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POSITIVE SOLUTIONS OF DIFFERENTIAL

EQUATIONS WITH UNBOUNDED GREEN’S KERNEL

John R. Graef, Seshadev Padhi, Smita Pati, P. K. Kar

Sufficient conditions are obtained for the existence/nonexistence of at least

two positive periodic solutions of a class of first order differential equations

having an unbounded Green’s function. An application to an ecological model

with strong Allee effects is also given.

1. INTRODUCTION

This paper is concerned with the existence, nonexistence, and multiplicity of
positive T -periodic solutions of a class of differential equations of the form

(1) x′(t) = a(t)g(x(t))x(t) − λb(t)f(x(h(t))),

where λ is a positive parameter, a, b, and h ∈ C(R, [0,∞)) are T -periodic functions,
T
∫

0

a(t) dt > 0,
T
∫

0

b(t)dt > 0, f : [0,∞) → [0,∞) is continuous with f(x) > 0 for

x > 0, and g : [0,∞) → [0,∞) is a continuous function. Equations of the form (1)
and

(2) x′(t) = a(t, x(t))x(t) − λb(t)f(t, x(h(t)))

have been considered by many authors for the purpose of proving the existence of
one or more positive periodic solutions. See, for example, [3, 5, 6, 7, 12, 18, 21,
22, 26, 27, 29] and the references cited therein. In the above cited references it is
often required that the functions g(x) and a(t, x) satisfy the following conditions:

2010 Mathematics Subject Classification. 34C25, 34C15.

Keywords and Phrases. Positive periodic solutions, multiple periodic solutions, Allee effect.

159



160 John R. Graef, Seshadev Padhi, Smita Pati, P. K. Kar

(H1) g : [0,∞) → [0,∞) is continuous and there are constants 0 < l < L such that
0 < l ≤ g(x) < L <∞ for u ≥ 0;

(H2) there exist continuous T -periodic functions c and d with
T
∫

0

c(t)dt > 0 such

that 0 ≤ c(t) ≤ |a(t, x)| ≤ d(t) for all T -periodic functions x.

Jin and Wang [11] studied the existence of a positive periodic solution of (1) in
the case where g(x) is unbounded. We note that the method used in [11] can be
applied to (2) when a(x, t) is unbounded.

There is a rich literature in the last two decades on the use of fixed point
theorems (Krasnosel’skii’s theorem, Leggett-Williams multiple fixed point theorem,
upper-lower solution method, iterative techniques, etc.) to prove the existence of
positive solutions to boundary value problems. The proofs of the existence of
periodic solutions to the types of equations considered here is closely related to
proving the existence of positive solutions to general boundary value problems. In
most cases, once the equation is transformed into an equivalent integral equation
via a Green’s kernel, the arguments used are often quite similar. The assumptions
on g(x) and a(t, x) in the papers referenced above usually leads to a Green’s kernel
in the equivalent integral equation that is bounded.

Our primary concern in this paper is the study of the positive periodic solu-
tions of equations of the form (1) and in some cases allow for an unbounded Green’s
kernel. Clearly, (1) is equivalent to

(3) x(t) = λ

∫ t+T

t

Gx(t, s)b(s)f(x(h(s))) ds,

where

(4) Gx(t, s) =
e−

∫
s

t
a(θ)g(x(θ)) dθ

1− e−
∫

T

0
a(θ)g(x(θ)) dθ

.

If (H1) holds, then Gx(t, s) is bounded by

σL

1− σL
≤ Gx(t, s) ≤

1

1− σL
, t ≤ s ≤ t+ T,

where

(5) σ = e−
∫

T

0
a(s) ds < 1.

In [11], Jin and Wang used the following condition on g(x)

(6) g(x) =

{

ex, 0 ≤ x ≤ L,

eL, x ≥ L,



Unbounded Green’s Kernel 161

that increases with increasing L > 0. In this case, the Green’s kernel Gx(t, s) is
bounded by

(7)
σeL

1− σeL
≤ Gx(t, s) ≤

1

1− σ
, t ≤ s ≤ t+ T,

with σ given in (5).

The equation

(8) x′(t) = a(t)x(t) − λb(t)f(t, x(h(t))),

which is a particular case of (1) or (2), has been studied by many authors, for
example, see [1, 2, 9, 10, 14, 15, 16, 17, 19, 22, 23, 24, 25, 28, 30, 31] and
the references therein. The results obtained in some of these papers have been
applied to mathematical models arising in biological and ecological systems, for ex-
ample, the Lasota-Wazewska model, a Hematopoiesis model, Nicholson’s Blowflies
model, the Michaelis Menton model, age-structured population models, etc. The
monograph by Kuang [12] gives a nice discussion of such models.

As pointed out above, a variety of authors have used fixed point methods to
prove the existence of at least one positive periodic solution of equations of the forms
(1), (2), and (8). For instance, see [2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 24, 25,
26, 27, 28, 29, 30, 31] and the references there in. The question of the existence
of at least two or at least three positive periodic solutions of equations of the forms
(1), (2), and (8) has also been studied. For example, the existence of at least
three positive periodic solutions of (1), (2), and (8) is examined in [1, 19, 20, 22]
where the function f is required to be unimodal, that is, f first increases and then
decreases eventually to zero. The Leggett-Williams multiple fixed point theorem
([13, Theorem 3.3]) has been used to prove such results. The unimodal nature
of the function f excludes many mathematical models in ecological and biological
systems where the f is either nondecreasing or nonincreasing with respect to x for
x ≥ 0. Thus, an attempt was made in [21] to consider the case where f is not
necessarily unimodal, and the results were applied to many mathematical models
where f is nondecreasing. The Leggett-Williams multiple fixed point theorem ([13,
Theorem 3.5]) was used there. In a recent work, Padhi et al. [23] used the Leggett-
Williams multiple fixed point theorem to prove the existence of at least two positive
periodic solutions of the equation

(9) x′(t) = −A(t)x(t) + f(t, x(t)),

where A ∈ C([0,∞), [0,∞)) and f ∈ C([0,∞) × [0,∞), [0,∞)) are T -periodic
functions (see Theorem 3 and Corollary 4 in [23]). Theorem 3 in [23] was applied
to the study of existence of at least two positive periodic solutions of the equation
representing the dynamics of a renewable resource x that is subjected to the Allee
effect, namely,

(10)
dx

dt
= a(t)x(t)(x(t) − b(t))(c(t) − x(t))
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where 0 < b(t) < c(t). It is assumed that a(t), b(t), and c(t) are T -periodic posi-

tive functions and
T
∫

0

A(t) dt > 0. Equation (10) was transformed into the form of

equation (9) with A(t) = a(t)b(t)c(t) +
c′(t)

c(t)
and f(t, x(t)) = a(t)c2(t)((1 + k(t))−

x(t))x2(t).

The motivation for the present work has come from the following observation.
We can rewrite (10) in the form

(11) x′(t) = B(t)x(t)x(t) − a(t)(x2(t) + b(t)c(t))x(t)

where

(12) B(t) = a(t)(b(t) + c(t)),

which is of the form of equation (1) with g(x) = x being an unbounded function.
Assuming x is periodic with period T, equation (11) can be written as the integral
equation

(13) x(t) =

∫ t+T

t

Gx(t, s)a(s)(x
2(s) + b(s)c(s))x(s) ds

where

(14) Gx(t, s) =
e−

∫
s

t
B(θ)x(θ)dθ

1− e−
∫

T

0
B(θ)x(θ) dθ

is the Green’s kernel. Note that in this case we have

(15)
e−

∫
T

0
B(θ)x(θ) dθ

1− e−
∫

T

0
B(θ)x(θ) dθ

≤ Gx(t, s) ≤
1

1− e−
∫

T

0
B(θ)x(θ)dθ

.

The function g(x) considered in (6) (see [11]) has the lower bound 1, whereas the
lower bound of g(x) = x considered in (11) is zero implying Gx(t, s) in (15) is not
necessarily bounded above. Thus, it would be interesting to make a further study
of equations (10) or (11). Section 3 is devoted to this problem.

Jin and Wang [11] used fixed point index theory to prove the following
theorem.

Theorem 1.1. Suppose g(x) satisfies condition (6) and let lim
x→0+

f(x)

x
= 0. For

each L > 0, there exists λ0 =
L(1− σe

L

)

m(L)σeL

T
∫

0

b(s) ds

> 0 such that (1) has a positive

T -periodic solution x with sup
0≤t≤T

x(t) < L for λ > λ0.
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In this paper, we shall use the Leggett-Williams multiple fixed point theorem
to show that (1) has at least two positive T -periodic solutions under conditions
very similar to those used in Theorem 1.1. This result appears in Section 2.

The following concept is needed in order to apply the Leggett-Williams mul-
tiple fixed point theorem.

Let X be a Banach space and K be a cone in X. For a > 0, define Ka =
{x ∈ K : ‖x‖ < a}. A mapping ψ is said to be a nonnegative continuous concave
functional on K if ψ : K → [0,∞) is continuous and

ψ(µx + (1− µ)y) ≥ µψ(x) + (1 − µ)ψ(y) for x, y ∈ K and µ ∈ [0, 1].

Let b, c > 0 be constants with K and X as defined above. Define

K(ψ, b, c) = {x ∈ K : ψ(x) ≥ b and ‖x‖ ≤ c}.

Theorem 1.2 (Leggett-Williams multiple fixed point Theorem [13, Theorem 3.5]).
Let c3 > 0 be a constant. Assume that A : Kc3 → K is completely continuous, there

exists a concave nonnegative functional ψ with ψ(x) ≤ ‖x‖ for x ∈ K, and there

are constants c1 and c2 with 0 < c1 < c2 < c3 such that the following conditions

are satisfied :

(i) {x ∈ K(ψ, c2, c3) : ψ(x) > c2} 6= φ and ψ(Ax) > c2 if x ∈ K(ψ, c2, c3);

(ii) ‖Ax‖ < c1 if x ∈ Kc1 ;

and

(iii) ψ(Ax) >
c2

c3
‖Ax‖ for each x ∈ Kc3 with ‖Ax‖ > c3.

Then A has at least two fixed points x1, x2 in Kc3 . Furthermore, ‖x1‖ ≤ c1 <

‖x2‖ < c3.

2. MAIN RESULTS

In this section, we prove two theorems for the existence of at least two positive
T -periodic solutions of (1) with different unbounded functions g(x). In fact, as in
[11], we consider the differential equation

(16) x′(t) = a(t)gL(x(t))x(t) − λb(t)f(x(h(t))),

where a, b, λ, h and f are as defined earlier and gL(x) satisfies either (6) or

(17) gL(x) =

{

ex − 1, 0 ≤ x ≤ L,

eL − 1, x ≥ L,
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for each L > 0. Throughout the remainder of this paper, we assume that X is the
Banach space of all continuous T -periodic functions endowed with the sup norm

‖x‖ = sup
t∈[0,T ]

|x(t)|.

Furthermore, on a cone K in X, we define a concave functional ψ by

ψ(x) = min
t∈[0,T ]

x(t).

Note that (16) is equivalent to

x(t) = λ

∫ t+T

t

GL(t, s)b(s)f(x(h(s))) ds,

where GL(t, s) is the Green’s kernel defined by

(18) GL(t, s) =
e−

∫
s

t
a(θ)gL(x(θ)) dθ

1− e−
∫

T

0
a(θ)gL(x(θ)) dθ

First, suppose that gL(x) satisfies (6). In this case, we define

(19) m(L) = min

{

f(x) :
σeL(1− σ)

1− σeL
L ≤ x ≤ L

}

> 0

for every L > 0 where σ is given in (5).

Here is our first result.

Theorem 2.1. Let gL(x) satisfy (6). If lim
x→0+

f(x)

x
= 0, then for each L > 0, there

exists a λ1 =
L(1− σ)

m(L)

T
∫

0

b(s) ds

> 0 such that (16) has at least two positive T -periodic

solutions for λ > λ1.

Proof. Define a cone K on X by

K =

{

x ∈ X : x(t) ≥
σeL(1− σ)

1− σeL
‖x‖, t ∈ [0, T ]

}

,

and an operator E on X by

(20) (Ex)(t) = λ

∫ t+T

t

GL(t, s)b(s)f(x(h(s))) ds,

where GL(t, s) is given in (18). Simple calculations show that E(K) ⊂ K and
E : K → K is completely continuous. Furthermore, the existence of a positive
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T -periodic solution of (16) is equivalent to the existence of a fixed point of E on
K. The Green’s kernel satisfies the bounds

σeL

1− σeL
≤ GL(t, s) ≤

1

1− σ
, t ≤ s ≤ t+ T,

and hence
σeL(1− σ)

1− σeL
< 1.

Set c2 =
σe

L

(1− σ)

1− σeL
L and c3 = L. Then 0 < c2 < c3. Clearly, c0 =

c2 + c3

2
∈ {x ∈

K(ψ, c2, c3) : ψ(x) > c2} 6= ∅. By the choice of c2, c3, and (19), we have that

m(L) = min{f(x) : c2 ≤ x ≤ c3}.

Hence, for x ∈ K(ψ, c2, c3), we have

ψ(Ex) = λ min
0≤t≤T

∫ t+T

t

GL(t, s)b(s)f(x(h(s))) ds ≥ λ
σeL

1− σeL
m(L)

∫ T

0

b(s) ds

>
L(1− σ)

m(L)
T
∫

0

b(s) ds

.
σeL

1− σeL
m(L)

∫ T

0

b(s) ds =
L(1− σ)σeL

1− σeL
= c2,

so condition (i) of Theorem 1.2 holds.

Since lim
x→0+

f(x)

x
= 0, we can choose 0 < c1 < c2 and ǫ > 0 with

ǫλ

1− σ

∫ T

0

b(s) ds < 1

such that f(x) ≤ ǫx for 0 < x < c1. Thus, for x ∈ Kc1 , we have

‖Ex‖ ≤ λ
1

1− σ

∫ T

0

b(s)f(x(h(s))) ds

≤
λ

1− σ
ǫ

∫ T

0

b(s)‖x‖ ds ≤ c1
ǫλ

1− σ

∫ T

0

b(s) ds < c1,

so condition (ii) of Theorem 1.2 holds.

To complete the proof of the theorem, it suffices to show that condition (iii)
of Theorem 1.2 holds. Suppose that x ∈ Kc3 with ‖Ex‖ > c3. Then,

c3 < ‖Ex‖ ≤ λ
1

1− σ

∫ T

0

b(s)f(x(h(s))) ds

implies that

ψ(Ex) ≥
σeL

1− σeL
λ

∫ T

0

b(s)f(x(h(s))) ds ≥
(1 − σ)σeL

1− σeL
‖Ex‖ =

c2

c3
‖Ex‖.
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Hence, (16) has at least two positive T -periodic solutions completing the proof of
the theorem.

Next, we give a nonexistence result for positive periodic solutions of (16)
again with gL(x) satisfying (6).

Theorem 2.2. Let gL(x) be defined as in (6) and assume that lim
x→0+

f(x)

x
= 0.

Then, for each L > 0, there exists λ1 =
L(1− σ)

m(L)

T
∫

0

b(s) ds

> 0 such that (16) has no

positive T -periodic solutions for λ ≤ λ1.

Proof. Suppose to the contrary that x(t) is a positive T -periodic solution of (16).

Since lim
x→0+

f(x)

x
= 0, there exists 0 < ǫ <

m(L)

L
and µ1 > 0 such that f(x) ≤ ǫx for

0 < x < µ1. Choose µ2 = min{µ1, λ1}. Now x being a positive T -periodic solution
of (16) implies that x = Ex. Hence, for x ∈ Kµ2

, we have, for λ ≤ λ1,

‖x‖ = ‖Ex‖ = λ sup
0≤t≤T

∫ t+T

t

GL(t, s)b(s)f(x(h(s))) ds

≤ λ
1

1 − σ

∫ t+T

t

b(s)f(x(h(s))) ds ≤ λǫ‖x‖
1

1− σ

∫ t+T

t

b(s) ds

≤ λ1ǫ‖x‖
1

1− σ

∫ t+T

t

b(s) ds ≤
L(1− σ)

m(L)
T
∫

0

b(s) ds

ǫ‖x‖
1

1− σ

∫ T

0

b(s) ds < ‖x‖,

which is a contradiction. Therefore, (16) has no positive T -periodic solutions for
λ ≤ λ1.

We now consider the case where gL(x) be defined as in (17). In this case,
we observe that the Green’s kernel given in (18) is not necessarily bounded above.
Hence, we need a separate result for this situation. We set

(21) M(L) = min{f(x) : σ(eL−1)L ≤ x ≤ L} > 0

for every L > 0, where σ is given in (5). We need to introduce the notation that
for any continuous T -periodic function p : [0, T ] → (−∞,∞), we set

p∗ = min
0≤t≤T

p(t) and p∗ = max
0≤t≤T

p(t).

Theorem 2.3. Let gL(x) be given in (17). If lim
x→0+

f(x)

xgL(x)
= 0, then for each L > 0,

there exists a λ2 =
La∗(eL − 1)σ(eL−1)

b∗M(L)
> 0 such that (16) has at least two positive

T -periodic solutions for λ > λ2.
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Proof. We define a cone K on X by

K = {x ∈ X : x(t) ≥ 0, t ∈ [0, T ]}

and an operator E on X as given in (20). Simple calculations show that

∫ t+T

t

GL(t, s)a(s)gL(x(s)) ds ≡ 1.

Choose c2 = Lσ(eL−1) and c3 = L; then 0 < c2 < c3. It is clear that {x ∈
K(ψ, c2, c3) : ψ(x) > c2} 6= ∅. Now, for x ∈ K(ψ, c2, c3), we have

ψ(Ex) = λ min
0≤t≤T

∫ t+T

t

GL(t, s)b(s)f(x(h(s))) ds

≥ λM(L) min
0≤t≤T

∫ t+T

t

GL(t, s)b(s) ds ≥ λ
b∗

a∗
M(L) min

0≤t≤T

∫ t+T

t

GL(t, s)a(s) ds.

Since gL(x) is an increasing function of x, for c2 ≤ x ≤ c3, we have gL(c2) ≤
gL(x) ≤ gL(c3) = ec3 − 1 = eL − 1. Hence,

ψ(Ex) ≥ λM(L)

∫ t+T

t

GL(t, s)b(s) ds

≥ λ
b∗

a∗
M(L)

(eL − 1)
min

0≤t≤T

∫ t+T

t

GL(t, s)a(s)gL(x(s)) ds

= λ
b∗

a∗
M(L)

(eL − 1)
>
La∗(eL − 1)σ(eL−1)

b∗M(L)
.
b∗

a∗
M(L)

(eL − 1)
= Lσ(eL−1) = c2,

so condition (i) of Theorem 1.2 holds.

Next, we have that lim
x→0+

f(x)

xgL(x)
= 0 so there exists ǫ > 0 with

λb∗ǫ

a∗

< 1 and

c1 ∈ (0, c2) such that f(x) ≤ ǫgL(x)x for 0 < x < c1. For x ∈ Kc1 , we have

‖Ex‖ ≤ λ
b∗

a∗
ǫ‖x‖ sup

0≤t≤T

∫ t+T

t

GL(t, s)a(s)gL(x(s)) ds ≤ λ
b∗

a∗
ǫc1 < c1,

i.e., condition (ii) of Theorem 1.2 holds.

To complete the proof of the theorem, it remains to show that condition (iii)
in Theorem 1.2 holds. Since

c3 < ‖Ex‖ < λ

∫ T

0

b(s)f(x(h(s)))

1− e−
∫

T

0
a(θ)gL(x(θ)) dθ

ds,
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for x ∈ Kc3 = KL, we have

ψ(Ex) = λ min
0≤t≤T

∫ t+T

t

e−
∫

s

t
a(θ)gL(x(θ)) dθ

1− e−
∫

T

0
a(θ)gL(x(θ)) dθ

b(s)f(x(h(s))) ds

> λ min
0≤t≤T

∫ t+T

t

e−(eL−1)
∫

T

0
a(θ) dθ

1− e−
∫

T

0
a(θ)gL(x(θ)) dθ

b(s)f(x(h(s))) ds

> λσ(eL−1)

∫ T

0

b(s)f(x(h(s)))

1− e−
∫

T

0
a(θ)gL(x(θ)) dθ

ds > σ(eL−1)‖Ex‖ =
c2

c3
‖Ex‖,

completing the proof of the theorem.

3. APPLICATION TO A MODEL WITH ALLEE EFFECTS

In this section, we prove the existence of at least two positive T -periodic
solutions to the model with Allee effects given in (10). Recall that (10) can be
rewritten in the form (11) with B(t) given in (12). We let X be a Banach space
as in Section 2 above. Assuming that x(t) is a T -periodic solution of (10), we can
write (13) as the equivalent integral equation, where Gx(t, s) is the Green’s kernel
given in (14). We note that the Green’s kernel satisfies

∫ t+T

t

Gx(t, s)B(s)x(s) ds ≡ 1.

We define an operator N on X by

(Nx)(t) =

∫ t+T

t

Gx(t, s)a(s)(x
2(s) + b(s)c(s))x(s) ds

and a cone K on X by

K = {x ∈ X : x(t) ≥ 0, t ∈ [0, T ]}.

It is clear that N(K) ⊂ K and N : K → K is completely continuous. Moreover, the
existence of a positive T -periodic solution to (10) is equivalent to the existence of
a fixed point of N in K. On the cone K, we define a concave continuous functional
ψ by

ψ(x) = min
0≤t≤T

x(t).

In a recent work, Padhi et al. [23] obtained the following sufficient condition
for the existence of at least two positive T -periodic solutions to (10). Here, we set

M1 =

∫ T

0

a(t)c2(t) dt and N1 =

∫ T

0

a(t)b(t)c(t) dt.
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Theorem 3.1. Let

T
∫

0

(

a(s)b(s)c(s) +
c′(s)

c(s)

)

ds > 0. If

(22)
(M1 +N1) +

√

(M1 +N1)
2 − 4M1

(

eN1
− 1

eN1

)

2M1

>
e2N1 −

1

eN1

M1 +N1

,

then equation (10) has at least two positive T -periodic solutions.

We shall now apply Theorem 1.2 to equation (10) to obtain a new sufficient
condition for the existence of at least two positive T -periodic solutions.

Theorem 3.2. If (b∗ + c∗)
2 > 4b∗c∗, then equation (10) has at least two positive

T -periodic solutions.

Proof. Set c1 =
(b∗ + c∗) +

√

(b∗ + c∗)2 − 4b∗c∗

2
, c2 =

(b∗ + c∗) +
√

(b∗ + c∗)2 − 4b∗c∗

2
,

and c3 > 0 such that

c3e
−c3a

∗

(b∗+c∗)T =
(b∗ + c∗) +

√

(b∗ + c∗)2 − 4b∗c∗
2

= c2.

Then 0 < c1 < c2 < c3. For x ∈ K(ψ, c2, c3), we have

ψ(Nx)(t) = min
0≤t≤T

∫ t+T

t

Gx(t, s)a(s)(x
2(s) + b(s)c(s))x(s) ds

≥
c22 + b∗c∗

b∗ + c∗
min

0≤t≤T

∫ t+T

t

Gx(t, s)a(s)(b(s) + c(s))x(s) ds =
c22 + b∗c∗

b∗ + c∗
= c2.

Furthermore, for x ∈ Kc1 ,

‖Nx‖ = sup
0≤t≤T

∫ t+T

t

Gx(t, s)a(s)(x
2(s) + b(s)c(s))x(s) ds

≤
c21 + b∗c∗

b∗ + c∗
sup

0≤t≤T

∫ t+T

t

Gx(t, s)a(s)(b(s) + c(s))x(s) ds =
c21 + b∗c∗

b∗ + c∗
= c1.

For these choices of c2 and c3, we shall show that the third condition in Theorem
1.2 is satisfied. For each x ∈ Kc3 with ‖Nx‖ > c3, we have 0 < x ≤ c3,

c3 < ‖Nx‖ <

∫ T

0

a(s)(x2(s) + b(s)c(s))x(s)

1− e−
∫

T

0
a(θ)(b(θ)+c(θ))x(θ)dθ

ds,
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and

ψ(Nx) = min
0≤t≤T

∫ t+T

t

Gx(t, s)a(s)(x
2(s) + b(s)c(s))x(s) ds

> min
0≤t≤T

∫ t+T

t

e−c3
∫

s

t
a(θ)(b(θ)+c(θ))dθ

1− e−
∫

T

0
a(θ)(b(θ)+c(θ))x(θ)dθ

a(s)(x2(s) + b(s)c(s))x(s) ds

> min
0≤t≤T

∫ t+T

t

e−c3
∫

T

0
a(θ)(b(θ)+c(θ))dθ

1− e−
∫

T

0
a(θ)(b(θ)+c(θ))x(θ)dθ

a(s)(x2(s) + b(s)c(s))x(s) ds

> e−c3a
∗

(b∗+c∗)T min
0≤t≤T

∫ T

0

a(s)(x2(s) + b(s)c(s))x(s)

1− e−
∫

T

0
a(θ)(b(θ)+c(θ))x(θ)dθ

ds

> e−c3a
∗

(b∗+c∗)T ‖Nx‖ =
c2

c3
‖Nx‖.

Hence, (10) has at least two positive T -periodic solutions, and this completes the
proof of the theorem.

Remark 3.3. Let a(t) ≡ a, b(t) ≡ b, and c(t) ≡ c be positive constants. Then (10) reduces
to the constant coefficient equation

(23) x
′(t) = ax(t)(x(t)− b)(c− x(t)), 0 < b < c.

In this case b∗ = b∗ = b, c∗ = c∗ = c, and the condition (b∗ + c∗)
2 > 4b∗c∗ becomes

(b + c)2 > 4bc, i.e., (b − c)2 > 0, which is true for all 0 < b < c. Thus, we immediately
have the following corollary.

Corollary 3.4. Equation (23) has at least two positive T -periodic solutions.

It is well known that (23) admits two positive solutions, namely x(t) = b and
x(t) = c and one trivial solution as its equilibrium solution. This observation in
a sense validates our Corollary 3.4. On the other hand, applying Theorem 3.1 to
equation (23), we observe that (23) has at least two positive T -periodic solutions
provided that

(24)
aT (b+ c) +

√

a2T 2(b+ c)2 − 4aT
(eabcT − 1)

eabcT

2
>
e2abcT − e−abcT

b+ c

holds. In [23], the authors showed that the inequality

a2T 2(b + c)2 > 4aT
(eabcT − 1)

eabcT

holds for all a, b and c > 0. However, it is possible to choose a, b and c > 0 so that
(24) fails. Thus, Corollary 3.4 gives a better result for the existence of at least two
positive periodic solutions of (23) than a direct application of Theorem 3.1

The following example illustrates that our Theorem 3.2 above may apply
when Theorem 3.1 fails to hold.
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Example 3.5. Consider Eq. (10) with a(t) = b(t) =
1

10

(

0.9999 +
1

104
cos 8t

)

and c(t) =

2

10

(

0.9999 +
1

104
sin 8t

)

. Here b∗ = 0.1, b∗ = 0.09998, c∗ = 0.2, c∗ = 0.19996 and T =
π

4
.

Since

(b∗ + c∗)
2 = 0.0899640036 > 0.08 = 4b∗c∗

holds, Theorem 3.2 can be applied to this example. On the other hand,

M1 =

∫

T

0

a(t)c2(t) dt =
4

1000

∫

π

4

0

(

0.9999 +
1

104
cos 8t

)(

0.9999 +
1

104
sin 8t

)2

dt

= 0.00314065

and

N1 =

∫

T

0

a(t)b(t)c(t) dt =
2

1000

∫

π

4

0

(

0.9999 +
1

104
cos 8t

)2(

0.9999 +
1

104
sin 8t

)

dt

= 0.001570325

implies that

(M1 +N1) +

√

(M1 +N1)
2
− 4M1

(

eN1
− 1

eN1

)

2M1
= 1.000783524

< 1.000786483 =
e2N1

−

1

eN1

M1 +N1
.

Hence, Theorem 3.1 cannot be applied to this example.
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