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STAIRCASE WORDS AND CHEBYSHEV

POLYNOMIALS

Arnold Knopfmacher, Toufik Mansour, Augustine Munagi,
Helmut Prodinger

A word σ = σ1 · · ·σn over the alphabet [k] = {1, 2, . . . , k} is said to be a
staircase if there are no two adjacent letters with difference greater than
1. A word σ is said to be staircase-cyclic if it is a staircase word and in
addition satisfies |σn − σ1| ≤ 1. We find the explicit generating functions
for the number of staircase words and staircase-cyclic words in [k]n, in terms
of Chebyshev polynomials of the second kind. Additionally, we find explicit
formulæ for the numbers themselves, as trigonometric sums. These lead to
immediate asymptotic corollaries. We also enumerate staircase necklaces,
which are staircase-cyclic words that are not equivalent up to rotation.

1. INTRODUCTION

Let [k]n be the set of all words of length n over the alphabet [k] = {1, 2, . . . , k}.
We consider the enumeration of a class of words with constrained variation namely
the staircase words. A word w ∈ [k]n is said to be a staircase (or staircase word)
if the absolute difference between each pair of adjacent letters of w is at most
1. Intuitively such words have the “nice” property that one can move between
adjacent letters of a word by taking at most one staircase step at a time: one step
upward, one step downward, or remain at the same level. Staircase words can also
be interpreted as a certain class of Motzkin paths (with steps (1, 1), (1,−1) and
(1, 0)) that lie in a strip with heights bounded by 0 to k − 1.

The enumeration of words which contain a prescribed number of a given set
of strings as substrings is a classical problem in combinatorics. This problem can,
for example, be attacked using the transfer matrix method, see [11, Section 4.7]
and [3]. In recent times, many research papers have been devoted to the study of
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enumeration problems on the set [k]n under various pattern constraints. In this
connection we mention the works of Guibas and Odlyzko (see [4, 5]) which are
devoted to the analysis of repetitive patterns in random words as well as various
pattern matching techniques in general words.

The pattern approach to enumeration of words gained prominence following
the work of Regev [7] who provided explicit and asymptotic formulæ for the num-
ber words counted by strictly descending substrings of given length. Subsequently,
Burstein’s thesis [1] undertook a systematic development and found enumeration
results on words avoiding several classes of patterns. Régnier and Szpankowski

[9] used a combinatorial approach to study the frequency of occurrences of certain
strings (which they also call a “pattern”) in a random word, where overlapping
copies of the strings are counted separately. Burstein and Mansour [2] have
also considered the enumeration of elements of [k]n that satisfy certain restrictions
characterized in terms of pattern avoidance.

The staircase property may, of course, be characterized in the language of
pattern avoidance. A word σ = σ1σ2 · · ·σn ∈ [k]n possesses the staircase property
provided it avoids a (contiguous) string of the form ij where |i − j| > 1. Thus a
staircase word is any word that fulfills the staircase property. For example, there
are 7 staircase words in [3]2, namely 11, 12, 21, 22, 23, 32 and 33. A word σ is said
to be staircase-cyclic if it is a staircase and in addition satisfies σn−σ1 ∈ {0, 1,−1}.
Clearly, each word in [k]n, k = 1, 2, is staircase-cyclic (and thus also a staircase).
We denote the number of staircase words (respectively, staircase-cyclic words) in
[k]n by swn,k (respectively, scwn,k). Table 1 shows the numbers of staircase words
and staircase-cyclic words of length n over the alphabet [k] for 0 ≤ n ≤ 11 and
2 ≤ k ≤ 7. On comparing the sequences with those in the On-Line Encyclopedia
of Integer Sequences [8] we find the equivalent definition of swn,k as the number of
base k n-digit numbers with adjacent digits differing by one or less. However, when
k > 3 the entries in [8] contain contain no information on computational formulae
for the sequences.

n 0 1 2 3 4 5 6 7 8 9 10 11

swn,2 1 2 4 8 16 32 64 128 256 512 1024 2048
scwn,2 1 2 4 8 16 32 64 128 256 512 1024 2048

swn,3 1 3 7 17 41 99 239 577 1393 3363 8119 19601
scwn,3 1 3 7 15 35 83 199 479 1155 2787 6727 16239

swn,4 1 4 10 26 68 178 466 1220 3194 8362 21892 57314
scwn,4 1 4 10 22 54 134 340 872 2254 5854 15250 39802

swn,5 1 5 13 35 95 259 707 1931 5275 14411 39371 107563
scwn,5 1 5 13 29 73 185 481 1265 3361 8993 24193 65345

swn,6 1 6 16 44 122 340 950 2658 7442 20844 58392 163594
scwn,6 1 6 16 36 92 236 622 1658 4468 12132 33146 90998

swn,7 1 7 19 53 149 421 1193 3387 9627 27383 77923 221805
scwn,7 1 7 19 43 111 287 763 2051 5575 15271 42099 116651

Table 1. Numbers of staircase words and staircase-cyclic words swn,k, scwn,k.
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We will find the explicit generating functions for swn,k and scwn,k in terms of
Chebyshev polynomials of the second kind. Additionally, we find explicit formulæ
for the numbers themselves, in terms of certain trigonometric expressions. They
allow for immediate asymptotic corollaries.

Chebyshev polynomials of the second kind are defined by

Ur(cos θ) =
sin(r + 1)θ

sin θ

for r ≥ 0. Evidently, Ur(x) is a polynomial of degree r in x with integer coefficients.
For example, U0(x) = 1, U1(x) = 2x, U2(x) = 4x

2 − 1, and in general,
(1.1) Ur(x) = 2xUr−1(x)− Ur−2(x).

Chebyshev polynomials of the first kind are defined by Tr(cos θ) = cos(rθ)

which is equivalent to Tr(x) =
1

2

(
Ur(x)− Ur−2(x)

)
. Chebyshev polynomials were

invented for the needs of approximation theory, but are also widely used in vari-
ous other branches of mathematics, including algebra, combinatorics, and number
theory (see [10]).

Two words σ = σ1 · · ·σn and π = π1 · · ·πn in [k]n are said to be rotation
equivalent if there exists an index i, 1 ≤ i ≤ n such that πiπi+1 · · ·πnπ1π2 · · ·πi−1 =
σ. For example, the words 122, 212 and 221 are rotation equivalent. The set of
necklaces of length n over the alphabet [k] is the set of words in [k]n up to the
rotation-equivalence. For example, if k = 2 and n = 3 there are 4 necklaces,
namely, 111, 122 (212 and 221 are rotation equivalent), 112 (121 and 211 are
rotation equivalent) and 222. Using our results on staircase-cyclic words, we also
determine the number of staircase necklaces in [k]n.

The paper is organized as follows. In Section 2 we obtain the generating
function for the number swn,k of staircase words, followed shortly by the explicit
enumeration formula (Theorems 2.2 and 2.4). The asymptotic growth rate is also
obtained in this section. In Section 3 we obtain the corresponding enumeration
results for staircase-cyclic words. Lastly, Section 4 deals with the enumeration of
staircase necklaces.

2. ENUMERATION OF STAIRCASE WORDS

Let swk(x) denote the generating function for the number of staircase words
over [k]:

swk(x) =
∑

n≥0

swn,kx
n.

In order to obtain a formula for swk(x), we introduce the following notations. Let
swk(x | i1i2 · · · is) be the generating function for the number of staircase words
σ1 · · ·σn of length n over the alphabet [k] such that σ1 · · ·σs = i1 · · · is.
Lemma 2. The generating function swk(x | i) satisfies

swk(x | i) = x+ x
(
swk(x | i− 1) + swk(x | i) + swk(x | i+ 1)

)
,
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for all 1 ≤ i ≤ k, where swk(x | i) = 0 if i 6∈ [k].
Proof. Let σ be any nonempty staircase word. If σ contains exactly one letter
then σ1 ∈ [k]. Otherwise, the second letter of σ = iσ2 · · ·σn is either i − 1, i or
i+ 1. Thus, in terms of generating functions we have that

swk(x | i) = x+ x
(
swk(x | i− 1) + swk(x | i) + swk(x | i+ 1)

)
,

for all 1 ≤ i ≤ k, which completes the proof. ¤

Rewriting Lemma 2.1 as a matrix system we obtain

(2.1) A



swk(x | 1)...
swk(x | k)


 =



1
...
1


x,

where A = (aij) is a k × k matrix defined by aii = 1 − x, ai(i+1) = a(i+1)i = −x,
and aij = 0 for all |i− j| > 1. Clearly, A is a tridiagonal matrix.

Applying a result of Usmani [13] or equivalently [6], on the inversion of A
we get

(A−1)ij =

{
xj−iθi−1θk−j/θk i ≤ j,

xi−jθj−1θk−i/θk i > j,

where θi satisfies the recurrence relation θi = (1− x)θi−1 − x2θi−2, with the initial
conditions θ0 = 1 and θ1 = 1 − x. It follows from (1.1) that the solution is given

by θi = xiUi

(
1− x

2x

)
. Consequently

(2.2) (A−1)ij =





Ui−1

(
1− x

2x

)
Uk−j

(
1− x

2x

)

xUk

(
1− x

2x

) i ≤ j,

Uj−1

(
1− x

2x

)
Uk−i

(
1− x

2x

)

xUk

(
1− x

2x

) i > j.

Thus the solution of (2.1) is



swk(x | 1)...
swk(x | k)


 = A−1



1
...
1


x.

This implies that the generating function swk(x | i) is given by

swk(x | i) =
1

Uk(t)

[
Uk−i(t)

i−2∑

j=0

Uj(t) + Ui−1(t)

k−i∑

j=0

Uj(t)

]
,

where t =
1− x

2x
.
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In order to simplify the right-hand side we use the identity

(2.3)

p∑

j=0

Uj(t) =
Up+1(t)− Up(t)− 1

2(t− 1) ,

which may be proved easily from the fact that

p∑

j=0

sin(jt) =
sin((p+ 1)t)(cos(t)− 1) + sin(t) cos((p+ 1)t)− sin(t)

2(cos(t)− 1)

and Tn(x) =
1

2
(Un(x) − Un−2(x)). The verification of such identities is a priori

trivial and can be done by a computer, since, upon rewriting the trigonometric
functions via Euler’s formulæ, one only has to sum some finite geometric series.
Thus

swk(x | i)=
1

2(t− 1)Uk(t)
[Ui−1(t)Uk+1−i(t)− Uk−i(t)Ui−2(t)− Uk−i(t)− Ui−1(t)] .

Now apply the identity

(2.4) Ui(t)Uj(t) =
Ui−j(t)− tUi−j−1(t)− Ui+j+2(t) + tUi+j+1(t)

2(1− t2) ,

to obtain

swk(x | i)=
1

2(t−1)Uk(t)

[
Uk(t)−tUk−1(t)−Uk+2(t)+ tUk+1(t)

2(1− t2) −Uk−i(t)−Ui−1(t)
]
,

which, by (1.1), is equivalent to

(2.5) swk(x | i) =
1

2(t− 1)Uk(t)
[Uk(t)− Uk−i(t)− Ui−1(t)] .

Now, using swk(x) = 1+

k∑

i=1

swk(x | i) and again (2.3), we obtain an explicit formula

for the generating function swk(x).

Theorem 2.2. The generating function swk(x) for the number of staircase words
of length n over the alphabet [k] is given by

swk(x) = 1 +
x(k − (3k + 2)x)
(1− 3x)2 +

2x2

(1− 3x)2
1 + Uk−1

(
1− x

2x

)

Uk

(
1− x

2x

) .

It is easy to see that each word in [k]n, k = 1, 2, is a staircase. For small
values of k, Theorem 2.2 gives
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• sw3(x) = 1 + x

1− 2x− x2
, that is, the number of smooth words in [3]n is given by

1

2

(
1 +

√
2
)n+1

+
1

2

(
1−

√
2
)n+1

.

• sw4(x) = 1 + x− x2

1− 3x+ x2
, that is, the number of staircase words in [4]n is given

by

2√
5

(
1 +

√
5

2

)2n+1
− 2√

5

(
1−

√
5

2

)2n+1
= 2F2n+1.

• sw5(x) = 1 + 2x− 2x2 − 2x3

(1− x)(1− 2x− 2x2)
, that is, the number of staircase words in [5]n

is given by

2 +
√
3

6

(
1 +

√
3
)n+1

+
2−

√
3

6

(
1−

√
3
)n+1

+
1

3
.

In order to obtain an explicit formula for the number of staircase words of
length n over the alphabet [k] we need the following lemma.

Lemma 2.3. Let m ≥ 1. Then

1

Um(x)
=

1

m+ 1

m∑

j=1

(−1)j+1 sin2
(

jπ

m+ 1

)

x− cos
(

jπ

m+ 1

)

and

1 + Um−1(x)

Um(x)
=

1

m+ 1

m∑

j=1

(1 + (−1)j+1) sin2
(

jπ

m+ 1

)

x− cos
(

jπ

m+ 1

) .

Proof. Let us compute the partial fraction decomposition of
1

Um(x)
. By general

principles, it is

m∑

j=1

Am,j
x− ρm,j

, where ρm,j = cos
(

jπ

m+ 1

)
are the zeros of the m-th

Chebyshev polynomials of the second kind. Now, Am,j =
1

U ′m(ρm,j)
and note that

U ′m(x) =
dUm(x)

dx
=
d

dθ

( sin(m+ 1)θ
sin θ

)
· dθ
dx

.

We work out that

dUm
dθ

=
(m+ 1) cos(m+ 1)θ · sin θ − sin(m+ 1)θ · cos θ

sin2 θ
,



Staircase words and Chebyshev polynomials 87

and if we plug in x = ρm,j simplification occurs, since certain terms are just zero;
we obtain that

dUm
dθ
(arccos ρm,j) =

(m+ 1) cos(m+ 1)θ · sin θ − sin(m+ 1)θ · cos θ
sin2 θ

∣∣∣∣
θ = πj

m+1

=
(m+ 1) cos(πj) · sin πj

m+ 1
− sin(πj) · cos πj

m+ 1

sin2
πj

m+ 1

=
(m+ 1) cos(πj) · sin πj

m+ 1

sin2
πj

m+ 1

=
(m+ 1)(−1)j

sin
πj

m+ 1

.

Further
dx

dθ
= − sin θ, so together 1

Am,j
= U ′m(ρm,j) =

(m+ 1)(−1)j+1

sin2 πj

m+ 1

, which com-

pletes the proof of the first identity. Similarly, the second one can be obtained.¤

We are ready to obtain an explicit formula.

Theorem 2.4. The number of staircase words of length n over the alphabet [k] is
given by

swn,k =
1

k + 1

k∑

j=1

(1 + (−1)j+1) cot2 jπ

2(k + 1)

(
1 + 2 cos

jπ

k + 1

)n−1
,

or, alternatively, as

swn,k =
2

k + 1

∑

0≤j≤ k−1
2

cot2
(2j + 1)π

2(k + 1)

(
1 + 2 cos

(2j + 1)π

k + 1

)n−1
.

Proof. Fix k and let θj =
jπ

k + 1
. Lemma 2.3 says that the coefficient of xn in

2x2

(1− 3x)2
1 + Uk−1(t)

Uk(t)
with t =

1− x

2x
(see Theorem 2.2) is given by

(2.6) pn,k = [x
n]

2x2

(1− 3x)2
1

k + 1

k∑

j=1

(1 + (−1)j+1) sin2 θj
1− x

2x
− cos θj

=
4

k + 1
[xn−3]

1

(1− 3x)2
k∑

j=1

(1 + (−1)j+1) sin2 θj
1− x (1 + 2 cos θj)

.

Now notice that

1

(1− 3x)2(1− xω) = −
3

(ω − 3)(1− 3x)2 −
3ω

(ω − 3)2(1− 3x) +
ω2

(ω − 3)2(1− xω)
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and

(2.7) ω − 3 = 1 + 2 cos θj − 3 = −4 sin2(θj/2).

So we are dealing with

A=
3

4 sin2(θj/2)(1−3x)2
− 3 (1 + 2 cos θj)

16 sin4(θj/2)(1−3x)
+

(1 + 2 cos θj)
2

16 sin4(θj/2)(1−x(1 + 2 cos θj))
,

which implies that the coefficient of xn−3 in A is given by

3n−2(n− 2)
4 sin2(θj/2)

− 3
n−2(1 + 2 cos θj)

16 sin4(θj/2)
+
(1 + 2 cos θj)

n−1

16 sin4(θj/2)
.

Hence, (2.6) can be written as

pn,k =
4

k + 1

k∑

j=1

(1 + (−1)j+1) sin2 θj
[
3n−2(n− 2)
4 sin2(θj/2)

−3
n−2(1 + 2 cos θj)

16 sin4(θj/2)
+
(1 + 2 cos θj)

n−1

16 sin4(θj/2)

]

which simplifies to

pn,k =
1

k + 1

k∑

j=1

(1 + (−1)j+1) cos2(θj/2)
[
4(n− 2)3n−2

− 3
n−2(1 + 2 cos θj)

sin2(θj/2)
+
(1 + 2 cos θj)

n−1

sin2(θj/2)

]
.

Using the identity

k∑

j=1

(1 + (−1)j+1) cos2(θj/2) = k + 1

2
, we get that

pn,k = 2(n− 2)3n−2 +
1

k + 1

k∑

j=1

(1 + (−1)j+1) cot2(θj/2)
[
(1 + 2 cos θj)

n−1

− 3n−2(1 + 2 cos θj)
]
.

Note that

[xn]
x(k − (3k + 2)x)
(1− 3x)2 = [xn−1]

k

(1− 3x)2 − [x
n−2]

3k + 2

(1− 3x)2
= kn3n−1 − (n− 1)(3k + 2)3n−2

= (3k − 2n+ 2)3n−2.
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Therefore, Theorem 2.2 gives

swn,k = (3k − 2n+ 2)3n−2 + pn,k

= (3k − 2)3n−2 + 1

k + 1

k∑

j=1

(1 + (−1)j+1) cot2(θj/2)
[
(1 + 2 cos θj)

n−1

− 3n−2(1 + 2 cos θj)
]

= (3k − 2)3n−2 + 1

k + 1

k∑

j=1

(1 + (−1)j+1) cot2(θj/2)(1 + 2 cos θj)×

×
[
(1 + 2 cos θj)

n−2 − 3n−2
]
.

Notice further that

k∑

j=1

(1 + (−1)j+1) cos2(θj/2)(1 + 2 cos θj) = (k + 1)(3k − 2),

thus we have that

swn,k =
1

k + 1

k∑

j=1

(1 + (−1)j+1) cot2(θj/2)(1 + 2 cos θj)n−1,

as claimed. ¤

Corollary 2.5. Asymptotically, we have as n→∞,

swn,k ∼
2

k + 1
cot2

π

2(k + 1)

(
1 + 2 cos

π

k + 1

)n−1
.

Note that since there are k possible initial letters for a staircase word and at
most three possibilities thereafter for each subsequent letter, the number of staircase
words is bounded above by k3k−1. This upper bound becomes increasingly more
accurate as k grows larger (except for a factor of 8π2 below), since as k →∞,

1 + 2 cos
π

k + 1
= 3− π2

k2
+
2π2

k3
+O(k−4)

and

2

k + 1
cot2

π

2(k + 1)
=
8k

π2
+
8

π2
+O

(1
k

)
.
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3. STAIRCASE-CYCLIC WORDS

In this section we find an explicit formula for the generating function scwk(x) =∑

n≥0

scwn,kx
n.

Denote by scwk(x | i1 · · · is | j) the generating function for the number of
staircase-cyclic words σ = σ1 · · ·σn of length n over [k] such that σ1 · · ·σs = i1 · · · is
and σn = j. We define

scwk(x, v | i1 · · · is) =
k∑

j=1

scwk(x | i1 · · · is | j)vj .

Lemma 3.1. For all i = 1, 2, . . . , k,

scwk(x, v | i) = (vi−1[[i > 1]] + vi + vi+1[[k > i]])x2

+ x(scwk(x, v | i− 1) + scwk(x, v | i) + scwk(x, v | i+ 1),

where scwk(x, v | j) = 0 for j 6∈ [k] and [[P ]] = 1 if the condition P holds, and
[[P ]] = 0 otherwise.

Proof. Let σ be any staircase-cyclic word containing at least two letters. If σ
contains exactly two letters and σ1 = i, then j = i − 1, i, i + 1, which gives the
contribution (vi−1[[i > 1]] + vi + vi+1[[k > i]])x2. Otherwise, the second letter of
σ = iσ2 · · ·σn−1j is either i− 1, i or i+1. Hence, in terms of generating functions,
we have

(3.1) scwk(x, v | i) = (vi−1[[i > 1]] + vi + vi+1[[k > i]])x2

+
(
scwk(x, v | i− 1) + scwk(x, v | i) + scwk(x, v | i+ 1)

)
x,

for all 1 ≤ i ≤ k, which completes the proof. ¤

Restating Lemma 3.1 as a matrix system we have

(3.2) A




scwk(x, v | 1)
scwk(x, v | 2)...

scwk(x, v | k − 1)
scwk(x, v | k)



=




v + v2

v + v2 + v3
...

vk−2 + vk−1 + vk

vk−1 + vk



x2,

where A is the tridiagonal matrix already defined in the previous section.

Theorem 3.2. The generating function for the number of staircase-cyclic words
of length n over an alphabet of k letters is given by

scwk(x) = 1 +
kx(1 + 3x)

(1 + x)(1− 3x) −
2(k + 1)x

(1 + x)(1− 3x)
Uk−1

(
1− x

2x

)

Uk

(
1− x

2x

) .
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Proof. Equation (3.2) gives that




scwk(x, v | 1)
scwk(x, v | 2)...

scwk(x, v | k − 1)
scwk(x, v | k)



= A−1




v + v2

v + v2 + v3
...

vk−2 + vk−1 + vk

vk−1 + vk



x2,

where A−1 is defined in (2.2)

Fix t =
1− x

2x
and i, where i = 1, 2, . . . , k. By comparing the coefficients of

vj in the i-th row in the above matrix equation we obtain, for i 6= 1, k,
k∑

j=1

scwk(x | i | j) = x2(A−1i(i−2) + 2A
−1
i(i−1) + 3A

−1
ii + 2A

−1
i(i+1) +A−1i(i+2)),

and for i = 1, k we have

2∑

j=1

scwk(x | 1 | j) = x2(2A−111 + 2A
−1
12 +A−113 ),

k∑

j=k−1

scwk(x | k | j) = x2(2A−1kk + 2A
−1
k(k−1) +A−1k(k−2)).

Note that scwk(x | i | j) = 0 for |j − i| > 1. Thus the generating function scwk(x)
is given by

1 + kx− x2(A−111 +A−1kk )+ x
2

k∑

i=1

(A−1i(i−2)+ 2A
−1
i(i−1)+ 3A

−1
ii + 2A

−1
i(i+1)+A−1i(i+2)),

where 1 counts the empty words, and kx counts the words of length 1 in the set of
words over [k]. Therefore, applying (2.2) we obtain

scwk(x) = 1 + kx+
2x(2Uk−1(t) + 2Uk−2(t) + Uk−3(t))

Uk(t)

+
x

Uk(t)

k−1∑

i=2

(
Ui−3(t) + 2Ui−2(t) + 3Ui−1(t)

)
Uk−i(t)

+ Ui−1(t)(2Uk−1−i(t) + Uk−2−i(t)),

which, by simple algebraic operations, is equivalent to

scwk(x) = 1 + kx+
2x(2Uk−1(t) + 2Uk−2(t) + Uk−3(t))

Uk(t)

+
x

Uk(t)

k−3∑

i=0

(
2Ui−1(t) + 4Ui(t) + 3Ui+1(t)

)
Uk−2−i(t)
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and can be simplified to

scwk(x) = 1 + kx+
x

Uk(t)

[
4Uk−1(t) + 4Uk−2(t) + 2Uk−3(t)

+
x2

(1 + x)(1− 3x)
(
3(k − 2)Uk+1(t) + 4(k − 2)Uk(t)− kUk−1(t)

− 4(k − 1)Uk−2(t)− 2(k + 1)Uk−3(t)− 4Uk−4(t)− 2Uk−5(t)
)]
.

Using the recursion (1.1) for the Chebyshev polynomials several times we arrive at

scwk(x) = 1 +
kx(1 + 3x)

(1 + x)(1− 3x) −
2(k + 1)x

(1 + x)(1− 3x)
Uk−1(t)

Uk(t)
,

as claimed. ¤

We now give an explicit formula for the number of staircase-cyclic words of
length n over the alphabet [k].

Theorem 3.3. The number of staircase-cyclic words of length n over the alphabet
[k] is given by

scwn,k =

k∑

j=1

[
1 + 2 cos

( jπ

k + 1

)]n
.

Proof. Fix k and θj =
jπ

k + 1
. Then Lemma 2.3 implies that the coefficient of xn

in
2(k + 1)x

(1 + x)(1− 3x)

Uk−1(t)

Uk(t)
, with t =

1− x

2x
, is given by

qn,k = [x
n]

4x2

(1 + x)(1− 3x)

k∑

j=1

sin2 θj
1− x(1 + 2 cos θj)

.

Using the fact that

1

(1+ x)(1−3x)(1−xω) =
1

4(1+ ω)(1+ x)
+

ω2

(ω−3)(1+ ω)(1−xω)−
9

4(ω−3)(1−3x) ,

and (2.7), we obtain that

qn,k =

k∑

j=1

sin2 θj

[
(−1)n

4 cos2(θj/2)
− (1 + 2 cos θj)

n

sin2 θj
+

3n

4 sin2(θj/2)

]

=

k∑

j=1

[
sin2(θj/2)(−1)n − (1 + 2 cos θj)n + cos2(θj/2)3n

]
.
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Using the identities

k∑

j=1

cos2(θj/2) =
k

2
and

k∑

j=1

sin2(θj/2) =
k

2
, we get that

qn,k =
k

2

(
(−1)n + 3n

)
−

k∑

j=1

(1 + 2 cos θj)
n.

Hence, Theorem 3.2 states that the coefficient of xn, n ≥ 1, in the generating
function scwk(x) is given by

scwn,k =
k

2

(
3n + (−1)n

)
− qn,k =

k∑

j=1

(1 + 2 cos θj)
n,

as claimed. ¤

Corollary 3.4. Asymptotically, we have as n→∞,

scwn,k ∼
[
1 + 2 cos

( π

k + 1

)]n
.

Note that, asymptotically, staircase and staircase-cyclic words have the same ex-
ponential growth order, just a different constant. More precisely we may deduce

Corollary 3.5. The proportion of staircase words that are staircase-cyclic in [k]n

tends to
1

2
(k + 1)

(
2 cos

(
π

k + 1

)
+ 1

)
tan2

(
π

2(k + 1)

)
as n→∞.

We observe that for large k,

1

2
(k + 1)

(
2 cos

( π

k + 1

)
+ 1

)
tan2

( π

2(k + 1)

)
=
3π2

8k
− 3π

2

8k2
+O(k−3).

4. STAIRCASE NECKLACES

Staircase necklaces were defined in the introduction of the paper. To count
the number snn,k of staircase necklaces of length n over an alphabet of k letters we
consider equivalence classes of staircase-cyclic words up to rotation. From Theorem
3.2 we then obtain the following result by a direct application of Theorem 3.2 and
[12, Exercise 7.112(a)].

Theorem 4.1. Let n ≥ 1. The number snn,k of staircase-necklaces of length n
over an alphabet of k letters is given by

snn,k =
1

n

k∑

i=1

∑

j|n

φ(j)

[
1 + 2 cos

( iπ

k + 1

)]n/j

where φ is Euler’s totient function (φ(n) is the number of positive integers ≤ n that
are relatively prime to n), and we write j | n if j divides n.
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We see from this that asymptotically as n→∞, snn,k ∼ scwn,k.
The following table (Table 2) is obtained from Theorem 4.1. Interestingly

only the sequences corresponding to the base cases, k = 1 and k = 2, appear in the
database [8].

n 0 1 2 3 4 5 6 7 8 9 10 11

snn,1 1 1 1 1 1 1 1 1 1 1 1 1

snn,2 1 2 3 4 6 8 14 20 36 60 108 188

snn,3 1 3 5 7 12 19 39 71 152 315 685 1479

snn,4 1 4 7 10 18 30 65 128 293 658 1544 3622

snn,5 1 5 9 13 24 41 91 185 435 1009 2445 5945

snn,6 1 6 11 16 30 52 117 242 577 1360 3347 8278

snn,7 1 7 13 19 36 63 143 299 719 1711 4249 10611

Table 2. Numbers of smooth necklaces snn,k.
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