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A NEW SUMMATION FORMULA FOR WP-BAILEY

PAIRS

James Mc Laughlin

Let (αn(a, k), βn(a, k)) be a WP-Bailey pair. Assuming the limits exist, let

(α∗
n(a), β

∗
n(a))n≥1 = lim

k→1

(
αn(a, k),

βn(a, k)

1− k

)

n≥1

be the derived WP-Bailey pair. By considering a particular limiting case of a
transformation due to George Andrews, we derive new basic hypergeometric
summation and transformation formulae involving derived WP-Bailey pairs.
We then use these formulae to derive new identities for various theta se-
ries/products which are expressible in terms of certain types of Lambert
series.

1. INTRODUCTION

In the present paper we describe a new transformation involving WP-Bailey
pairs, and describe some of the implications of this transformation. In particular,
we show how various theta functions which have representations in terms of certain
kinds of Lambert series, may also be represented by basic hypergeometric series
involving an arbitrary derived WP-Bailey pair. Throughout the paper we employ
the usual notations

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1),

(a1, a2, . . . , aj ; q)n := (a1; q)n(a2; q)n · · · (aj ; q)n,

(a; q)∞ := (1− a)(1− aq)(1− aq2) · · · , and

(a1, a2, . . . , aj ; q)∞ := (a1; q)∞(a2; q)∞ · · · (aj ; q)∞,
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and we also assume throughout that |q| < 1.

Before describing the new results, we first discuss some of the background. A
WP-Bailey pair is a pair of sequences (αn(a, k, q), βn(a, k, q)) satisfying α0(a, k, q)
= β0(a, k, q) = 1 and

βn(a, k, q) =

n
∑

j=0

(k/a; q)n−j(k; q)n+j

(q; q)n−j(aq; q)n+j

αj(a, k, q).(1.1)

Andrews [1] described two methods (see (1.2) below for more details of one
of these methods) of constructing new WP-bailey pairs from existing pairs. This
type of construction is termed aWP-Bailey chain, since the process may be iterated
to produce a chain of WP-Bailey pairs

(αn, βn) → (α′

n, β
′

n) → (α′′

n, β
′′

n) → . . .

from any initial pair. These two chains together allow a “tree” of WP-Bailey pairs
to be generated from a single initial pair.

The implications of these two branches of the WP-Bailey tree were further
investigated by Andrews and Berkovich in [2]. Spiridonov [16] derived an
elliptic generalization of Andrews first WP-Bailey chain. Four additional branches
were added to the WP-Bailey tree by Warnaar [17], two of which had general-
izations to the elliptic level. More recently, Liu and Ma [9] introduced the idea of
a general WP-Bailey chain, and added one new branch to the WP-Bailey tree. In
[11], the authors added three new WP-Bailey chains. Of course the special case
k = 0 of a WP-Bailey pair (a Bailey pair with respect to a) had been studied for
some time prior to Andrews’ paper [1], and indeed Bailey pairs were used by
Slater [14, 15] to produce her famous list of 130 identities of Rogers-Ramanujan
type.

Andrews [1] second WP-Bailey chain may be described as follows. If (αn(a, k),
βn(a, k)) satisfy (1.1), then so does (α̃n(a, k), β̃n(a, k)),

α̃n(a, k) =
(qa2/k)2n
(k)2n

(

k2

qa2

)n

αn

(

a,
qa2

k

)

,(1.2)

β̃n(a, k) =

n
∑

j=0

(k2/qa2)n−j

(q)n−j

(

k2

qa2

)j

βj

(

a,
qa2

k

)

.

It is not difficult to show that (1.2) implies (see Corollary 1 in [12], for exam-
ple) that if (αn(a, k), βn(a, k)) satisfy (1.1), then subject to suitable convergence
conditions,

(1.3)

∞
∑

n=0

(

qa2

k2

)n

βn(a, k) =
(qa/k, qa2/k; q)∞
(qa, qa2/k2; q)∞

∞
∑

n=0

(k; q)2n
(qa2/k; q)2n

(

qa2

k2

)n

αn(a, k).

Indeed, any WP-Bailey chain, including Andrews [1] first chain, those of
Warnaar [17], Liu and Ma [9] and Mc Laughlin and Zimmer [11] will lead to
a similar transformation relating WP-Bailey pairs.
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Beginning with Andrews first WP-Bailey chain, the present author in [10]
derived two new types of transformations relating WP-Bailey pairs.

Theorem 1. If (αn(a, k), βn(a, k)) is a WP-Bailey pair, then subject to suitable
convergence conditions,

(1.4)

∞
∑

n=1

(q
√
k,−q

√
k, z; q)n(q; q)n−1

(√
k,−

√
k, qk,

qk

z
; q
)

n

(qa

z

)n

βn(a, k)

−

∞
∑

n=1

(

q

√

1

k
,−q

√

1

k
,
1

z
; q

)

n

(q; q)n−1

(
√

1

k
,−

√

1

k
,
q

k
,
qz

k
; q

)

n

(qz

a

)n

βn

(

1

a
,
1

k

)

−

∞
∑

n=1

(z; q)n(q; q)n−1
(

qa,
qa

z
; q
)

n

(qa

z

)n

αn(a, k) +

∞
∑

n=1

(

1

z
; q
)

n
(q; q)n−1

(

q

a
,
qz

a
; q
)

n

(qz

a

)n

αn

(

1

a
,
1

k

)

=
(a− k)

(

1−
1

z

)(

1−
ak

z

)

(1− a)(1− k)
(

1−
a

z

)(

1−
k

z

) +
z

k

(

z,
q

z
,
k

a
,
qa

k
,
ak

z
,
qz

ak
, q, q; q

)

∞
(

z

k
,
qk

z
,
z

a
,
qa

z
, a,

q

a
, k,

q

k
; q
)

∞

.

Theorem 2. If (αn(a, k, q), βn(a, k, q)) is a WP-Bailey pair, then subject to suitable
convergence conditions,

(1.5)
∞
∑

n=1

(1− kq2n)(z; q)n(q; q)n−1

(1− k)(qk, qk/z; q)n

(qa

z

)n

βn(a, k, q)

+

∞
∑

n=1

(1 + kq2n)(z; q)n(q; q)n−1

(1 + k)(−qk,−qk/z; q)n

(

−qa

z

)n

βn(−a,−k, q)

− 2

∞
∑

n=1

(1− k2q4n)(z2; q2)n(q
2; q2)n−1

(1− k2)(q2k2, q2k2/z2; q2)n

(

q2a2

z2

)n

βn(a
2, k2, q2)

=

∞
∑

n=1

(z; q)n(q; q)n−1

(qa, qa/z; q)n

(qa

z

)n

αn(a, k, q)

+

∞
∑

n=1

(z; q)n(q; q)n−1

(−qa,−qa/z; q)n

(

−qa

z

)n

αn(−a,−k, q)

− 2
∞
∑

n=1

(z2; q2)n(q
2; q2)n−1

(q2a2, q2a2/z2; q2)n

(

q2a2

z2

)n

αn(a
2, k2, q2).
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The results in the present paper follow from a certain limiting case of An-
drews’ second chain at (1.2) above. The main result of the present paper may be
described as follows. Define, for a WP-Bailey pair (αn(a, k), βn(a, k)) and n ≥ 1,

α∗

n = α∗

n(a) = α∗

n(a, q) := lim
k→1

αn(a, k),(1.6)

β∗

n = β∗

n(a) = β∗

n(a, q) = lim
k→1

βn(a, k)

1− k
,

assuming the limits exist. For ease of notation we call such a pair of sequences
(α∗

n, β
∗

n)n≥1 a derived WP-Bailey pair. Define

(1.7) f2(a, q) :=

∞
∑

n=1

a2nqnβ∗

n(a)−

∞
∑

n=1

a2nqnβ∗

n(−a)

+

∞
∑

n=1

(q; q)2n−1

(qa2; q)2n
a2nqnα∗

n(−a)−

∞
∑

n=1

(q; q)2n−1

(qa2; q)2n
a2nqnα∗

n(a).

Theorem 3. Let (αn(a, k), βn(a, k)) be a WP-Bailey pair and a and b complex
numbers such that all of the derived WP-Bailey pairs (α∗

n, β
∗

n) below exist. Let
f2(a, q) be as defined at (1.7) and suppose further that each of the series f2(a, q),
f2(b, q), f2(1/a, q), f2(1/b, q) converges. Then

(1.8) f2(a, q)− f2(b, q)− f2(1/a, q) + f2(1/b, q)

=
2(a− b)(1 + ab)

(1− a2)(1− b2)
− 2a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

We remark that one reason this result is of interest is that the right side is
independent of the particular WP-Bailey pair (αn(a, k), βn(a, k)) employed on the
left side. Note also that, on the left side, the series involving a are completely
separate from those involving b, while on the right side a and b are inseparable in
some of the infinite products.

We apply this identity, and others proved below, to derive new series-product
identities. For example, if a and b are non-zero complex numbers such that aqn,
bqn 6= ±1, for n ∈ Z, and |q| < min{|a2|, 1/|a2|, |b2|, 1/|b2|}, then

∞
∑

n=1

[(

(1/a; q)n
(qa; q)n

−
(−1/a; q)n
(−qa; q)n

)

a2nqn

1− qn

−

(

(a; q)n
(q/a; q)n

−
(−a; q)n
(−q/a; q)n

)

qn

a2n(1− qn)
−

(

(1/b; q)n
(qb; q)n

−
(−1/b; q)n
(−qb; q)n

)

b2nqn

1− qn

+

(

(b; q)n
(q/b; q)n

−
(−b; q)n
(−q/b; q)n

)

qn

b2n(1− qn)

]

=
2(a− b)(1 + ab)

(1− a2)(1− b2)
− 2a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.
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We also show how various identities relating theta functions to Lambert series may
be replaced with a general identity involving an arbitrary derived WP-Bailey pair.
For example, Ramanujan’s identity

qψ(q2)ψ(q6) =
∞
∑

n=1

q6n−5

1− q12n−10
−

∞
∑

n=1

q6n−1

1− q12n−2
,

leads to the identity

qψ(q2)ψ(q6) =
1

2

(

f2(q
−1, q6)− f2(q

−5, q6)
)

,

where f2(a, q) is as defined at (1.7) above. Thus any derived pair (α∗

n, β
∗

n) inserted
in (1.7) will lead to an expression for qψ(q2)ψ(q6) in terms of basic hypergeometric
series, and one particular choice (see Corollary 6 below for details) leads to the
following identity.

2qψ(q2)ψ(q6) =

∞
∑

n=1

1 + q12n−1

1 + 1/q

(−1/q,−1/q; q6)n(q
6; q6)2n−1(−q)

5n

(q6, q6; q6)n(q4; q6)2n

−
∞
∑

n=1

1− q12n−1

1− 1/q

(1/q, 1/q; q6)n(q
6; q6)2n−1q

5n

(q6, q6; q6)n(q4; q6)2n

+

∞
∑

n=1

1− q12n−5

1− 1/q5
(1/q5, 1/q5; q6)n(q

6; q6)2n−1q
n

(q6, q6; q6)n(1/q4; q6)2n

−

∞
∑

n=1

1 + q12n−5

1 + 1/q5
(−1/q5,−1/q5; q6)n(q

6; q6)2n−1(−q)
n

(q6, q6; q6)n(1/q4; q6)2n
.

2. PROOF OF THE MAIN IDENTITIES

The results in the present paper are derived as consequences of letting k → 1
in (1.3). Before coming to the proofs, we recall the q-Gauss sum

(2.1)
∞
∑

n=0

(A,B; q)n
(C, q; q)n

(

C

AB

)n

=
(C/A,C/B; q)∞
(C,C/AB; q)∞

.

Lemma 1. Let (αn(a, k), βn(a, k)) be a WP-Bailey pair and (α∗

n, β
∗

n) the derived
pair. For |q|, |qa|, |qa2| < 1 and assuming suitable convergence conditions,

(2.2)

∞
∑

n=1

a2nqnβ∗

n(a)−

∞
∑

n=1

(q; q)2n−1

(qa2; q)2n
a2nqnα∗

n(a) = f1(a, q),

where

f1(a, q) =

∞
∑

n=1

(1/a; q)na
2nqn

(aq; q)n(1− qn)
= −

∞
∑

n=1

(1− aq2n)(a, a; q)n(q; q)2n−1a
nqn

(1− a)(q, q; q)n(qa2; q)2n
(2.3)
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=
∞
∑

n=1

a2qn

1− a2qn
−

∞
∑

n=1

aqn

1− aqn
.

For later use we note that

(2.4) f2(a, q) = f1(a, q)− f1(−a, q) = −

∞
∑

n=1

2aqn

1− a2q2n
,

where f2(a, q) is as defined at (1.7).

Proof of Lemma 1. Rewrite (1.3) as

(2.5)

∞
∑

n=1

(

qa2

k2

)n
βn(a, k)

1− k
−

(

qa

k
,
qa2

k
; q

)

∞

(qa, qa2/k2; q)∞

∞
∑

n=1

(kq; q)2n−1

(qa2/k; q)2n

(

qa2

k2

)n

αn(a, k)

=
1

1− k

(

(qa/k, qa2/k; q)∞
(qa, qa2/k2; q)∞

− 1

)

.

The left side of (2.2) now follows upon letting k → 1. To get the first expression
for f1(a, q), use (2.1) to expand the infinite product on the right side as an infinite
series (set A = k, B = k/a and C = qa) and then once again let k → 1.

The second expression for f1(a, q) follows upon substituting the unit WP-
Bailey pair

αn(a, k) =
(q
√
a,−q

√
a, a, a/k; q)n

(
√
a,−

√
a, q, kq; q)n

(

k

a

)n

, βn(a, k) =

{

1 n = 0,

0, n > 0,
(2.6)

into (1.6) and then inserting the resulting derived pair

α∗

n(a) =
1− aq2n

1− a

(a, a; q)n
(q, q; q)n

(

1

a

)n

, β∗

n(a) = 0(2.7)

on the left side of (2.2).

For the third representation of f1(a, q) define

G(k) :=
(qa/k, qa2/k; q)∞
(qa, qa2/k2; q)∞

and then

lim
k→1

1

1− k

(

(qa/k, qa2/k; q)∞
(qa, qa2/k2; q)∞

− 1

)

= lim
k→1

G(k)−G(1)

1− k
= −G′(1),

and logarithmic differentiation now easily gives the result.
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Remark. The first expression for f1(a, q) above also follows from inserting the “trivial”
WP-Bailey pair

αn(a, k) =

{
1 n = 0,

0, n > 0,
βn(a, k) =

(k, k/a; q)n
(q, aq; q)n

,(2.8)

into (1.6) and then inserting the resulting derived pair

α
∗
n(a) = 0, β

∗
n(a) =

(1/a; q)n
(aq; q)n(1− qn)

(2.9)

on the left side of (2.2).

One way of viewing Lemma 1 is as supplying a large number of representations
of the difference of Lambert Series

∞
∑

n=1

a2qn

1− a2qn
−

∞
∑

n=1

aqn

1− aqn
.

Indeed, such a representation arises if any pair (α∗

n, β
∗

n) deriving from a WP-Bailey
is inserted in (2.2), assuming the limits exist and the resulting series converge. We
give two example below. The first arises from Singh’s WP-Bailey pair [13]:

αn(a, k) =
(q
√
a,−q

√
a, a, ρ1, ρ2, a

2q/kρ1ρ2; q)n
(
√
a,−

√
a, q, aq/ρ1, aq/ρ2, kρ1ρ2/a; q)n

(

k

a

)n

,(2.10)

βn(a, k) =
(kρ1/a, kρ2/a, k, aq/ρ1ρ2; q)n
(aq/ρ1, aq/ρ2, kρ1ρ2/a, q; q)n

.

This gives the derived pair

α∗

n(a) =
(q
√
a,−q

√
a, a, ρ1, ρ2, a

2q/ρ1ρ2; q)n
(
√
a,−

√
a, q, aq/ρ1, aq/ρ2, ρ1ρ2/a; q)n

(

1

a

)n

,(2.11)

β∗

n(a) =
(ρ1/a, ρ2/a, aq/ρ1ρ2; q)n

(aq/ρ1, aq/ρ2, ρ1ρ2/a; q)n(1− qn)
.

The parameters ρ1 and ρ2 are free, but for simplicity we let ρ1, ρ2 → ∞ to get the
derived WP-Bailey pair

α∗

n(a) =
1− aq2n

1− a

(a; q)n
(q; q)n

(−1)nqn(n−1)/2, β∗

n(a) =
(−1)nqn(n−1)/2

an(1− qn)
.(2.12)

The WP-Bailey pair

αn(a, k) =

(

q
√
a,−q

√
a, a, a

√

q

k
,−a

√

q

k
,

a
√
k
,−

aq
√
k
,
k

a
; q

)

n
(√

a,−
√
a, q,

√
kq,−

√
kq, q

√
k,−

√
k, qa

2

k
; q
)

n

(

k

a

)n

,(2.13)

βn(a, k) =

(

√
k,

k2

a2
; q

)

n

(q
√
k, q; q)n

,
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provides the derived pair

α∗

n(a) =
1− aq2n

1− a

(

a, a,−aq, 1/a; q)n(a
2q; q2

)

n

(q, q,−1, qa2; q)n(q; q2)n

(

1

a

)n

,(2.14)

β∗

n(a) =

(

1/a2; q
)

n

2(q; q)n(1− qn)
.

Corollary 1. If |q|, |qa|, |qa2| < 1, then

∞
∑

n=1

a2qn

1− a2qn
−

∞
∑

n=1

aqn

1− aqn
(2.15)

=

∞
∑

n=1

(−a)nqn(n+1)/2

1− qn
−

∞
∑

n=1

1− aq2n

1− a

(a; q)n(q; q)2n−1

(q; q)n(a2q; q)2n
(−a2)nqn(n+1)/2

=
1

2

∞
∑

n=1

(

1/a2; q
)

n
a2nqn

(q; q)n(1− qn)
−

∞
∑

n=1

1− aq2n

1− a

(a, a,−aq, 1/a; q)n (q
2; q2)n−1a

nqn

(q, q,−1, qa2; q)n (a
2q2; q2)n

.

Proof. Insert the derived pairs, respectively, at (2.12) and (2.14) into (2.2).

Before proving Theorem 3, we recall the result from Lemma 4 in [10] (this
result was previously given by Andrews, Lewis and Liu in [4], using a different
labeling for the parameters): if

(2.16) f(a, k, z, q) =

∞
∑

n=1

kqn

1− kqn
+

∞
∑

n=1

qna/z

1− qna/z
−

∞
∑

n=1

aqn

1− aqn
−

∞
∑

n=1

qnk/z

1− qnk/z
,

then

(2.17) f(a, k, z, q)− f

(

1

a
,
1

k
,
1

z
, q

)

=
(a− k)(1− 1/z)(1− ak/z)

(1− a)(1− k)(1− a/z)(1− k/z)

+
z

k

(z, q/z, k/a, qa/k, ak/z, qz/ak, q, q; q)∞
(z/k, qk/z, z/a, qa/z, a, q/a, k, q/k; q)∞

.

Proof of Theorem 3. Replace k with b and set z = −1 in (2.17), to get (after
some simple rearrangements) that

f(a, b,−1, q)− f

(

1

a
,
1

b
,−1, q

)

=
2(a− b)(1 + ab)

(1− a2)(1− b2)
− 2a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

The result now follows, upon noting that (2.16) and (2.4) imply that

f(a, b,−1, q) =
∞
∑

n=1

2bqn

1− b2q2n
−

∞
∑

n=1

2aqn

1− a2q2n
= f2(a, q)− f2(b, q),

f(1/a, 1/b,−1, q) = f2(1/a, q)− f2(1/b, q). �
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As remarked earlier, any derived WP-Bailey pair (α∗

n, β
∗

n) may be used in
(1.8), providing the various series involved converge. We also remark that the
identities in the next two corollaries illustrate the somewhat interesting fact that
the series involving a on the left side of (1.8) are completely separable from those
involving b, while a and b are inseparable in some of the products on the right side
of (1.8).

We note that the left side of (1.8) contains sixteen different infinite series,
so for space saving reasons we give two example that uses relatively simple de-
rived pairs. Upon inserting the pair at (2.12) in (1.8) and performing some simple
collecting and rearranging of terms, the following identity results.

Corollary 2. Let a and b be non-zero complex numbers such that a2qn, b2qn 6= 1,
for n ∈ Z. Then

(2.18)

∞
∑

n=0

q2n
2
+3n+1

1− q2n+1

[

b2n+1 − a2n+1 +
1

a2n+1
−

1

b2n+1

]

−
1

2

∞
∑

n=1

(−1)nqn(n+1)/2(q; q)2n−1

(q; q)n

[

(1− aq2n)(a; q)n
(1− a)(qa2; q)2n

a2n −
(1 + aq2n)(−a; q)n
(1 + a)(qa2; q)2n

a2n

−
(1− bq2n)(b; q)n
(1− b)(qb2; q)2n

b2n +
(1 + bq2n)(−b; q)n
(1 + b)(qb2; q)2n

b2n

−
(1− q2n/a)(1/a; q)n
(1− 1/a)(q/a2; q)2n

a−2n +
(1 + q2n/a)(−1/a; q)n
(1 + 1/a)(q/a2; q)2n

a−2n

+
(1− q2n/b)(1/b; q)n
(1− 1/b)(q/b2; q)2n

b−2n −
(1 + q2n/b)(−1/b; q)n
(1 + 1/b)(q/b2; q)2n

b−2n

]

=
(a− b)(1 + ab)

(1− a2)(1− b2)
− a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

Corollary 3. Let a and b be non-zero complex numbers such that aqn, bqn 6= ±1,
for n ∈ Z, and |q| < min{|a2|, 1/|a2|, |b2|, 1/|b2|}. Then

(2.19)

∞
∑

n=1

[(

(1/a; q)n
(qa; q)n

−
(−1/a; q)n
(−qa; q)n

)

a2nqn

1− qn

−

(

(a; q)n
(q/a; q)n

−
(−a; q)n
(−q/a; q)n

)

qn

a2n(1− qn)
−

(

(1/b; q)n
(qb; q)n

−
(−1/b; q)n
(−qb; q)n

)

b2nqn

1− qn

+

(

(b; q)n
(q/b; q)n

−
(−b; q)n
(−q/b; q)n

)

qn

b2n(1− qn)

]

=
2(a− b)(1 + ab)

(1− a2)(1− b2)
− 2a

(b/a, qa/b,−ab,−q/ab; q)∞(q2, q2; q2)∞
(a2, q2/a2, b2, q2/b2; q2)∞

.

Proof. Insert the derived pair at (2.9) into (1.8).
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3. q-SERIES/PRODUCTS THAT ARE REPRESENTABLE IN
TERMS OF CERTAIN LAMBERT SERIES

Many q-series and q-products have been represented by Ramanujan and oth-
ers in terms of Lambert series of the types encountered earlier. The various ex-
pressions for f1(a, q) and f2(a, q) stated previously now permit these q-series and
q-products to expressed in several ways as basic hypergeometric series, one way for
each derived WP-Bailey pair (or arbitrarily many ways, if a derived pair contains
one or more free parameters). We give several examples to illustrate the different
ways in which this may be accomplished.

Let a(q) :=
∞∑

m,n=−∞

qm
2
+mn+n2

. Here we are using the notation for this series

employed in [8], where it was shown that a3(q) = b3(q) + c3(q), where

b(q) =

∞
∑

m,n=−∞

ωm−nqm
2
+mn+n2

, ω = exp(2πi/3), and

c(q) =
∞
∑

m,n=−∞

q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 .

The series a(q) was also studied by Ramanujan, who showed (Entry 18.2.8 of
Ramanujan’s Lost Notebook - see [3, page 402]) that

(3.1) a(q) = 1 + 6

∞
∑

n=1

q−2q3n

1− q−2q3n
− 6

∞
∑

n=1

q−1q3n

1− q−1q3n
.

From this identity we may deduce several representations of a(q) in terms of basic
hypergeometric series.

Corollary 4. If ρ1, ρ2 6= 0 and 0 < |q| < 1, then

a(q) = 1 + 6
∞
∑

n=1

(q; q3)nq
n

(q2; q3)n(1− q3n)
,(3.2)

= 1− 6

∞
∑

n=1

(1− q6n−1)(1/q, 1/q; q3)n(q
3; q3)2n−1q

2n

(1− 1/q)(q3, q3; q3)n(q; q3)2n
,

= 1 + 6

∞
∑

n=1

(ρ1q, ρ2q, q
2/ρ1ρ2; q

3)nq
n

(q2/ρ1, q2/ρ2, ρ1ρ2q; q3)n(1− q3n)

− 6

∞
∑

n=1

(1− q6n−1)(1/q, ρ1, ρ2, q/ρ1ρ2; q
3)n(q

3; q3)2n−1q
2n

(1− 1/q)(q2/ρ1, q2/ρ2, ρ1ρ2q, q3; q3)n(q; q3)2n
,

= 1 + 6

∞
∑

n=1

(−1)nq(3n
2
+n)/2

1− q3n

− 6

∞
∑

n=1

(1− q6n−1)(1/q; q3)n(q
3; q3)2n−1(−1)nq(3n

2
−n)/2

(1− 1/q)(q3; q3)n(q; q3)2n
.
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Proof. From (3.1) it can be seen that a(q) = 1 + 6f1(1/q, q
3), where f1(a, q) is as

defined at (2.3). The first two equalities follow from the other two representations
of 1 + 6f1(1/q, q

3) that derive from the right side of (2.3). The last two equalities
follow from substituting the derived pairs at (2.11) and (2.12) into 1 + 6×(the left
of (2.2)) (with q replaced with q3 and a replaced with 1/q).

Recall that

ψ(q) :=

∞
∑

n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,

is one of the theta functions studied extensively by Ramanujan.

Corollary 5. Let |ρ1| > 1 and i =
√
−1. Then

ψ2(q4) =
i

2q

( ∞
∑

n=1

(1 + iq4n−1)(−i/q,−i/q; q2)n(q
2; q2)2n−1(−iq)

n

(1 + i/q)(q2, q2; q2)n(−1; q2)2n
(3.3)

−

∞
∑

n=1

(1− iq4n−1)(i/q, i/q; q2)n(q
2; q2)2n−1(iq)

n

(1− i/q)(q2, q2; q2)n(−1; q2)2n

)

,

=
1

2iq

( ∞
∑

n=1

(iρ1q; q
2)n (−1)

n

(−iq/ρ1; q2)n(1− q2n) ρn
1

−

∞
∑

n=1

(−iρ1q; q
2)n (−1)

n

(iq/ρ1; q2)n(1− q2n) ρn
1

+

∞
∑

n=1

(1− iq4n−1)(i/q, ρ1; q
2)n(q

2; q2)2n−1(−1)n

(1− i/q)(iq/ρ1, q2; q2)n(−1; q2)2n ρn1

−
∞
∑

n=1

(1 + iq4n−1)(−i/q, ρ1; q
2)n(q

2; q2)2n−1(−1)n

(1 + i/q)(−iq/ρ1, q2; q2)n(−1; q2)2n ρn1

)

,

=

∞
∑

n=0

(−1)nq4n
2
+4n

1− q4n+2
+

1

2iq

( ∞
∑

n=1

(1− iq4n−1)(i/q; q2)n(q
2; q2)2n−1q

n2
−n

(1− i/q)(q2; q2)n(−1; q2)2n

−
∞
∑

n=1

(1 + iq4n−1)(−i/q; q2)n(q
2; q2)2n−1q

n2
−n

(1 + i/q)(q2; q2)n(−1; q2)2n

)

.

Proof. By Example (iv) in Section 17 of Chapter 17 of Ramanujan’s second note-

book (see [5, page 139]), ψ2(q2) =
∞∑

n=0

qn

1 + q2n+1
, so that

ψ2(q4) =

∞
∑

n=1

q2n−2

1 + q4n−2
=

1

2iq

∞
∑

n=1

−2

(

1

iq

)

q2n

1−

(

1

iq

)2

q4n

(3.4)

=
1

2iq
f2

(

1

iq
, q2

)

=
1

2iq

(

f1

(

1

iq
, q2

)

− f1

(

−1

iq
, q2

))

.

The first equality now follows from (2.3), using the second representations for
f1(1/iq, q

2) and f1(−1/iq, q2).
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The second equality is a consequence of letting ρ2 → ∞ in the derived
pair at (2.11) and substituting the resulting derived pair into the expression for
f2(1/iq, q

2)/(2iq) that follows from (1.7).

The third equality is a consequence of letting ρ1 → ∞ in the second equality.

For a third example, we recall another identity of Ramanujan (see Entry 3
(i), Chapter 19, page 223 of [5]):

(3.5) qψ(q2)ψ(q6) =

∞
∑

n=1

q6n−5

1− q12n−10
−

∞
∑

n=1

q6n−1

1− q12n−2
,

From (2.4),

qψ(q2)ψ(q6) =
1

2

(

f2(q
−1, q6)− f2(q

−5, q6)
)

=
1

2

(

f1(q
−1, q6)− f1(−q

−1, q6)− f1(q
−5, q6) + f1(−q

−5, q6)
)

Thus any derived pair (α∗

n(a, q), β
∗

n(a, q)) inserted in Lemma 1, with q replaced
with q6 and a taking the values q−1,−q−1, q−5,−q−5 will give an expression for
qψ(q2)ψ(q6) containing 8 series. However, for simplicity, we use the pair at (2.7)
(so β∗

n(a) = 0, reducing the 8 series to 4) to get the following identity.

Corollary 6.

2qψ(q2)ψ(q6) =
∞
∑

n=1

1 + q12n−1

1 + 1/q

(−1/q,−1/q; q6)n(q
6; q6)2n−1(−q)

5n

(q6, q6; q6)n(q4; q6)2n
(3.6)

−

∞
∑

n=1

1− q12n−1

1− 1/q

(1/q, 1/q; q6)n(q
6; q6)2n−1q

5n

(q6, q6; q6)n(q4; q6)2n

+

∞
∑

n=1

1− q12n−5

1− 1/q5
(1/q5, 1/q5; q6)n(q

6; q6)2n−1q
n

(q6, q6; q6)n(1/q4; q6)2n

−

∞
∑

n=1

1 + q12n−5

1 + 1/q5
(−1/q5,−1/q5; q6)n(q

6; q6)2n−1(−q)
n

(q6, q6; q6)n(1/q4; q6)2n
.

There are a number of other identities where theta functions are expressed
in terms of certain Lambert series, which may be treated similarly to derive re-
sults like those in this section. These include Entry 34 (p.284) in chapter 36 of
Ramanujan’s notebooks (see [7, page 374]),

(3.7) q
ψ3(q3)

ψ(q)
=

∞
∑

n=1

q3n−2

1− q6n−4
−

∞
∑

n=1

q3n−1

1− q6n−2
=
f2(1/q, q

3)− f2(1/q
2, q3)

2
,

and others.
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4. CONCLUDING REMARKS

In the present paper and its companion [10] we considered limiting cases of
the two WP-Bailey chains described by Andrews in [1]. There are a number of
other WP-Bailey chains described in the literature (see the papers of Warnaar

[17], Liu and Ma [9] and Mc Laughlin and Zimmer [11]), and it may be that a
similar analysis of some of these chains may also have interesting consequences.
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