̇2

ΓN4 = t∂t + q∂q f4 = 0 IN4 = q̇ (q − tq̇)

ΓN5 = t2∂t + 2tq∂q f5 = q2 IN5 = (q − tq̇)2

Apart from some differences in sign and functional differences in the expression of
the integral one notes several differences. (Recall that, if I is an integral, then so is
any function of I. In the case of Lie symmetries one tends to omit the possibility
of an arbitrary function of I. On the other hand there is no ambiguity in the
functional expression given by Noether’s Theorem.) The integrals corresponding
to Γ1 and Γ2 coincide with the integrals for the corresponding Noether symmetries.
These are the symmetries known as the solution symmetries since the coefficients of
∂q are the solutions of the differential equation under consideration, (4). In the case
of the following three symmetries, each triplet being a representation of sl(2, R),
there are differences in the functional representation of the integral. However, the
noticeable feature is the absence of any symmetry, indeed integral, corresponding
to Γ6, Γ7 and Γ8 in the set of Noether point symmetries. Such symmetries have
been termed nonnoetherian.

The symmetries, Γ6, Γ7 and Γ8, constitute a subalgebra of sl(3, R) which is
the algebra [17] [p 405] (see also [1]) of (4). The algebra itself is A3,3 ⇔ A1⊕s 2A1

also known as D ⊕s 2A1, which represents the algebra of translations in the plane
and dilation, in the Mubarakzyanov Classification Scheme [20, 21, 22, 23]. As
this same subalgebra is found with other combinations of the elements of sl(3, R)
which do correspond to Noether point symmetries for the Lagrangian, (5) and the
different representations of this subalgebra can be transformed from one to the
other by means of a point transformation, one can only find it a little strange that
one representation works for the Action Integral (5) and the other does not.

The resolution of this conundrum is suggested by the implication of the last
sentence in the paragraph above. One can transform one representation of the
subalgebra to another representation and this leaves (4) invariant. However, this
does not imply that the Lagrangian in the Action Integral is going to be unchanged.
The relationship between first integral, boundary term, symmetry and Lagrangian
is given in (3). For the three ‘nonnoetherian’ Lie point symmetries of (4) we have a
corresponding integral. Consequently we can solve (3) for L provided that we make
an assumption that f = 0 in each case. We illustrate the method of construction
in the case of Γ6. When we make the appropriate substitutions into (3), we have
the partial differential equation

(6) q
∂L

∂q̇
= −

tq̇ − q

q̇
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which is easily integrated to give

(7) L = log q̇ −
tq̇

q
+ g(t, q),

where g is an arbitrary function of integration in the indicated arguments. We
substitute (7) into the Euler-Lagrange equation and make use of (4) to find that

∂g

∂q
= −

1

q
=⇒ g = − log q

to within an ignorable function of time. The calculations for Γ7 and Γ8 proceed in
a similar fashion. We find that that the Lagrangian corresponding to each of the
allegedly nonnoetherian symmetries is, respectively,

Γ6 : L6 = log
q̇

q
−

tq̇

q
+ h(t)(8)

Γ7 : L7 =
(tq̇ − q)2

2q2q̇
+ q̇h(q)(9)

Γ8 : L8 = (tq̇ − q)

{

h(q)

t2
+

1

q2
[log (tq̇ − q)− log (q̇)]

}

(10)

in each of which h(·) is an arbitrary function of its indicated argument. In (8) and
(9) the function may be taken to be zero without loss of generality since in both
cases it can be written as a total derivative with respect to time. In the case of (10)
the linearity in q̇ of the coefficient of h(q) means that the function can be set at
zero because it cannot contribute to the Euler–Lagrange Equation. We note that
the Jacobi Last Multipliers in each case can be obtained using Lie’s matrix using
the pairs of symmetries {Γ1, Γ7}, {Γ7, Γ4} and {Γ3, Γ8}, respectively.

So much for nonnoetherian Lie symmetries in this example!

3. THE LIE POINT SYMMETRIES OF THE FREE PARTICLE,
THE LAST MULTIPLIER OF JACOBI AND THE

CORRESPONDING LAGRANGIANS

In the second quarter of the nineteenth century Jacobi developed a theory of
a last multiplier, now called the Jacobi Last Multiplier, for systems of differential
equations [9, 10, 11, 12, 13]. Since the existence of multipliers and of first integrals
is intimately related, in hindsight one cannot be surprised that Lie was able to relate
the calculation of a Jacobi Last Multiplier to the existence of Lie symmetries of the
system under consideration [16]. Here we use the definition of a first integral as
a function of the independent and dependent variables and their derivatives which
cannot be eliminated by the differential equations under consideration with a zero
gradient when the differential equations are taken into account. Naturally in the
case of a single independent variable the gradient is simply the total derivative with
respect to the independent variable. When one takes the determinant of a matrix
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consisting of the vector field of the system – necessarily first-order –of differential
equations and a number of symmetries to make the matrix square, the reciprocal
of the determinant is a Jacobi Last Multiplier. If two multipliers, M1 and M2, are
known, their ratio is a first integral. Furthermore a Jacobi Last Multiplier and the
corresponding Lagrangian are related according to [13, 31]

(11)
∂2L

∂q̇2
= M

for a one-degree-of-freedom system. A partial answer to the problem in more than
one dimension has been provided in [31, 28, 25]. Consequently we see that there
is a connection between the different facets of the given system with which we deal.
We have a differential equation possessing symmetry. We write everything in terms
of equations of the first order and write the symmetries in their first extended form
and construct the matrix. In the case of a nonzero determinant the inverse gives the
Last Multiplier. If it is possible to determine more than one multiplier, the ratio
gives an integral. For each multiplier we can use (11) to determine the dependence
of the Lagrangian on q̇ and hence the complete expression using the same method
as in §2. If it so happens that a Lagrangian of the form 1

2
q̇2 + q̇g(t, q) + h(t, q) is

known, it follows from (11) that one of the multipliers is a constant. Consequently
every other multiplier is a first integral.

We illustrate these ideas with the same free particle as we used in §2.
For the time being we assume that we are unaware of any first integrals. The only
information at our disposal is the equation of motion and the associated Lie point
symmetries. We write (4) as the system

q̇ = p(12)

ṗ = 0.(13)

Since the vector field contains three components, we use the symmetries listed
above in pairs so that there are 28 determinants to compute. The results are given
in tabular form in Table 1.

In passing we note that

∆2,4−6,5 = 0, ∆3,1,4+6 = 0 and ∆6,7,8 = 0,

where ∆ is a shorthand notation for determinant. Each of the combinations is a
representation of the complete symmetry group of (4) [1] and it has been proposed
that the determinant of a set of symmetries is zero if that set of symmetries is a
representation of the complete symmetry group [26].

It is not surprising that the ratio integral corresponding to Γ6, Γ7 and Γ8 is
not to be found in the Table 1 since all of the elements in the matrices for which
the determinant has been calculated are polynomial. The reciprocals of each of the
nonzero determinants gives a multiplier and hence a route to the determination of a
Lagrangian. One notes that the determinant which leads to the constant multiplier
and so the standard representation for the Lagrangian of (4) is that of the vector
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field and the two solution symmetries. One further notes that there is scarcely a
shortage of Lagrangians!

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

Γ1 0 – – – –
Γ2 1 0 – – – – – –
Γ3 0 I1 0 – – – – –
Γ4 −I1 I2 I21 0 – – – –
Γ5 −I2 0 I1I2 I22 0 – – –
Γ6 I1 I2 −I21 −2I1I2 −I22 0 – –
Γ7 −I21 −I1I2 I31 −2I21I2 −I1I

2
2 0 0 –

Γ8 −I1I2 −I22 I21I2 2I1I
2
2 −I32 0 0 0

Table 1. The entries in the body of the table are the determinants of the two symmetries

indicated with the vector field {1, p, 0}. The symmetries are once extended. To enable a

compact representation the determinants are given in terms of the fundamental first

integrals of system (12,13). They are I1 = p and I2 = pt− q. This is possible since one of

the determinants is constant and so all other determinants must be expressible in terms

of first integrals.

5. DISCUSSION

The purpose of this paper has not been to berate those who devise new
methods to solve problems. Nevertheless we find it quite disturbing that one of
the motives for such devising has been an alleged failure of Noether’s Theorem
to provide the results desired. In this paper we have demonstrated by means of
a very simple example how symmetries of the Euler-Lagrange equation which are
not normally associated with Noether’s Theorem are in fact Noether symmetries.
The failure to recognize these symmetries as such is due to the assumption of an
incorrect Lagrangian. We iterate that (3) is a relationship connecting the integral,
the boundary term, the symmetry and the Lagrangian. When a Lagrangian is im-
posed, the only symmetries which can be used to construct an integral are those
appropriate to that Lagrangian since it is from consideration of the invariance of the
Action Integral for that specific Lagrangian that the corresponding symmetries are
determined. The symmetries of the differential equation need not be Noether sym-
metries of any given Lagrangian. However, if one starts from the integral and some
symmetry, (3) is a linear first-order partial differential equation for the required
Lagrangian. As such its solution is guaranteed under quite slight constraints upon
the coefficients in the equation. Consequently the existence of a first integral and
a corresponding symmetry for a differential equation of appropriate order enables
one to determine the Lagrangian for which the symmetry is a Noether symmetry
and the integral a Noether integral.

As a final remark we note that our considerations have been restricted to
point symmetries. In the context of the Jacobi Last Multiplier there is no reason
for such a restriction apart from the greater ease of calculating point symmetries.
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Perugia, Perugia 06123,Italy.

27. G. E. Prince, P. G. L. Leach: The Lie theory of extended groups in Hamiltonian

mechanics. Hadronic J., 3 (1980), 941–961.

28. B. S. Madhava Rao: On the reduction of dynamical equations to the Lagrangian

form. Proc. Benares Math. Soc., 2 (1940), 53–59.

29. Willy Sarlet, Frans Cantrijn: Generalizations of Noether’s Theorem in Classical

Mechanics. SIAM Rev., 23 (1981), 467–494.

30. W. Sarlet: Noether’s Theorem and the Inverse Problem of Lagrangian Mechanics.

Modern Developments in Analytical Mechanics - Vol II, Benenti S et al edd (Torino)
(1983) 737-751.

31. E. T. Whittaker: A Treatise on the Analytical Dynamics of Particles and Rigid

Bodies. Dover, New York, 1944.

Department of Mathematics and Statistics, (Received January 19, 2012)
University of Cyprus, (Revised June 25, 2012)
PO Box 20537 Lefkosia CY 1678
Cyprus

E-mail: leach@ucy.ac.cy, leachp@ukzn.ac.za

(Permanent address: School of Mathematical Sciences,
University of KwaZulu-Natal,
Private Bag X54001 Durban 4000
Republic of South Africa)


