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LIMIT DISTRIBUTION OF ASCENT, DESCENT OR
EXCEDANCE LENGTH SUMS OF PERMUTATIONS

Lane Clark

Let An(o) denote the sum of the lengths of ascents of a permutation o of
{1,...,n} chosen uniformly at random. We find the exact expectation and
variance and prove a central limit theorem for the A,,. Identical results hold
for the sum of the lengths of descents or of excedances of a permutation of
{1,...,n} chosen uniformly at random.

1. INTRODUCTION

The set of permutations of [n] = {1,...,n} is &, = {(o(1),...,0(n)) :
)s...,0(n) € [n] are distinct} with equality of tuples. A permutation o =
1),...,0(n)) € &, has

o(1
(o(
an ascent at ¢ € [n — 1] iff 0(¢) < o(i + 1) with length of ascent at i of o(i + 1) — o(1),
a descent at ¢ € [n — 1] iff 0(¢) > o(i + 1) with length of descent at i of o (i) — o (i + 1),

an ezxcedance at i € [n] iff o(¢) > ¢ with length of excedance at i of o (i) — i.

We consider the uniform probability space ., = (&, P, Pr = Pr,) on &,
i.e., P, is the powerset of &, and Pr(c) = 1/n! for each 0 € &,,. Any function
X : 6, — Nis then a random variable on €, with finite moments E(X") =

STk Pr(X = k).
k=0

Let A, (o) denote the number of ascents of o € &,, of length at least
m € P. Then A,, 1(0) counts the number of ascents of o and the Eulerian numbers
Aln,k) = #{o € 6, : A,1(0) = k}. Central limit theorems for the random
variables A, , on €, were proved by CARLITZ st al. [2] for m = 1, and, more
generally, by the author [3] for m = o(n). Recently, BALCZA [1] found the exact
expectation and variance for the sum of the lengths of inversions of ¢ on €,,.
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Let A, (o) (respectively, D, (¢) and E,(c)) denote the sum of the lengths of
ascents (respectively, descents and excedances) of o € &,,. For example, o =
(4,1,7,10,6,3,8,2,9,5) has ascents at 2,3,6,8 of lengths 6,3,5,7; descents at
1,4,5,7,9 of lengths 3,4, 3,6, 4; and excedances at 1,3,4,5,7 of lengths 3,4,6,1, 1.
Hence, Ajg(c) = 6+3+5+7 =21, Dig(c) =3+4+3+6+4 = 20 and
Ei9(0) =3+4+6+1+1=15. Evidently the statistic A, (o) refines the statis-
tic Ap1(0). It is easily seen that max{A,(c) : ¢ € 6,} = max{D,(0) : 0 €
G,} = max{E,(0) : 0 € &,} = M,, (n € P) where M,, = [n/2]? (even n) and
M, = [n/2]? — [n/2] (odd n).

Let a(n, k) = #{o € 6,, : A,(0) = k}, d(n, k) = #{o € &,, : Dy(0) = k}
and e(n, k) = #{o € 6, : E,(0) = k} (see Table 1 below). Then A,, D, and E,
are random variables on €2,, with

(1) Pr(A, =k) = a(z,!k:) , Pr(D, =k) = d(Z’!k) and
Pr(En:k):%. (k € N)

It is clear that a(n,k) = d(n,k) (n € P,k € N) by just reading the permuta-
tions in the opposite direction. Lemma 2.1 proves that a(n,k) = e(n,k) (n €
P,k € N). Hence, A,, D, and E, are identically distributed (they are not
pair-wise independent, however) on 2,,. Therefore, from here on we let {X,}
= {A4,},{D,} or {E,} on Q,. In this paper, we derive u, = E(X,) = (n? —1)/6
and 0,2 = Var(X,,) = (2n3+2n? + 7Tn+7)/180 and prove the central limit theorem

(Xn — tin)/on <, N(0,1), i.e, we prove that for every € R

Pr <M SSC) — ®(z),

On

where

1 x
q)(l') = \/—2_71_/ €7t2/2 dt

is the distribution function of a standard normal random variable N(0,1).

n/k|{0 1 2 3 4 5 6 7 8 9 10 11 12 13
3 1 2 3 0 0 0 0 0 0 0 0 0 0 0
4 1 3 7 9 4 0 0 0 0 0 0 0 0 0
5 1 4 12 24 35 24 20 0 0 0 0 0 0 0
6 1 5 18 46 93 137 148 136 100 36 0 0 0 0
7 1 6 25 76 187 366 591 744 884 832 716 360 252 O

a(n, k)
Table 1.

In passing we note that the entries in Table 1, read by rows, is The Online
Encyclopedia of Integer Sequences sequence A062869 (date: June 26, 2001) about
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which very little was known, until this paper, apart from a table of values for
1<n<09.

Here N (respectively, P, Q and R) denotes the nonnegative integers (respec-
tively, the positive integers, the rational numbers and the real numbers). Also |x]
is the largest integer at most € R. Let (r)g = 1land (r)y = (r)--- (r—k+1) (k €
P,r € R). See COMTET [4] for combinatorics and DURRETT [5] for probability.

2. MAIN RESULTS

2.1. Equidistribution of A,,, D,, and E,,

STANLEY [8; Proposition 1.3.12] gave an explicit bijection f : &,, — &,, so
that the number of ascents of o equals the number of excedances of f(o) for all
o € 6,. We next give a different bijection f that also satisfies A, (c) = E,(f(0))
for all o € G,,.

Lemma 2.1. The function [ : &, — &, defined in the proof is a bijection where
the number of ascents of o equals the number of excedances of f(o) and A,(o) =
E.(f(0)) for all 0 € &,,. Hence, a(n, k) =e(n,k) for alln € P and k € N.

Proof. Suppose ¢ = (o(1),...,0(n)) € &, has ascents at 1 < i3 < -+ < 4y <
n—1. Order o(i1),...,0(i¢) as 1 < o(j1) <--- < o(je) <mand [n] —{o(jr + 1) :
1<k<{}asl <t < -+ <thpy <n. Now construct 7 € &, as follows.
Place o(jr + 1) at coordinate o(j) of 7 (1 < k < £). Necessarily, t; = 1 (as all
o(jx +1) > o(jr) + 1 > 2) which we place in the left-most unused coordinate s of
7. Having placed t1,...,t, in (the left-most unused) coordinates 1 < s1 < --- < s¢,
we place tgy1 in the left-most unused coordinate sq1 (> s4, necessarily) of 7
(1<g<n—¢-1). Clearly, 7 € 6,,.

Assume that all of 1,...,t, have appeared in coordinates 1,..., s, of 7 where
1 <qg<n—-0—-1 Let sg41 = sq+a, tgy1 = tg + b and s, = t; + ¢ with
a,b € P and ¢ € N. Suppose that tg41 > sg41+1. Forl1 <z <a+4e¢ t;+1<
tg+z < ty+a+c = 5441 < tg1 — 1. Then, each t; + = = o(jr + 1) is at
coordinate o(ji) with o(jr) <ty +2—1<t;+a+c—1= 5441 — 1. Hence, all of
tq+1,...,tg+a+c = sq41 appear in coordinates 1, ..., 5,41 — 1. Consequently, all
of 1,...,84+1 appear in coordinates 1,. .., sq+1 — 1, which is a contradiction. Then
tq+1 < Sq+1 and, as above, all of t; +1,...,t,41 appear in coordinates 1,..., Sq41.
Hence, all of 1,...,%,41 appear in coordinates 1,...,5441.

Consequently, sq > t; (1 < g < n —{), so that the number of ascents of o
equals the number of excedances of 7 and A, (o) = E, (7). It is immediately seen
that f: 6, — &, by f:0+— 7 is a bijection proving our result. (I

2.2. Expectation and Variance of X,,

Theorem 2.2. The random variables X,, on £, have

2 1 M +2m24+Tn+7
un=E(Xn)=n6 and o2 = Var(X,) = = - 280+ s
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Proof. We prove the theorem for the statistic A,. Let I = {(i,7,s) : 1 < i <
n—1,1<r<s<n}. For (i,7,5) € I and 0 € &, let

Aoy {5 ot =rali ) =
(i,r,s) - 0, otherwise;

and A, = >, Agrs - Then A,(0) is the sum of the lengths of ascents of .

(i,r,8)€T
For (i,7,5) € I, E(A(irs)) = %, hence,
n—1 n s—1 2
n°—1
E(An) = > BE(Agrs) s
(i,r,8)€T i=1 s=2 r=1
Let J = 1% — {((i,r,s), (i,7,8)) : (i,r,s) € I'}. Then,
2 2
Ay = Yo Aurediaw = D AT D Awro A -
((4,7,5),(4,t,u)) €12 (i,r,s)€l ((4,m,8),(d.t,u))€J

Obviously E(Ai r6) A tu)) = B(Ag.t0)Agirs)) for ((4,7,8), (j,t,u)) € I?. Further,
BE(AgrsAGiw) =0if (1) j=i+1and s #¢t, (2) i = j+1 and 7 # u, or, (3)
|i — 4] > 2 and r, s, ¢, u are not distinct. Hence, we need only consider the sets
J={((¢,r8),(i+1,s8t)eJ:1<i<n-—2}, J],

Jo = {((i,7,8), (4, t,u) € J: 1 <i<j—2<n-—3andrs,t u are distinct} , J;

where K* = {(b,a) : (a,b) € K} for K C J. First, for (i,r,s) € I, E(A%Z“)) =
2
(s—7) , hence,
(n)2
— — (s—7)?% nd-n
Ly = Z E( (i,r.s)) ZZZ 12 -
(i,r,8)€T i=1 s=2r=1

Second, for ((i,7,s), (i +1,5,t)) € Ji, E(AgrsAit1,50)) = (‘9_2&, hence,

(n)s
n—2 n t—1 s—1
(s —r)(t —s)
¥y = Z E(A(irs)Alit1,50) = Z o
((4,m5), (¢+1 s t))€J1 i=1 t=3 s=2 r=1 3
Z{ §3 4 (t+1)s? — ts}

t
2

Il
w

s=1

| I
E DO
’5»—!
wa EM‘
M- 107

H
~
I

{t' =263 — ¢ + 2t}
1

<.

3II

—2
= {n® —5n® +4n} =
=1

nd+n?—4dn—4
120

<.
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(appropriate summands for s = 1 and ¢t = 1,2 are 0). Third, for ((,r, s), (j,t,u)) €

(s=r)(u—t)
Jo, E(Apr ) AGtu) = O

.Forfixed1 <i<j—2<n-—3,

Y3 = Z E(A¢ir5) A ) = Z Z Z %

all such ((¢,r,s),(4,t,u)) s=2r=1u=2t=1
7,8,t,u distinct
1 n s—1 n u—1 r—1 s—1
G IPMCELID PP IIEUED SIEVED SR
=2 =1 u=2 t=1 t=1 t=1
n n
SDINCEUED SNUER Y
u=r+1 u=s+1
1 n s—1 n+1
— o e-n{ (") e
4 s=2 r=1
- {7“2—7“—1—52—5—1—712—(r—i—s—l)n}}.
Now,
n s—1
Z (s—r){r* —r+s>—s+n®—(r+s—1)n}
s=2 r=1
n s—1
:Z Z{—r3+(n+1+s)r27(n2+n+52)r
s=2 r=1
+ [53 —(n+1)s*+ (n® +n)s|}
1 n
=5 > {7s* — (8n+14)s® + (6n° + 12n + 5)s”
s=1
5 — 15m3 + 8
_ (6n2+4n72)s} - n—nJrn
60
Then,
1 n+1\2 nt—n? Tn®—15n3+8n
S RLEPRE
_ 10n° — 42n* 4+ 10n3 + 90n? — 20n — 48
B 360(n — 1)3 ’
hence, summing over all such ¢ and j,
Xy= Z E(A(i,'r',s)aA(j,t,u))

((3,7,8),(4,t,u)) € J2
n—2 5n* — 16n% — 11n2 + 34n + 24
2 360
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5n* + 2n° — 8n% + Tn + 12

Consequently, E(A?) = ¥1+2%5+2%, = =

22+ Tn+ 7
- 180

, hence, Var(A,,)

O

2.3. Central Limit Theorem for {X,,}

We now prove a central limit theorem for {X,}. Our proof is based on
the following result of HOEFFDING [7; Theorem 3] Given cn ¢ [ — R, let

dp, [n]2 — R be defined by dn(i,5) = cn(i,j) — = Z cn(9,7) — — Z cn(ish)

2 eulo,

—_

1
_2

||Mz

Theorem 2.3 (HOEFFDING [7]). Suppose random variables S,, : &, — R on Q,, are
max d; (i, )

defined by Su(0) = 3 eali,o(0). If lim =252 T 0, fhen Sntn J
i=1 n—oo E Z an(Z,j) On
i=1 j=1
n n n n
N0, 1) where i = = 3> 30 enli,f) and oy = ——= 3> 3> d2(i,)
i=lj=1 i=1j=1

Theorem 2.4. The random variables X,, on §, satisfy the central limit theorem

Xn — pin
Zn —Hnd N0, 1)

On

where p, = B(X,) = (n?> —1)/6 and 0,2 = Var (X,,) = (2n® + 2n% + Tn + 7)/180.
FEquivalently (see DURRETT [5; Ex. 2.1, p.70]),
lim sup |Pr(X, < |un +20,]) — ®(z)] =0.

N0 zeR
Proof. We prove the theorem for the statistic E,. Let ¢, : [n]?> — N be defined by
n
cn(i,j) = max{0,j —i}. From Theorem 2.3, Sp(0) = Y. cn(i,0(i)) = En(o) and

i=1

dy : [n]?> — Q is given by

1] 1m—i+1 1 m+1 o
-1y == - < <n:
J—e n(2> n( 2 >+n2( 3 )’ l<i<jsm
dn(i,j) =
n 1(j> 1(n—i+1>+1(n+1> l<ici<
-G n 0 e , <j<i<n.

Al d,,(i,7) < dn(l,n) = (n? —1)/6n < n/6. Set a = [2n/3] and b= |n/3]. For

a+1<i<n, 1<j<bandn > 88, d,(i,j) > n/20. Thenz Zd( j) >
1=1 j5=1
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max  d,2(4,5)

n b P
> > d2(i,5) > n*/4000, hence, 11%1]9;— = O(n™1). Lemma 2.1 im-
i=at =1 S3 Y diid)
i=1 j=1
plies the p, and o, of Theorems 2.2 and 2.3 are identical (as can be verified). Our
result follows from Theorem 2.3. g

Theorem 2.4 and (1) imply the following asymptotic result.
Corollary 2.5. With ju,, = (n?> —1)/6 and 0,2 = (2n® + 2n* + Tn + 7) /180,

1 [bn+zon]
nlirrgo itelg ] Z a(n, k) — ®(x)] =0.
k=0
[Hn+Bon]
In particular, > a(n, k) ~ {CID([?) — CID(a)} n! uniformly for real a < 3.

k=|pn+ao,|+1
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