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THE SECOND ORDER ESTIMATE FOR THE
SOLUTION TO A SINGULAR ELLIPTIC BOUNDARY
VALUE PROBLEM
Ling Mz, Bin Liu
We study the second order estimate for the unique solution near the bound-
ary to the singular Dirichlet problem —Au = b(z)g(u), v > 0, = €

Q, ulaq = 0, where  is a bounded domain with smooth boundary in RY,
g € C'((0,00), (0,00)), g is decreasing on (0, c0) with lim+ g(s) = oo and g
s—0

is normalized regularly varying at zero with index —vy (y > 1), b € C*(£2)
(0 < a < 1), is positive in 2, may be vanishing on the boundary. Our analysis
is based on Karamata regular variation theory.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the second order estimate for the unique solution
near the boundary to the following singular boundary value problem

(1) —Au="0b(x)g(u), u>0, z €, ulgg =0,

where € is a bounded domain with smooth boundary in RY, b satisfies
(by) be C*(Q) for some a € (0,1), and is positive in €2,

(b2) there exist k € A and By € R such that

b(x) = k*(d(x))(1 + Bod(z) + o(d(z))) near 0%,
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where d(x) = dist(z,09Q), A denotes the set of all positive non-decreasing
functions in C*(0,dp) which satisfy

ti%i% (%) = e (0,1], K(t) = /O'k(s)ds,

and g satisfies

(g1) g € C'((0,),(0,00)), lim g(s) = oo and g is decreasing on (0, 0);

s—0t

(g2) there exist v > 1 and a function f € C'(0,a1] N C[0,a;] for a; > 0 small
enough such that

_ A4
P~y f(5) with Tim () =0, s € (0.a1]
ie.,
a1
g(s) = cos™ 7 exp < @dy> , s€(0,a1], co > 0;
(g3) there exists n > 0 such that
f(s)s

S )

The problem (1) arises in the study of non-Newtonian fluids, boundary layer
phenomena for viscous fluids, chemical heterogeneous catalysts, as well as the the-
ory of heat conduction in electrical materials (see [12]-[24]) and has been dis-
cussed and extended by many authors in many contexts, for instance, the existence,
uniqueness, regularity and boundary behavior of solutions, see, [12]-[36] and the
references therein.

For b=1in Q and g satisfying (g1), FULKS and MAYBEE [12], STUART [27],
CRANDALL, RABINOWITZ and TARTAR [7] derived that problem (1) has a unique
solution u € C***(Q)NC(Q). Moreover, in [7], the following result was established:
if ¢1 € C[0,80) N C?(0, 8] is the local solution to the problem

(2) —¢1(t) = g(¢1(t)), ¢1(t) >0, 0 <t <do, $1(0) =0,
then there exist positive constants ¢; and cy such that
cd1(d(z)) < u(z) < copr(d(x)) near IS
In particular, when g(u) = u~7, v > 1, u has the property
(3) 1 (d(2))Y ) < u(z) < ead(z))? ) near 99

By constructing global subsolutions and supersolutions, LAZER and MCKENNA [20]
showed that (3) continued to hold on Q. Then, u € HE(Q) if and only if v < 3. This
is a basic characteristic of problem (1). Moreover, there is the following additional
statement in [20].
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(I,) If, instead of b = 1, we assume that 0 < 61 < b(z)(p1(2))® < 6y for © € Q,
where 6; and 6 are positive constants, w € (0,2), and ; is the first eigen-
function, corresponding to the first eigenvalue A1 of the Laplace operator with
Dirichlet boundary conditions and v > 1, then there exist positive constants
03 and 6, (03 is small and 6, is large) such that

93(%(33))# <wu(z) < 94(@1(%))%, Vo € Q.

GIARRUSSO and PORRU [13], BERHANU, GLADIALI and PORRU [3], BERHANU,
Cuccu and Porru [4], MCKENNA and REICHEL [22], ANEDDA [1], ANEDDA and
PoORRU [2], GHERGU and RADULESCU [14] considered the first and second or-
der expansions of the solution near the boundary. Specifically, when the function
g:(0,00) = (0,00) is locally Lipschitz continuous and decreasing, GIARRUSSO and
PORRU [13] proved that if g satisfies the following conditions

@ g(s)ds = oc. [ s <o = [ atsjas

/

(g5) there exist positive constants 6 and M > 1 such that

G1(t) < MG1(2t), vt € (0,9),

then for the unique solution w of problem (1)
(4) lu(z) — ¢p2(d(z))] < cod(x) near 9K,

where ¢y is a suitable positive constant and ¢z € C[0,00) N C?(0,00) is the unique
solution of

#2(t) dv
0 A/ 2G1(1/)

Later, for b = 1 on 9, g(u) = v~ with v > 0, BERHANU, GLADIALI and
PORRU [3] showed the following result for v > 1

u(z) - ((1 +,y)2>1/(1+’7)
(d(2))?/ A+ \2(y - 1)

Then, BERHANU, CuccU and PORRU [4] obtained the following results on a suffi-
ciently small neighborhood of 9€2;

()

=t t>0.

(i) < e3(d(x)0~Y/ A+ pear 9Q.

(ii) fory=1,
u(z) = ¢1(d(z)) (1 + A(z)(—In(d(z)))™?) near 09,

where ¢ is the solution of problem (2) with v = 1, ¢1(t) = tv/—21Int near
t=0,0¢€(0,1/2) and A is bounded;
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(iii) for v € (1,3),

_(a+ )? HE 2/(147) 2(v=1)/(1+7) .
u(z) = (72(7 — 1)) (d(x)) (1+ A(z)(d(z)) ) near 99;

(iv) for v =3,
u(z) = \/2d(z) (1 — A(z)d(z)In(d(z))) near 9.
For v > 3, MCKENNA and REICHEL [22] proved that

u(e) ((ng)u(m)

(v+3)/(1+7)
(d(z))2/(A+7) 2(y — 1) < ca(d(x)) near 0.

On the other hand, CIRSTEA and RADULESCU [9]-[11] introducd a unified
new appoach via the Karamata regular variation theory, to study the boundary
behavior and uniqueness of solutions for boundary blow-up elliptic problems.

Let 8 > 0, we define

Aip = {k €A, lim (—Int)” <% (5;—2?) — Ck) =Dy € IR{};

Ay = {k €A, tllr51+t*1 (% <%) — ck> = Dy € IR{}.

Recently, when g, b satisfy (g1)-(g3) and (by)-(b2), using the Karamata reg-
ular variation theory, ZHANG [31] proved that the two-term asymptotic expansion
of the unique solution u near 92 only depends on the distance function d(x) and
the above chosen subclasses for & € A under the following hypotheses:

(Hy) n=0 in (g3);
(H2) there exist o € R such that

lim (—Ins)?f(s) = o,

s—0t

where (3 is the parameter used in the definition of A g;
(Hs) Ci(y+1)>2.

However, ZHANG [31] only considered the condition n = 0 in (g3).

Inspired by the above works, in this paper we also consider the two-term
asymptotic expansion of the unique solution u of problem (1) near 9Q). We consider
not only the condition n = 0 in (gz) but also the condition n > 0 in (g3). In [31],
ZHANG mainly used the solution to the problem

P(t) ds

o V2G(s)

b
‘) G(t):/ g(s)ds, b>0, te(0,b),
t
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to estimate the boundary behavior of solutions to problem (1) while the key to our
estimates in this paper is the solution to the problem

() s
6 / —=1t,1t>0.
©) ) 90)

Our main results are summarized as follows.

Theorem 1. Let g satisfy (g1)-(g3), b satisfy (b1)-(b2) and (Hs) holds. Suppose
that k € A1 g and n> 0 in (g3), then for the unique solution u of problem (1) and
all © in a neighborhood of OS) it holds that

(1) u(e) = &o(K3(d(x))) (1 + Ao(—In(d(2))) ™" + o((= In(d(x))) ")) ,

where ¢ is uniquely determined by (6) and

1/(147)
(8) € = (7—+1> . Ay = L
2CK(y+1) -4 Cr(y+1) -2

Theorem 2. Let g satisfy (g1)-(g3), b satisfy (b1)-(be) and (Hy)-(Hs) hold.

(i) Suppose that k € Ay g, then for the unique solution u of problem (1) and all
x in a neighborhood of OS2 it holds that

(9 u(r) = &o(K?(d(x))) (1 + Ai(=In(d(x))) 7 + o((— In(d(x))) 7)) ,
where ¢ is uniquely determined by (6), & is in (8) and

2D1 — Ao

A= 22
LT 2Ck(y+1) -4

with As = —Ags (40(7 +1)7% 4 afO_(PH_l) 1n€0) ,

A3 = 27P(Crly + 1)),

(ii) Suppose that k € A, then (i) still holds, where

A = #
2CK(y+1) -4

REMARK 1 (Existence, [33], Theorem 4.1). Let b € Cp,.(2) for some a € (0,1), be

nonnegative and nontrivial on Q. If g satisfies (g1), then problem (1) has a unique solution

u € C*T(Q)NC(Q) if and only if the linear problem —Aw = b(z), w > 0, 2 € Q, w|oq =

0 has a unique solution wo € C***(Q) N C(Q).

The outline of this paper is as follows. In section 2 we give some preparation.
The proofs of Theorem 1-2 will be given in section 3.
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2. PREPARATION

Our approach relies on Karamata regular variation theory established by
Karamata in 1930 which is a basic tool in the theory of stochastic process (see [23],
[26] and [30] and the references therein.). In this section, we give a brief account
of the definition and properties of regularly varying functions involved in our paper
(see [23], [26] and [30]).

Definition 1. A positive measurable function g defined on (0,a), for some a > 0,
is called regularly varying at zero with index p, written as g € RV Z,, if for
each € > 0 and some p € R,

g,
(10) Jm S =

In particular, when p =0, g is called slowly varying at zero.

Clearly, if g € RV Z,, then L(t) : = g(t)/t” is slowly varying at zero.
Some basic examples of slowly varying functions at zero are

(i) every measurable function on (0, @) which has a positive limit at zero;
(ii) (—IWnt)? and (In(—In?t))”, peR;
(iii) eCMO" 0<p<1.

Proposition 1 (Uniform convergence theorem). If g € RV Z,, then (10) holds
uniformly for £ € [c1, 2] with 0 < ¢ < 2 < a.

Proposition 2 (Representation theorem). A function L is slowly varying at zero
if and only if it can be written in the form

(11) L(t) = y(t) exp ( " Mdu) , t€(0,a1),

t v

for some a; € (0,a), where the functions f and y are measurable and for t — 07,
f@) = 0 and y(t) — co, with ¢ > 0.

We say that

(12) I:(t) = cgexp ( h Md1/> , t€(0,a1),

¢ v
is normalized slowly varying at zero and
(13) g(t) = cot? L(t), t € (0,a1),
is normalized regularly varying at zero with index p (and written ¢ € NRV Z,,).

A function g € RV Z, belongs to NRV Z, if and only if

. tg'(t)
14 € CH0,a,) f >0and 1
(14) g (0,a1) for some a; and lim o)

:p.
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Proposition 3. If functions L, L1 are slowly varying at zero, then

(i) L? (for every p € R), c1 L+ caly (c1 > 0,0 > 0 with ¢q +co > 0), Lo Ly (if
Li(t) = 0 ast — 0T), are also slowly varying at zero.

(ii) For every p >0 and t — 0T,
L) = 0, tPL(t) = oc.

iii) Forpe R andt — 07, In(L(t))/Int — 0 and In(t*L(t))/Int — p.
P

Proposition 4. If g1 € RVZ, , g2 € RV Z,, with lirél+ g2(t) = 0, then g1 0 ga €
t—
RV Z, ;-

Proposition 5 (Asymptotic behavior). If a function L is slowly varying at zero,
then for a >0 and t — 07,

(i) /Ot sPL(s)ds = (p+ 1)71 P L(t), for p> —1;

(ii) /a sPL(s)ds = (—p —1)"L 1P L(t), for p < —1.

Our results in this section are summarized as follows.

Lemma 1. Let k € A. Then

W K@) Cth(t) .,
lim =2 =0, lim —— = e, K € NRVZ, 1;
(@) Jtim oy =0 Jim gegy = G den K ENRVZe s
e . K@) 1-Cf . . K@K (@)
= e, ke NRVZ,_ ©lim — L =1 — O
(ii) tlg(g K0 C yie, K€ NRVZi_cyyc; ti%ﬂ (1) C

i) i (~1a0)* (K050 — (01— €)= D, ik € s
KK )

(iv) lim t_l( 200

t—0+

—(1- Ck)) = —Doy, if k € As.

Proof. The proof is similar to the proof of Lemma 2.1 in [31], so we omit it.

Lemma 2. If g satisfies (g1)-(g3), then

¢ ds
(i) / —— <00, for some a>0;

o 9(s)

¢
ds
1 , tds y J 1 g(t)“of@ 1

. . s ds . _ .
@m0 [ =T el —E =
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Proof. (i) (gg) implies that g € NRVZ_., with v > 1, so g(s) = cos 7L(s), s €
(0,a1), where L is normalized slowly varying at zero and ¢y > 0. (i) is obvious due

to Propositions 5(i) and 3(ii).
(ii) Also

iy [fds tg®) 1y
g(t)/o g(s) gty v+1 A +1

and

@/ngt’W“L(t) 1
t Joogls) L) ty+1) ~y+1

)
Lemma 3. Let g satisfy (g1)-(g3). If n =0 in (g3), suppose that (Ha) holds. Then
) ,

/

tg

(i) t1_1>r51+ —Int)? g(t) = —0ly>o0,
(ii) tl_i)rg)1+(— Int)? b 1) ICESE Lo,
5 t
. o 12
(iii) t£r51+( Int) (g (t) L 9) 1> o 1 In>o,
(iv) lim (— ) (200 50‘““) = —0& " IngoL,50,
t—0+ &og(t) K

Proof. When f € NRV Z, with n > 0, by Proposition 3 (ii), 11I(1)’1+(— Int)Pf(t) =0
t—
and when 1 = 0, by hypothesis (Hs), 1im+(— Int)’f(t) =0

(i) By M—FW: —f(t), we see that (i) holds.

g(t)
(ii) By (g2) and a simple calculation, we obtain
AN A LC)
15 S| ——) =——+ ==, s€(0,a1].
19) (57) =5 0 + <
Since g € NRVZ_,, with v > 1, by Proposition 3 (ii), we have lim L 0.

t—0+ g(t)
Integrating (15) from 0 to ¢ and integrating by parts, we get

R T T L0 I
mw‘”*”lg@+ﬁgmf’t€“1L

ie.,
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Since g € NRVZ_.,, f € NRV Z,, we obtain by Proposition 5 that

JECRR
i 0 g(s) 1
=0t S(t) IR EE
9(t)
Thus,
t
i [ 1),
. B gl 0 g(s) B 1 _ 1 i OB i 0 q(s) _
t£r51+( nt) _t y+1 'y—i—lti%h( nt)"f( )tir(l),{r 0] oz
9(t) 9(t)
(iii) By a simple calculation, we have
¢
f_s
b ds ~y tg'(t) o 9(s) y
lim (—Int)? (g'(t) | — + ——) = lim (—In¢)’
t—1>I(I)1+( nt) (g()/o g(s)+'y—|—1> t—1>%1+( nt) g(t)y _t_ +7+1

t—0+ g(t) o+l
g(t)
fas
1 /tg'(b) o 9(s) 1
HEES S ] e e
g(t)

Hence, by (i)-(ii), we get

b ds y
lim (—Int)? 't/__:,
A, (= nt) (g() 09(5)+’Y+1) 7

(iv) When & = 1, the result is obvious. Now suppose that & # 1. By (g2), we

P e ' )
0 —(y+1 —(v+1 v
g()g(t) B 50 o B 50 o <exp ( ot Tdy) B 1) .

Note that

lim f(ts) =0 and lim f(ts) =gt

t—0+ S t—ot f(t)s
uniformly with respect to s € [1,&] or s € [£o, 1].
So,

1
lim t Mdl/ = lim @ds =0

=0t Jegr V =0t Jeo S



The second order estimate for the solution to ... 203

and

1 1
lim / 7(ts) ds = / s ds =y,
t—0t o f(t)S &

—1In&, if n=0;
X=19 1 oo
;(1—50), if 7> 0.

where

Since e" — 1 ~ r as r — 0, it follows that

9(&ot) _ 50—(’)’-1'1) ~ 5‘(’74‘1) f( )

—~dv as t— 0.

§og(?) 0 tot VY
Hence,
. t) —(y+1 —(y+1) . f(ts
1 —Int B g(i o (v+1) — (v+1) 1 1 t B /
tal%l‘*'( ni) (fog(t) % % tal%l (=) £ () taO‘*’

Lemma 4. Suppose that g satisfies (g1)-(g3) and let ¢ be the solution to the problem

6(t)
/ A5y viso
0 g(s)

Then

() (1) = go(0), 6(t) > 0, t > 0, 6(0) == lim 9{t) = 0, and ¢"(t) =
9(6(1)g (9(1) ¢ >0

(i) ¢ € NRVZ 1 ;
v+

(i) ¢’ =gop e NRVZ 4 ;
T+

. Int _ Cr(v+1)
) im Somee) ~ 2

. t
(v) t1_1>1(1)1+(— In t)ﬁm =

,if ke,
0,if k€A and Cx(y+1) > 2.

Proof. By the definition of ¢ and a direct calculation, we can prove (i).
Let u = ¢(t), by Lemma 2, we have that

W) ity — T o[4S
Jm oy =l b () = lim g'(u) /0 FOREEESS

and

t—0t () toot  B(t) u—0t wu

tp'(t) _ . tg(e®) _ .. glu) [ ds 1
lim lim /0@_’74—1’
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ie,¢ =gope NRVZ 4 and ¢ € NRVZ | and (iii) follows.
v+1 ~+1
Since K € NRVZC;1 and ¢ € NRVZ | , we see by Proposition 3 (iii) that (iv)

y+1
holds.

By (iv) and Proposition 4, we have that ¢ o K2 € NRVZ 5 and
Cr(v+1)

K1£2 a4 € NRVZ ¢, (y+1)—2 - Since Cx(y+1) > 2, (v) follows by Proposition 3 (ii).
$E2(E) RercEa

Lemma 5. Suppose that g satisfies (g1)-(g3), b satisfies (by)-(bs) and (Hs) holds.
If k€ Ai g, m >0 in (g3) and ¢ is the solution to the problem

2t g
/ V>0,
0

g(s)
then
. . K2(0)¢"(K2() v\ _ .
) tli%i(‘l“t)ﬂ( & (2(0) +7+1>_0’
N . g(&od(K2(t)  .—(v4+1) _
W oo (Etae &) =

Proof. (i) By the definition of ¢, Lemma 3 (iii) and Lemma 4 (iv), we arrive at

im (—Int)? K2(t)¢" (K*(t)) i
tL0+( Int) < ¢ (K2(t)) +fy—|—1)
. S(K*) s Y
= lim (—Int)? | ¢ ? a(s) vy +1
= lim (~In?) <g (¢(K (t)))/o 9(s) +7+1>

(K1) qg
= lim (= In(¢(K>(1))))” <g'(¢<K2<t>>> / % + #)

. Int A —0
e (1n¢<K2<t>>> e

(ii) By Lemma 3 (iv) and Lemma 4 (iv), we infer that
lm(qmﬁ(%@@f@ﬁ_%WHv

A Eag (oK (0)
; 2 (Cop(K>(1))) —(y+1 . Int A
= tim (- (o) (£OEE 00 i (s ) =0

£og(p(K2(1)))
(

Lemma 6. Suppose that g satisfies (g1)-(g3), b satisfies (b1)-(b2) and (Hy)-(Hs)
hold. If ¢ is the solution to the problem

6(t)
/ A5y viso,
0 g(s)
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then

(i) lim (—Int)?

t—0+

(KQ(t)¢//(K2(t))+ ¥ ):_ Aszo
¢ (K3(t)) v+1 (v+1)*

2
) i (e (SEEEE GO ) = i O g,

where Az = 272 (Cy(1 +7))5.
Proof. (i) By the definition of ¢, Lemma 3 (iii) and Lemma 4 (iv), we find that

(KQ(t)cé”(Kz(t)) g )

lim (—Int)?
Jim, (= 1nt)

JE2D)

. HEED) gy
= lim (—Int)? | ¢’ 2 —_— —
= lim (~In?) <g i) [ g(s)m“)
' , HEED) g
= lim (- o(K*(1)" <g o) [ S m)

1, lnt A - A30
o <1n¢<K2<t>>) BCEE

(ii) By Lemma 3 (iv) and Lemma 4 (iv), we obtain

s (9&@BUC®) e
Jim, (= 1nt) (m@(K%))) S0 )
)

: 2 9(op(K2(1) .~

o () _ oty T ng
-0+ \Inp(K2(t)) 3750 0

3. PROOFS OF THEOREMS

In this section, we prove Theorems 1-2.
First we need the following result.

Lemma 7 (the comparison principle, [19], Theorems 10.1 and 10.2). Let ¥(z, s, &)
satisfy the following two conditions

(D1) W is non-increasing in s for each (z,€) € Q x RY;

(D2) W is continuously differentiable with respect to the & variables in 2 x (0, 00) X
RN,

If u,v € C(Q) N C?(Q) satisfies Au + ¥(x,u, Vu) > Av + ¥(z,v,Vv) in Q and
u < v on 09, then u <wv in Q.
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3.1. Proof of Theorem 1

Fix e > 0. For any § > 0, we define Q5 = {x € Q: 0 < d(z) < §}. Since Q is
C?-smooth, choose d; € (0, 8p) such that d € C?(£s,) and

(16) IVd(z)| = 1, Ad(z) = —(N — ) H(Z) +o(1), ¥ z € Qs,.

where, for z € Qs,, T denotes the unique point of the boundary such that d(z) =
|x — Z| and H(Z) denotes the mean curvature of the boundary at that point.
Let

wi = &p(K2(d(2))) (1 + (Ao £e)(—In(d(z)))?), z € Q.
By the Lagrange mean value theorem, we obtain that there exist A+ € (0,1) and
P (d(2)) = (K (d(2))) (1+ Ax(Ao = €)(~ In(d(x)))~7)
such that for = € Qs,
g(ws(2)) = g(éod(K*(d(x)))) + & (Ao £e)d (K (d(x)))g' (P (d(2)))(— In(d(x))) .
Since g € NRV Z_.,, by Proposition 1 we obtain

oy 9K (d@)) . 9 (Cd(E(d(x))))
dz)—0  g(Px(d(2))) dz)—0 ¢ (P4 (d(x)))

=1

Define r = d(x) and

K¢ (K2(r) | KOF() | g€dK2) .\
S TR Sl ) 2)’
B K2 (K2(r) | KOK() | g@s(r)
Ta(r) ‘“‘0“)(”‘ S TR s )
S (Ed(K2(r) -\
() ”)’

Igi(x) = 5(140 + E)

Ii(r) = (=Inr)’ <4

S(K3(r))
¢'(K2(r))k2(r)

2 s g
(FInr) ™)+ (Bo £ ) (=) g R ()

((Ao +e)(Ad(z) +28(—Inr) ') + Ad(z)(— In r)ﬂ)

g'(2+(r)  G(K*(r))g' (Cod(K3(r)))
(£o¢(K2(7‘))) ¢'(K2(r)) '

((B +1)(=In7)"2r 2 4 (= Inr) " rtAd(z)

K()
k(r)

—|—(A0 + E)(BO + 6)

I4i (IE) =2

By (10), (14), Lemmas 1, 4 and 5, combining with the choices of £y, A in Theorem
1, we obtain the following lemma.
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Lemma 8. Suppose that g satisfies (g1)-(g3), b satisfies (by)-(bs) and (Hs) holds.
If k€ A g and n >0 in (g3), then

(i) lim Ii(r) = —2D1;
(if) lim Lo (r) = (Ao % 2)(4 — 2Ck(y +1));

e
(i) Jim Lo () = 0

i lim I = 0:
(iv) ol 4x(z) =05

() Jim (0(0)+ T (1) + L) + L (w) = 24 = 2047+ 1),

Proof of Theorem 1. Let v € C?**(Q) N C'(Q) be the unique solution of the
problem

(17) —Av=1,v>0, x €, v|jpa =0.
By the Hopf maximum principle [19], we see that
(18) Vo(z) # 0, Vo € 0Q and c5d(z) < v(x) < cgd(x), Vo € Q,

where cs5, cg are positive constants.

By (b1), (b2), Lemma 1 and K € C[0,dp) with K(0) = 0, we see that there
exist d1¢,doc € (0, min{1, 51}) (which is corresponding to ¢) sufficiently small such
that

I) 0<K2%(r) <d1e, 7€ (0,02);

II) k2(d(z))(1+ (B — &)d(z)) < b(x) < k2
D) L) 4 Toy () + Isy (@) + Loy (2) <0,
V) L(r) + Lo () + I3 () + Li_(x) >0,

(d(@))(1 + (Bo +e)d(x)), = € Qs,.;
(x,7r) € Qs,. x (0,02¢);

(
(
(
( (z,7) € Qs,. % (0, 82.).

v
v

Now we define

i = &@(K*(d(x))) (1+ (Ao + £)(— In(d(2))) 7). = € Q...

Then for x € Qs,,
9(:(2)) = g(€od(K>(d(2)))) + &o(Ao + €)d(K*(d(2)))g' (@ (d(2)))(~ In(d(x))) 7,
where Ay € (0,1) and

. (d(2)) = &O(K>(d(2)) (1 + Ay (Ao +€)(~In(d(2)))7) , = € Qs,...
By Lemma 8 and a direct calculation, we see that for x € Qj,.

At (z) 4+ k*(d(2))(1 + (Bo + €)d(x))g(ue (x))
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k?(d(x)) (1+ (Ao +&)(~ In(d(@))) ")

) (1+ (Ao +&)(— In(d(x)))~7)

(d(@)) (1+ (Ao + £)(~ In(d(x)) )
k(d(2))Ad(@) (1+ (Ao +&)(~ In(d(2))) )
>>K<d< )) < (x))( (@) P (d(a) !

O (@(w))) (8 + 1)(~ nfd(@)~**(d(@) ">

>1A<> ( In(d(x))) ="~ (d(x)) )

d(@)) (9(€od(K2(d())))

+ 60(Ao + )0 (K2(d(@)))g' (P4 (d(@)))(~ In(d(x))) )

= &0/ (K (d(@)))* (d(@)) (— In(d(@)) 7 (L(r) + Lo () + T (1) + La4 (2) <0,

where r = d(x), i.e., u. is a supersolution of equation (1) in s, _.

+ 260¢" (K (d(x)))k? (d(x
+ 2609 (K (d(x))
+ 260¢/ (K*(d())) K (d
+ 4&08(Ao + )¢’
+&B(Ao +¢
+(— ( ()~ )
+ k*(d(2)) (14 (Bo +¢)
)

va

In a similar way, we show that

u. = &o(K*(d(2))) (1 + (4o — )(~In(d(2))) ), 2 € Q..

is a subsolution of equation (1) in s, .
Let u € C(Q) N C?T*(Q) be the unique solution to problem (1). We assert
that there exists M large enough such that

(19) u(z) < Mu(x) + a.(x), u.(z) <u(z)+ Mo(z), =€ Qs,.,

where v is the solution of problem (17).
In fact, we can choose M large enough such that

u(z) < te(x) + Mv(z) and u (z) <u(x)+ Mo(z) on {x € Q:d(x) =01}

We see by (g1) that @.(x) + Mv(xz) and u(x) + Mwv(x) are also supersolutions of
equation (1) in Qg,_. Since u = 4. + Mv = u+ Mv = u, = 0 on 99, (19) follows
by (g1) and Lemma 7. Hence, for x € Qs,.

Mu(z)(— In(d()))”
op(K2(d()))

o u®)
GHK2(d()) 1)

~

doe o < (- In(d(@)))? (

and

Mu(z)(— In(d()))”
op(K2(d()))

)
(i)’ (s — 1) <Aoot

Consequently, by (18) and Lemma 4 (v),

Ao e < gl o)) (gt )
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imsup(— In(d(z B L
lim sup(~ In(d(x))) <5o¢<f<2<d<x>>>

Thus, letting € — 0, we obtain (7).

—1) < Ag+e.

3.2. Proof of Theorem 2

As before, fix € > 0. For any ¢ > 0, we define Qs = {z € Q: 0 < d(z) < d}.
Since € is C2-smooth, choose &1 € (0, 8p) such that d € C?(Qs,) and (16) holds.
Let

we = &o(K3(d(x))) (1+ (A1 £e)(~In(d(2))™7) , = € Qs,.
By the Lagrange mean value theorem, we obtain that there exist A+ € (0,1) and
P (d(2)) = Eog(K*(d(x)) (1 + Ax(Ar £ €)(~ In(d(x))) ")
such that for = € Qs,
g(w () = g(&od(K*(d(w)))) +Eo (A1 £)p(K*(d(x)))g' (P (d(2)))(— n(d())) 7.
Since g € NRV Z_.,, by Proposition 1 we obtain

9EOU () _ | o @K (d(w))

d(.ggo g(®4(d(z))) d(mgo g (®x(d(x))) -t

Define r = d(x) and
O UL | KOKE) | o0, )
) ’

)

r)=I(— Il?”ﬂ
Li(r) = (=1Inr) <4 ¢ (K2(r)) E2(r) og((K3(r)))

B K20)¢" (K1) KOF(@E) | g(@0)
Tax(r) ‘(Ali€)<4 S TR s )
S(K2(1)g (©0o(K2() .\
() ”)’

I3i(x) = 5(141 + E)

P(K>(r)) o) 22 T z
TR (O D) 4 () 7 AdG)

Vor 9(&o(K>(r)))
$og(p(K>(r)))’
K(r)

Iy (z) =2 R ((A1 +e)(Ad(z) +28(—Inr)~tr7t) + Ad(m)(—lnr)ﬂ)

J@L0) KX (Ed(E2(M)
H k) Bty ety T FERA)

By (10), (14), Lemmas 1, 4 and 6, combining with the choices of £y, A1, Aa, A3
in Theorem 2, we obtain the following lemma.

—(— 1n7“)71r72) +(Bote)(—Inr
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Lemma 9. Suppose that g satisfies (g1)-(g3), b satisfies (b1)-(b2) and (Hy)-(Hs)
hold, then

(i) lim 11(7”) = —2Dq; + As, if k € Al,ﬁ?

r—0

(ii) }1_%]1(7") = Ay, if k € Ay,
(iii) }12(1) Iy(r)=(A1£e)(4 —2Ck(v+1));
(iv) d(lgggo Isy(x) =0

lim I = 0:
(v) ol 4x () = 0;

(Vi) d(laglio (Il(’l“) + Igi(’l“) + Igi(x) + I4i(a:)) = :|:€(4 - QCk(’y + 1))

Proof of Theorem 2. As in the proof of Theorem 1, suppose that
e = &o(K2(d(2))) (14 (A1 +&)(= n(d(2)))7) , @ € Qs,...
Then, by Lemma 9 and a direct calculation, we have for z € Q.
At (x) + k*(d(2)) (1 + (Bo + €)d()) g(ue(z))
= &¢/ (K2(d(2)))k?(d(x)) (= n(d(2))) 7 (1(r) + T4 (r) + L () + Tas (2)) <0,

where r = d(z), i.e., . is a supersolution of equation (1) in Qs,_.
In a similar way, we can show that

u. = o(K*(d())) (1 + (A1 — €)(= In(d(2))) ), 2 € Qs,..,
is a subsolution of equation (1) in Qs,_.
As in the proof of Theorem 1, we obtain for x € s,,
_ Mu(z)(=In(d(x)))”
op(K2(d()))

o
&HK2(d()) 1)

s < (- In(d(@)))? (

and

wz) Mu(z)(— In(d(z)))”
E0d(K2(d(2))) 1><A1+” £0o(K2(d(x)))

Consequently, by (18) and Lemma 4 (v),

(— In(d(x)))’ (

A —e< ggl)gg(—ln(d(x)))ﬂ (m —~ 1) :

im s —In(d(x —u(x) —
tim sup(—In(d(x)))" (ot 1) S 4i+e
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Thus, letting € — 0, we obtain (9).
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