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EIGENVALUES, EIGENFUNCTIONS AND GREEN’S

FUNCTIONS ON A PATH VIA CHEBYSHEV

POLYNOMIALS

E. Bendito, A.M. Encinas, A. Carmona

In this work we analyze the boundary value problems on a path associated
with Schrödinger operators with constant ground state. These problems in-
clude the cases in which the boundary has two, one or none vertices. In
addition, we study the periodic boundary value problem that corresponds to
the Poisson equation in a cycle. Moreover, we obtain the Green’s function for
each regular problem and the eigenvalues and their corresponding eigenfunc-
tions otherwise. In each case, the Green’s functions, the eigenvalues and the
eigenfunctions are given in terms of first, second and third kind Chebyshev
polynomials.

1. INTRODUCTION

In this work we analyze linear boundary value problems on a finite path
associated with Schrödinger operators with constant ground state. These problems
model for instance the equations of motion for a finite atom lattice with nearest–
neighbour interactions, see [11]. In that context, the Green’s function contains
all the physical information of the system and it admits an interpretation as an
input–output response function, see [9].

In spite of its relevance the Green’s function on a path have been obtained
only for some boundary conditions, mainly for Dirichlet conditions or more gen-
erally for the so–called Sturm–Liouville boundary conditions, see [1–5, 7, 8, 10].
Moreover, a wide variety of techniques is used among which we mention the dis-
crete Fourier transform, eigenvalues and eigenfunctions or contour integration. In
some cases a closed–form of Green’s functions has been obtained using Chebyshev

2000 Mathematics Subject Classification. 39A12, 34B45, 05E35.
Keywords and Phrases. Discrete Schrödinger operator, paths, Green’s function, eigenvalues, Cheby-

shev polynomials.

282



Eigenvalues, eigenfunctions and Green’s functions on a path . . . 283

polynomials. In this work, we concentrate on determining explicit expressions,
via Chebyshev polynomials, for the Green’s function associated with any regular
boundary value problem on a path. Our study is similar to what is known for
boundary value problems associated with ordinary differential equations, [6, Chap-
ters 7, 11, 12]. When the boundary value problem is singular, the eigenvalues and
eigenfunctions can be seen as eigenvalues and eigenfunction of the combinatorial
Laplacian with the same boundary conditions. So, we take advantage of the pre-
vious study to determine the eigenvalues and eigenfunctions in term of Chebyshev
polynomials. It is worth to mention that in the discrete setting, a similar structure
to the continuous and non–selfadjoint case appears; that is, there exist boundary
value problems without eigenvalues and problems for which any complex value is
an eigenvalue.

The boundary value problems here considered are of three types that cor-
respond to the cases in which the boundary has either two, one or none side. A
preliminary study of two–side regular boundary value problems on a path was de-
veloped by the authors in [4] under the denomination of two–point boundary value
problems. In each case, it is essential to describe the solutions of the Schröndinger
equation on the interior nodes of the path. We show that it is possible to obtain
explicitly such solutions in terms of second kind Chebyshev polynomials. As an
immediate consequence of this property, we can easily characterize those boundary
value problems that are regular and then we obtain their corresponding Green’s
function, as well as the eigenvalues and the eigenfunctions for the non–regular case,
in terms of Chebyshev polynomials. We also deal with the Poisson equation on
a cycle and we show that this problem can be seen as a two–side boundary value
problem on a path by introducing the so–called periodic boundary conditions.

2. THE SCHRÖDINGER EQUATION ON A PATH

Our purpose in this section is to formulate the difference equations related
with Schrödinger operators on a connected subset of the finite path of n+2 vertices,
Pn+2. We can suppose without loss of generality that the set of vertices of Pn+2 is
V = {0, . . . , n + 1} and we define F as the subset of vertices F = {1, . . . , n}.

For any s ∈ V , εs stands for the Dirac function on s. Moreover, C(V ) is the
vector space of functions u : V → C. For each q ∈ C, the operator Lq : C(V ) → C(V )
defined as

(1)

Lq(u)(0) = (2q − 1)u(0)− u(1)

Lq(u)(k) = 2qu(k)− u(k + 1)− u(k − 1), k ∈ F,

Lq(u)(n + 1) = (2q − 1)u(n + 1)− u(n),

is called a Schrödinger operator on Pn+2 and the value 2(q − 1) is usually called
the potential or ground state associated with Lq. Observe that the Schrödinger
operator with null ground state is nothing else but the combinatorial Laplacian of
Pn+2 and, in this case, we omit the subindex.
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For each f ∈ C(V ), we call a Schrödinger equation on F with data f the
identity Lq(u) = f on F . In particular, Lq(u) = 0 on F , is called a homogeneous
Schrödinger equation on F .

If u, v ∈ C(V ) the Wronskian (or Casoratian) of u and v, which is denoted
by w[u, v] ∈ C(V ), is defined as

(2) w[u, v](k) = u(k)v(k + 1)− u(k + 1)v(k), k = 0, . . . , n

and w[u, v](n + 1) = w[u, v](n), see [1, 10].
The following results are the reformulation for the Schödinger equation on a

path of some well–known facts in the context of difference equations and they will
be useful throughout the paper, see [1, 10].

Lemma 2.1. The set of solutions of the homogeneous Schrödinger equation on F
is a two–dimensional vector space. Moreover, if u, v ∈ C(V ) are solutions of the
homogeneous Schrödinger equation on F then w[u, v] is constant on V and this
value is non–zero iff u and v are linearly independent.

To end this section, we describe some basic properties of the so–called Cheby-
shev Polynomials that will be useful in this work; see [12]. A sequence of complex
polynomials {Qn}+∞n=−∞ is called a Chebyshev sequence if it satisfies the recurrence
law

(3) Qn+2(z) = 2zQn+1(z)−Qn(z), for each n ∈ Z.

The recurrence law (3) shows that any linear combination of Chebyshev sequences
is a Chebyshev sequence and that if {Qk}∞k=−∞ is a Chebyshev sequence, then
{Qk−m}∞k=−∞ also is, for any m ∈ Z. In adddition, any Chebyshev sequence
is uniquely determined by the choice of the corresponding zero and one order
Chebyshev polynomials. In particular, the sequences {Tn}+∞n=−∞, {Un}+∞n=−∞ and
{Vn}+∞n=−∞ of first, second and third kind Chebyshev polynomials are obtained by
choosing T0(z) = U0(z) = V0(z) = 1, T1(z) = z, U1(z) = 2z and V1(z) = 2z − 1,
respectively. The different kinds of Chebyshev polynomials are closely related.
Moreover, these relationships display the relevance of the second kind Chebyshev
polynomials.

Lemma 2.2. For any n ∈ Z and any z ∈ C, Tn+1(z) = zUn(z) − Un−1(z),
U−n(z) = −Un−2(z) and Vn(z) = Un(z) − Un−1(z). In particular, for any z ∈ C,
U−1(z) = 0 and for any k, m, r ∈ Z

Um+r(z)Uk−r(z)− Um(z)Uk(z) = Ur−1(z)Uk−m−r−1(z).

Lemma 2.3. For each n ∈ N∗ the roots of the n-th order Chebyshev polynomial
of second kind are qk = cos

(
kπ

n + 1

)
, k = 1, . . . , n. Moreover, Tn+1(z) = 1 iff

z = q2k, k = 0, . . . ,
⌈

n

2

⌉
, and for any m ∈ Z and k = 1, . . . ,

⌈
n

2

⌉
, Un−m(qk) =

(−1)k+1Um−1(qk) and Tn+2−m(qk) = (−1)kTm−1(qk).
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The close relationship between the homogeneous Schrödinger equation on F
and Chebyshev polynomials is well–known and has been widely used either expli-
citly or implicitly at previous works, see for instance [3, 5, 8]. This relation appears
clearly from the Equality (3) and it is contained in the following result.

Lemma 2.4. A function u ∈ C(V ) is a solution of the homogeneous Schrödinger
equation on F iff there exists a Chebyshev sequence {Qk}∞k=−∞ such that u(k) =
Qk(q) for any k ∈ F . In particular, if for any k ∈ V we define u(k) = Uk−1(q)
and v(k) = Uk−2(q), then w[u, v] = 1 and hence {u, v} are a basis of the space of
solution of the homogeneous Schrödinger equation on F . Moreover, any solution
of the Schrödinger equation on F with data f ∈ C(V ) is determined by u(k) =

y(k) +
k∑

s=1
Us−k−1(q)f(s), k ∈ V, where y is a solution of the homogeneous Schrö-

dinger equation on F .

3. TWO–SIDE BOUNDARY VALUE PROBLEMS

Our aim in this section is to analyze the boundary value problems on F =
{1, . . . , n} associated with a Schrödinger operator. As a typical boundary condition
involves vertices at each side of the path, namely the vertices 0, 1, n and n+1, these
problems are generally named two–side boundary value problems.

Given a, b, c, d ∈ C non-simultaneously zero, the linear map B : C(V ) → C
determined by the expression

(4) B(u) = au(0) + bu(1) + cu(n) + du(n + 1), for any u ∈ C(V )

is called linear two–side boundary condition on F with coefficients a, b, c and d.
If B1,B2 are the boundary conditions on F with coefficients c11, c12, c13, c14 and
c21, c22, c23, c24, respectively, then for any u ∈ C(V ) it is verified that

(5)
[
B1(u)
B2(u)

]
=

[
c11 c12

c21 c22

] [
u(0)
u(1)

]
+

[
c13 c14

c23 c24

] [
u(n)

u(n + 1)

]
and B1 and B2 are called boundary conditions determined by the matrix C = (cij).

In addition, if for any 1 ≤ i < j ≤ 4 we consider the matrix Cij =
[

c1i c1j

c2i c2j

]
and dij = det Cij , then the polynomial

(6) P
C
(z) = d14Un(z) + (d13 + d24)Un−1(z) + d23Un−2(z) + d12 + d34

is called boundary polynomial determined by C.

Lemma 3.1. If B1 and B2 are the boundary conditions determined by the matrix
C ∈M2×4(R), then they are linearly independent iff rank C = 2; that is, iff dij 6= 0
for some 1 ≤ i < j ≤ 4.

In the sequel we suppose that the boundary conditions (5) are fixed and
rank C = 2. Then, a boundary value problem on F consists in finding u ∈ C(V )
such that
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(7) Lq(u) = f, on F, B1(u) = g1 and B2(u) = g2

for given f ∈ C(V ) and g1, g2 ∈ C. The problem is called semi–homogeneous when
g1 = g2 = 0 and homogeneous if, in addition, f = 0. We say that the boundary value
problem (7) is regular if the corresponding homogenous boundary value problem
has the null function as its unique solution. It follows by standard arguments that
the boundary value problem (7) is regular iff for any data f ∈ C(V ), g1, g2 ∈ C it
has a unique solution. The following result shows that we can restrict our analysis
of two–side boundary value problems to the study of the semi–homogeneous ones.

Lemma 3.2. Consider α, β, γ, δ ∈ C such that cj1α + cj2β + cj3γ + cj4δ = gj ,
j = 1, 2. Then u ∈ C(V ) verifies that Lq(u) = f on F, B1(u) = g1 and B2(u) = g2

iff the function v = u − αε0 − βε1 − γεn − δεn+1 verifies that Lq(v) = f + (α −
2qβ)ε1 + βε2 + γεn−1 + (δ − 2qγ)εn on F and moreover that B1(v) = B2(v) = 0.

A pair of boundary conditions (B̂1, B̂2) determined by Ĉ ∈M2×4(C) is called
equivalent to the pair (B1,B2) if there exists a non–singular matrix M ∈ M2(C)
such that Ĉ = MC. Clearly P

Ĉ
(z) = (detM)P

C
(z), Lemma 3.1 implies that B̂1 and

B̂2 are linearly independent and moreover, a function v ∈ C(V ) verifies B1(v) =
B2(v) = 0 iff B̂1(v) = B̂2(v) = 0. Therefore, the semi–homogeneous boundary value
problem Lq(u) = f on F , B̂1(u) = B̂2(u) = 0 is equivalent to the semi–homogeneous
boundary value problem associated with (7), since both have the same solutions.
As a consequence a boundary value problem is regular iff any equivalent boundary
value problem is also regular.

Our first objective is to obtain the solution of any regular semi–homogeneous
boundary value problem by considering its resolvent kernel. Specifically, if we
suppose that the boundary value problem (7) is regular, then for any f ∈ C(V ),
the function Gq ∈ C(V × F ) characterized by

(8) Lq(Gq(·, s)) = εs on F, B1(Gq(·, s)) = B2(Gq(·, s)) = 0, s ∈ F

is called Green’s function for the boundary value problem (7). Then, if f ∈ C(V )

the function u(k) =
n∑

s=1
Gq(k, s) f(s), k ∈ V , is the unique solution of the semi–

homogeneous boundary value problem with data f .

Theorem 3.3. The boundary value problem (7) is regular iff P
C
(q) 6= 0 and then

its Green’s function for any 1 ≤ s ≤ n and any 0 ≤ k ≤ s is given by

G(k, s) =
1

P
C
(q)

[
d14Un−s(q) + d13Un−s−1(q)

]
Uk−1(q)

+
1

P
C
(q)

[
d24Un−s(q) + d23Un−s−1(q)

]
Uk−2(q)−

d34

P
C
(q)

U|k−s|−1(q)

and for any 1 ≤ s ≤ n and any s ≤ k ≤ n + 1 by

G(k, s) =
1

P
C
(q)

[
d14Un−k(q) + d13Un−k−1(q)

]
Us−1(q)

+
1

P
C
(q)

[
d24Un−k(q) + d23Un−k−1(q)

]
Us−2(q)−

d12

P
C
(q)

U|k−s|−1(q).
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Proof. Throughout the proof we systematically use the last identity in Lemma
2.2.

If u(k) = Uk−1(q) and v(k) = Uk−2(q), applying Lemma 2.4, a function
y ∈ C(V ) is a solution of the homogeneous boundary value problem iff y = αu+βv
where α, β ∈ C verify [

B1(u) B1(v)
B2(u) B2(v)

] [
α
β

]
=

[
0
0

]
.

Therefore, the boundary value problem is regular iff B1(u)B2(v)− B2(u)B1(v) 6= 0
and hence, the first claim follows from the identity P

C
(q) = B1(u)B2(v)−B2(u)B1(v).

For a fixed s ∈ F , from Lemma 2.4 we get that for any k ∈ V ,

Gq(k, s) = ys(k) +
k∑

r=1

Ur−k−1(q)εs(r) = ys(k) +
{

0, if k ≤ s,
Us−k−1(q), if k ≥ s,

where ys satisfies that Lq(ys) = 0 on F and Bj(ys) = cj3Un−s−1(q)+cj4Un−s(q), j =
1, 2. Hence, if ys(k) = a(s)u(k) + b(s)v(k), it holds[

a(s)
b(s)

]
=

[
B1(u) B1(v)
B2(u) B2(v)

]−1 [
c13Un−s−1(q) + c14Un−s(q)
c23Un−s−1(q) + c24Un−s(q)

]
and therefore

P
C
(q)a(s) = d13Un−s−1(q) + d14Un−s(q)− d34Us−2(q),

P
C
(q)b(s) = d23Un−s−1(q) + d24Un−s(q) + d34Us−1(q).

Consequently, we obtain that

P
C
(q)ys(k) =

(
d13Un−s−1(q) + d14Un−s(q)

)
Uk−1(q)

+
(
d23Un−s−1(q) + d24Un−s(q)

)
Uk−2(q)− d34Us−k−1(q).

On the other hand, for k ≥ s

P
C
(q)

(
ys(k) + Us−k−1(q)

)
= d13

(
Un−s−1(q)Uk−1(q)− Un−1(q)Uk−s−1(q)

)
+ d14

(
Un−s(q)Uk−1(q)− Un(q)Uk−s−1(q)

)
+ d23

(
Un−s−1(q)Uk−2(q)− Un−2(q)Uk−s−1(q)

)
+ d24

(
Un−s(q)Uk−2(q)− Un−1(q)Uk−s−1(q)

)
+d12Us−k−1(q)

=
(
d13Un−1−k(q) + d14Un−k(q)

)
Us−1(q)

+
(
d23Un−1−k(q) + d24Un−k(q)

)
Us−2(q)

−d12Uk−s−1(q)

and the expression for the Green’s function follows. �
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In view of the above result, we say that q ∈ C is a regular value of the
boundary value problem (7) if P

C
(q) 6= 0 and a singular value of the boundary

value problem, otherwise. Observe that q is a singular value iff 2(1 − q) is an
eigenvalue of the following boundary eigenvalue problem

(9) L(u) = λu, on F ; B1(u) = B2(u) = 0.

If λ ∈ C is an eigenvalue, the dimension of its associated eigenfunction subspace
is either 1, in which case λ is called a simple eigenvalue, or 2, in which case λ is
called a double eigenvalue.

Proposition 3.4. If λ = 2(1− q), λ is a double eigenvalue of (9) iff

c11 = c13Un−2(q) + c14Un−1(q), c12 = −c13Un−1(q)− c14Un(q),

c21 = c23Un−2(q) + c24Un−1(q), c22 = −c23Un−1(q)− c24Un(q).

Therefore, P
C
(z) = d34

(
Un−2(q)Un(z) − 2Un−1(q)Un−1(z) + Un(q)Un−2(z) + 2

)
,

d34 6= 0 and hence the pair of boundary conditions are equivalent to

B̂1(u) = Un−2(q)u(0)− Un−1(q)u(1) + u(n),

B̂2(u) = Un−1(q)u(0)− Un(q)u(1) + u(n + 1).

Proof. It is clear that λ = 2(1 − q) is a double eigenvalue of (7) iff any solution
of the homogeneous Schrödinger equation, Lq(v) = 0 on F , verifies the boundary
conditions. Therefore, if u(k) = Uk−1(q) and v(k) = Uk−2(q), then λ is a double
eigenvalue iff B1(u) = B2(u) = B1(v) = B2(v) = 0, which imply the identities for
the coefficients of the boundary conditions. These identities imply that d12 = d34,
d13 = d24 = −d34Un−1(q), d14 = d34Un−2(q) and d23 = d34Un(q), and hence
d34 6= 0 since rank C = 2. The last conclusion follows taking into account that B̂1

and B̂2 are the boundary conditions determined by the matrix C−1
34 C. �

Proposition 3.5. If λ = 2(1− q) is a simple eigenvalue of (9), then

u(k) = c21Uk−1(q) + c22Uk−2(q)− c23Un−k−1(q)− c24Un−k(q)

v(k) = c11Uk−1(q) + c12Uk−2(q)− c13Un−k−1(q)− c14Un−k(q),

are linearly dependent eigenfunctions corresponding to λ. Moreover, u is non–null
except when c21 = c23Un−2(q) + c24Un−1(q) and c22 = −c23Un−1(q) − c24Un(q) in
which case v is non–null.

Proof. If we consider z1(k) = Uk−1(q) and z2(k) = Uk−2(q), then u = Az1 + Bz2

verifies B1(u) = B2(u) = 0 iff[
B1(z1) B1(z2)
B2(z1) B2(z2)

] [
A
B

]
=

[
0
0

]
.

The above matrix is singular since P
C
(q) = 0 and non–null since 2(1− q) is a

simple eigenvalue. When the first row is non–null, if we can choose A = −B1(z2)
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and B = B1(z1), then u is a non–null eigenfunction, whereas when the second row
is non–null, the choice A = −B2(z2) and B = B2(z1) determines that u is non–null.
Taking into account the identities

B1(z1) = c12 + c13Un−1(q) + c14Un(q), B1(z2) = −c11 + c13Un−2(q) + c14Un−1(q),

B2(z1) = c22 + c23Un−1(q) + c24Un(q), B2(z2) = −c21 + c23Un−2(q) + c24Un−1(q),

when either B2(z1) 6= 0 or B2(z2) 6= 0, we obtain that

u(k) = c21Uk−1(q) + c22Uk−2(q) + c23

(
Un−1(q)Uk−2(q)− Un−2(q)Uk−1(q)

)
+ c24

(
Un(q)Uk−2(q)− Un−1(q)Uk−1(q)

)
= c21Uk−1(q) + c22Uk−2(q)− c23Un−k−1(q)− c24Un−k(q).

When either B1(z1) 6= 0 or B1(z2) 6= 0, the same reasoning determines the
expression for the non–null function v(k) = −B1(z2)Uk−1(q) + B2(z1)Uk−2(q). �

Our next objective is to determine the different eigenvalues and eigenfunctions
for the eigenvalue problem (9) for each pair of boundary conditions. So, we classify
the boundary conditions depending on whether they involve vertices on the interior
or exterior boundary of F . The inner boundary and the outer boundary of F are
defined as δ−(F ) = {1, n} and δ+(F ) = {0, n + 1}, respectively. Then, we say
that the pair (B1,B2) is of inner type iff there exists an equivalent pair whose
boundary conditions involves only vertices in δ−(F ); we say that the pair (B1,B2)
is of outer type iff each boundary condition of every equivalent pair involves the
value of functions in at least one vertex of δ+(F ), and we say that the pair (B1,B2)
is of in–outer type, otherwise.

Proposition 3.6. The following results hold :

(i) The pair (B1,B2) is of inner type iff C14 = 0 and hence it is equivalent to the
pair

B̂1(u) = u(1) and B̂2(u) = u(n).

(ii) The pair (B1,B2) is of outer type iff d14 6= 0 and then, there exist a, b, c, d ∈ C
such that it is equivalent to the pair

B̂1(u) = u(0) + au(1) + bu(n) and B̂2(u) = cu(1) + du(n) + u(n + 1).

(iii) The pair (B1,B2) is of in–outer type iff C14 6= 0 but d14 = 0. Then, there
exist a, b, c, d, α, β ∈ C with (|a|+ |d|)(|α|+ |β|) > 0 and such that (B1,B2) is
equivalent to the pair

B̂1(u) = au(0) + bu(1) + cu(n) + du(n + 1) and B̂2(u) = αu(1) + βu(n).

Proof. The pair is of inner type iff there exists a non singular matrix M such
that MC14 = 0; that is, iff C14 = 0. Moreover, in this case necessarily d23 6= 0,
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since rank C = 2 and hence B̂1 and B̂2 are the boundary conditions determined by
C−1

23 C.
If d14 6= 0, then, for any non singular matrix M , we get that det (MC14) 6= 0,

which implies that each row of MC14 is non null and hence the boundary condition
are of outer type. In addition, B̂1 and B̂2 are the boundary conditions determined
by C−1

14 C.
Conversely, if d14 = 0 but C14 6= 0, then there exists a non singular matrix M

such that the second row of MC14 is null and hence the pair (B1,B2) is of in–outer
type and moreover B̂1 and B̂2 are the boundary conditions determined by MC. �

Proposition 3.7. The eigenvalues of the inner boundary eigenvalue problem

Lu = λu, on F, u(1) = u(n) = 0

are simple and given by λj = 2(1 − qj) where qj = cos
(

jπ

n− 1

)
, j = 1, . . . , n − 2.

Moreover, Uk−2(qj) is an eigenfunction associated with λj , for any j = 1, . . . , n−2.

Proof. The expression of the eigenvalues is a straightforward consequence of being
Un−2(z) the boundary polynomial of the inner boundary value problem. Moreover,
applying Proposition 3.4, λj is simple since 0 = c22 6= −c23Un−1(qj)− c24Un(qj) =
−Un−1(qj) = (−1)j+1. Finally, the expression for the eigenfunction follows from
Proposition 3.5. �

Proposition 3.8. Given a, b, c, d ∈ C, the eigenvalues of the outer boundary eigen-
value problem

L(u) = λu on F, u(0) + au(1) + bu(n) = cu(1) + du(n) + u(n + 1) = 0

are {2(1− qj)}n
j=1 where qj , j = 1, . . . , n are the zeros of the polynomial

P (z) = Un(z) + (a + d)Un−1(z) + (ad− bc)Un−2(z) + b + c.

Moreover, the following properties hold :

(i) λ = 2(1 − q) is a double eigenvalue iff Un−2(q) 6= 0 and moreover b = c =
1

Un−2(q)
and a = d = −Un−1(q)

Un−2(q)
.

(ii) There exists at most a unique double eigenvalue except when a = d = 0 and

either b = c = −1, in which case 2 − 2 cos
(

2jπ

n

)
, j = 1, . . . ,

⌊
n− 1

2

⌋
are

the double eigenvalues, or b = c = 1, in which case 2 − 2 cos
(

(2j − 1)π

n

)
,

j = 1, . . . ,
⌈

n− 1

2

⌉
are the double eigenvalues.

(iii) If λ = 2(1− q) is a simple eigenvalue, then Uk−1(q)+aUk−2(q)− bUn−k−1(q)
is a non–null eigenfunction corresponding to λ, except when Un−2(q) 6= 0, b =

1

Un−2(q)
and a = −Un−1(q)

Un−2(q)
in which case Un−k(q) + dUn−k−1(q)− cUk−2(q)

is a non–null eigenfunction corresponding to λ.
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Proof. Note first that P (z) is the boundary polynomial corresponding to the outer
boundary value problem.

(i) From Proposition 3.4, λ = 2(1−q) is a double eigenvalue iff 1 = bUn−2(q),
a = −bUn−1(q), 0 = dUn−2(q) + Un−1(q) and c = −dUn−1(q) − Un(q), which is

equivalent to be Un−2(q) 6= 0, b = c = 1

Un−2(q)
and a = d = −Un−1(q)

Un−2(q)
.

(ii) If 2(1 − q) and 2(1 − q̂) are two double eigenvalues, from (i) we get
that Un−2(q) = Un−2(q̂) and Un−1(q) = Un−1(q̂). In addition, P (q) = P (q̂) = 0
imply that Un(q) = Un(q̂). Therefore, by applying the equation (3), it is verified
that 2(q − q̂)Un−1(q) = 0. Hence, either q = q̂ or Un−1(q) = 0. In this case,
Un−2(q) = ±1 and hence the result follows.

(iii) Taking into account the identities obtained in part (i), the result is a
straightforward consequence of Proposition 3.5. �

Proposition 3.9. Given a, b, c, d, α, β ∈ C such that (|a|+ |d|)(|α|+ |β|) > 0, then
λ = 2(1− q) is an eigenvalue of the in–outer boundary eigenvalue problem

L(u) = λu on F, au(0) + bu(1) + cu(n) + du(n + 1) = αu(1) + βu(n) = 0,

iff (aβ − dα)Un−1(q) + (bβ − cα)Un−2(q) + aα − dβ = 0. Moreover, the following
properties hold :

(i) All eigenvalues are simple except when either a = d, b = −(c + 2dq) and

α = −β, in which case 2 − 2 cos
(

2jπ

n− 1

)
, j = 1, . . . ,

⌊
n− 2

2

⌋
are the dou-

ble eigenvalues, or a = −d, b = c + 2dq and α = β, in which case 2 −
2 cos

(
(2j − 1)π

n− 1

)
, j = 1, . . . ,

⌈
n− 2

2

⌉
are the double eigenvalues.

(ii) If 2(1−q) is a simple eigenvalue, then αUk−2(q)−βUn−k−1(q) is a correspond-

ing non–null eigenfunction, except when q = cos
(

2jπ

n− 1

)
, j = 1, . . . ,

⌊
n− 2

2

⌋
and α = −β, in which case (a− d)Uk−1(q) + (b + c + 2qd)Uk−2(q) is a non–

null eigenfunction, or q = cos
(

(2j − 1)π

n− 1

)
, j = 1, . . . ,

⌈
n− 2

2

⌉
and α = β, in

which case (a+d)Uk−1(q)+(b− c−2qd)Uk−2(q) is a non–null eigenfunction.

(iii) If aβ−dα = 0 and bβ− cα 6= 0, then all eigenvalues are simple, there exist at
most n − 2 different eigenvalues and the boundary conditions are equivalent
to

B̂1(u) = au(0) + bu(1) + cu(n) + du(n + 1) and B̃2(u) = au(1) + du(n).

(iv) If aβ − dα = bβ − cα = 0 and a 6= ±d, then the boundary conditions are
equivalent to

B̃1(u) = au(0) + du(n + 1) and B̃2(u) = au(1) + du(n)

and eigenvalues do not exist .
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(v) If aβ − dα = bβ − cα = 0 and a = ±d, then the boundary conditions are
equivalent to

B̃1(u) = u(0)± u(n + 1) and B̃2(u) = u(1)± u(n)

and any complex value is a simple eigenvalue. Moreover, Uk−2(q)∓Un−k−1(q)
is a corresponding non–null eigenfunction, except when a = d and q =

cos
(

(2j − 1)π

n− 1

)
, j = 1, . . . ,

⌊
n− 2

2

⌋
or when a = −d and q = cos

(
2jπ

n− 1

)
,

j = 1, . . . ,
⌈

n− 2

2

⌉
. In both cases, Tk−1(q) is a non–null eigenfunction.

Proof. In this case, the boundary polynomial is

P (z) = (aβ − dα)Un−1(z) + (bβ − cα)Un−2(z) + aα− dβ,

and hence 2(1− q) is an eigenvalue iff P (q) = 0.

(i) Applying Proposition 3.4, 2(1−q) is a double eigenvalue iff a = cUn−2(q)+
dUn−1(q), b = −cUn−1(q) − dUn(q), 0 = βUn−2(q) and α = −βUn−1(q). Then, as
β 6= 0 since |α| + |β| > 0, we obtain that Un−2(q) = 0, which in turns implies
that Un−1(q) = ±1 and Un(q) = ±2q. Definitely, 2(1 − q) is a double eigenvalue
iff Un−2(q) = 0, a = ±d, b = ∓(c + 2dq) and α = ∓β and the expression for the
double eigenvalues follows from Lemma 2.3.

(ii) From Proposition 3.4, αUk−2(q)−βUn−k−1(q) is a non–null eigenfunction,
except when 0 = βUn−2(q) = α + βUn−1(q). Taking into account that β 6= 0, we
get that Un−2(q) = 0 and the results follow from Proposition 2.3.

(iii) Under the hypotheses, the degree of P (z) is n− 2 and hence there exists
at most n− 2 different eigenvalues. Moreover, there exists µ 6= 0 such that α = µa
and β = µd, which implies that the inner boundary condition αu(1) + βu(n) = 0
is equivalent to B̃2. In addition, each eigenvalue must be simple since a = ±d and
α = ∓β would imply that a = d = α = β = 0, a contradiction with the hypothesis
(|a|+ |d|)(|α|+ |β|) > 0.

(iv) In this case, the boundary polynomial is constant and non–null, which
implies that the boundary value problem does not have eigenvalues. Moreover, the
equality bβ − cα = 0 implies that there exists ν 6= 0 such that b = να = νµa and
c = νβ = νµd and hence the pair of boundary conditions is equivalent to (B̃1, B̃2).

(v) In this case, the boundary polynomial is null and then any complex num-
ber is an eigenvalue. Moreover, reasoning as in part (iii) we get that any eigenvalue
is simple. From, Proposition 3.5, Uk−2(q) ∓ Un−k−1(q) is a non–null eigenfunc-
tion, except when 0 = Un−2(q) and 1 = ∓Un−1(q) and then, Uk−1(q)− Uk−3(q) =
2Tk−1(q) is a non–null eigenfunction. �

The boundary value problems above considered encompass the different two–
side boundary value problems that appear in the literature with proper name. To
end this section we specify the more usual ones; that is, unilateral, Sturm–Liouville,
specially Dirichlet and Neumann problems, and periodic problems.
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The pair of boundary conditions (B1,B2) is called unilateral if either C34 = 0,
and then (7) is named initial value problem, or C12 = 0, and then (7) is named
final value problem. Any unilateral pair verifies that d14 = d13 = d23 = d24 =
0 and hence its boundary polynomial is Pn(q) = d12 + d34. In addition, either
d34 = 0 and d12 6= 0 or d12 = 0 and d34 6= 0 since rankC = 2, which implies that
unilateral boundary value problems are regular. Therefore, any unilateral pair is
of in–outer type and equivalent to either

(
u(0), u(1)

)
, for initial value problems, or(

u(n), u(n + 1)
)

for final value problems.

Corollary 3.10. The Green’s function for the initial value problem is

Gq(k, s) = −
{

0, if k ≤ s,
U|k−s|−1(q), if k ≥ s.

whereas the Green’s function for the final value problem is

Gq(k, s) = −
{

U|k−s|−1(q), if k ≤ s,
0, if k ≥ s.

When c13 = c14 = c21 = c22 = 0, B1 and B2 are called Sturm-Liouville
conditions; that is,

(10) B1(u) = au(0) + bu(1) and B2(u) = cu(n) + du(n + 1),

where a, b, c, d ∈ C are such that (|a|+|b|)(|c|+|d|) > 0. Observe that any boundary
conditions of inner type are equivalent to the Sturm–Liouville conditions u(1) and
u(n), that are named inner Dirichlet conditions. On the other hand, the Sturm-
Liouville pair (10) is of outer type iff ad 6= 0 and hence it is equivalent to the
pair

B̂1(u) = u(0) + b̂u(1) and B̂2(u) = ĉu(n) + u(n + 1), b̂, ĉ ∈ C.

The most popular outer Sturm-Liouville conditions are the so–called outer
Dirichlet conditions, that correspond to take b̂ = ĉ = 0, and the Neumann con-
ditions, that correspond to take b̂ = ĉ = −1. Finally, the Sturm-Liouville pair
(10) is of in–outer type when ad = 0 and |a| + |d| > 0. Therefore, any in–outer
Sturm-Liouville pair is equivalent to either the pair

B̂1(u) = u(1) and B̂2(u) = ĉu(n) + u(n + 1), ĉ ∈ C

or the pair
B̂1(u) = u(0) + b̂u(1) and B̂2(u) = u(n), b̂ ∈ C.

Corollary 3.11. Given a, b, c, d ∈ C such that (|a|+ |d|)(|c|+ |d|) > 0 and the
Sturm–Liouville boundary conditions

B1(u) = au(0) + bu(1) and B2(u) = cu(n) + du(n + 1),
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its boundary polynomial is P (z) = adUn(z) + (ac + bd)Un−1(z) + bcUn−2(z) and
then when P (q) 6= 0, its Green function is given by

Gq(k, s) =



(
aUk−1(q) + bUk−2(q)

)(
cUn−s−1(q) + dUn−s(q)

)
adUn(q) + (ac + bd)Un−1(q) + bcUn−2(q)

, 0 ≤ k ≤ s,(
aUs−1(q) + bUs−2(q)

)(
cUn−k−1(q) + dUn−k(q)

)
adUn(q) + (ac + bd)Un−1(q) + bcUn−2(q)

, s ≤ k ≤ n + 1

where 1 ≤ s ≤ n. On the other hand, when P (q) = 0, then 2(1 − q) is a simple
eigenvalue and u(k) = aUk−1(q)+ bUk−2(q) is a corresponding non–null eigenfunc-
tion.

As a consequence, the boundary polynomial for the outer Dirichlet problem
is Un(z) and hence it is regular iff q 6= cos

(
kπ

n + 1

)
, k = 1, . . . , n, in which case its

Green function is given by

Gq(k, s) =
1

Un(q)

{
Uk−1(q) Un−s(q), 0 ≤ k ≤ s,

Us−1(q) Un−k(q), s ≤ k ≤ n + 1,

where 1 ≤ s ≤ n. Therefore, the eigenvalues of the outer Dirichlet problem are
given by λj = 2 − 2 cos

(
kπ

n + 1

)
whose corresponding eigenfunctions are multiple

of Uk−1(qj), j = 1, . . . , n.
On the other hand, the boundary polynomial for the Neumann problem is

Un(z)− 2Un−1(z) + Un−2(z) = 2(q − 1)Un−1(z)

and hence it is regular iff q 6= cos
(

kπ

n

)
, k = 0, . . . , n − 1, in which case its Green

function is given by

Gq(k, s) =
1

2(q − 1) Un−1(q)

{
Vk−1(q) Vn−s(q), 0 ≤ k ≤ s,

Vs−1(q) Vn−k(q), s ≤ k ≤ n + 1,

where 1 ≤ s ≤ n. Therefore, the eigenvalues of the Neumann problem are given
by λ0 = 0, whose eigenfunctions are constant and λj = 2 − 2 cos

(
kπ

n

)
whose

corresponding eigenfunctions are multiple of Vk−1(qj), j = 1, . . . , n− 1.
We remark that a more intricate expression for the above Green functions in

terms of first and second kind Chebyshev polynomials can be found in [3]. Obvi-
ously, both expression are equivalent via some additional properties of the Cheby-
shev polynomials. In addition, for the outer Dirichlet problem the above expression
was obtained in [5].

The last two–side boundary value problem we analyze here corresponds to the
so–called periodic boundary conditions for the Schrödinger operator Lq on Pn+2,

(11) B1(u) = u(0)− u(n + 1) and B2(u) = 2qu(0)− u(1)− u(n).
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The periodic boundary conditions are of in–outer type when q = 0 and of outer
type otherwise. In fact, when q 6= 0 they are equivalent to the conditions

B̂1(u) = u(0)− 1
2q

u(1)− 1
2q

u(n) and B̂2(u) = − 1
2q

u(1)− 1
2q

u(n) + u(n + 1).

The periodic boundary conditions appear associated with the so–called Pois-
son equation for the Schrödinger operator Lq on the cycle Cn with n + 1 vertices.
Specifically, if we suppose that the vertex set of Cn is {0, . . . , n} and f is defined
on {0, . . . , n}, then the Poisson equation on Cn is

(12)

Lq(u)(0) = 2qu(0)− u(1)− u(n) = f(0)

Lq(u)(k) = 2qu(k)− u(k + 1)− u(k − 1) = f(k), k = 1, . . . , n− 1,

Lq(u)(n) = 2qu(n)− u(n− 1)− u(0) = f(n).

The equivalence between the two
problems is carried out by duplicating
vertex 0 and labeling the new vertex as
n + 1, as it is shown in Figure 1.

The first equation in (11) corre-
sponds to a continuity condition, the
second one is the first of (12), whereas
the last equation in (12), corresponds
to the equality Lq(u)(n) = f(n) on the
path, since u(0) = u(n + 1).

Proposition 3.12. The periodic bound-
ary value problem is regular iff

0=n+1

n1
0

F
n+1

Figure 1. Periodic boundary conditions.

q 6= cos
(

2kπ

n + 1

)
, k = 0, . . . ,

⌈n

2

⌉
and then its Green’s function is given by

Gq(k, s) =
Un−|k−s|(q) + U|k−s|−1(q)

2
(
Tn+1(q)− 1

) ,

where 1 ≤ s ≤ n and 0 ≤ k ≤ n + 1.

Proof. The boundary polynomial is P (z) = 2qUn(z)−2Un−1(z)−2 = 2
(
Tn+1(q)−

1
)

from Lemma 2.2. Therefore, the periodic boundary problem is regular iff q 6=
cos

(
2kπ

n + 1

)
, for any k = 0, . . . ,

⌈
n

2

⌉
. Moreover, applying now Theorem 3.3, for
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k ≤ s we obtain that

Gq(k, s) =
1

P (q)

[
2qUn−s(q)− Un−1−s(q)

]
Uk−1(q)

− 1
P (q)

[
Un−s(q)Uk−2(q)− Us−1−k(q)

]
=

1
P (q)

[
Un+1−s(q)Uk−1(q)− Un−s(q)Uk−2(q) + Us−k−1(q)

]
=

1
P (q)

[
Un−|k−s|(q) + U|k−s|−1(q)

]
where we have take into account that

Un−s(q)Uk−2(q) = Un+1−s(q)Uk−1(q)− U0(q)Un+k−s(q)
= Un+1−s(q)Uk−1(q)− Un+k−s(q)

and the same reasoning can be applied in the case s ≤ k. �

Proposition 3.13. If 2(1− q) is an eigenvalue of the periodic eigenvalue problem

L(u) = λu on F, u(0)− u(n + 1) = 2u(0)− u(1)− u(n) = 0,

then it is simple and either q = cos
(

2kπ

n + 1

)
, k = 1, . . . ,

⌊
n

2

⌋
with Uk−1(q) as an

eigenfunction, or q = cos
(

2kπ

n

)
, k = 0, . . . ,

⌊
n− 1

2

⌋
with Vk−1(q) as an eigenfunc-

tion.

Proof. The boundary polynomial is P (z) = 2(Un(z)−Un−1(z)−1) = 2(Vn(z)−1).
Therefore, 2(1− q) is an eigenvalue iff Vn(q) = 1 and hence the expression for the
eigenvalues follows. From part (i) of Proposition 3.8, we get that λ = 2(1− q) is a
double eigenvalue iff Un−2(q) = −2 and Un−1(q) = −1. Then, 0 = P (q) = 2Un(q)
which can not happen and hence any eigenvalue is simple. Moreover, from part
(iii) of Proposition 3.8, 2Uk−1(q)−Uk−2(q)+Un−k−1(q) is a non–null eigenfunction
corresponding to λ and from Lemma 2.3 the above function is a multiple of either
Uk−1(q) or Vk−1(q). �

4. ONE–SIDE BOUNDARY VALUE PROBLEMS

Our aim in this section is to analyze the so–called one–side boundary value
problems; that is, the boundary value problems associated with the Schrödinger
operator on a subset of a finite path whose boundary is located at one side of the
path. Such a subset is denoted by F̂ and we can suppose without loss of generality
that F̂ = {0, 1, . . . , n}, which implies that its inner boundary is δ−(F̂ ) = {n},
whereas its outer boundary is δ+(F̂ ) = {n + 1}.

Given a, b ∈ C such that |a|+|b| > 0, the linear map B : C(V ) → C determined
by the expression

(13) B(u) = au(n) + bu(n + 1), for any u ∈ C(V )
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is called linear one–side boundary condition on F̂ with coefficients a and b. In
addition,

(14) P (z) = bVn+1(z) + aVn(z)

is called one–side boundary polynomial determined by a and b.
For fixed B and given f ∈ C(V ) and g ∈ C, an one–side boundary value

problem problem on F̂ consists in finding u ∈ C(V ) such that

(15) Lq(u) = f, on F̂ , B(u) = g.

The problem is called semi–homogeneous when g = 0 and homogeneous if in addi-
tion f = 0.

We say that the boundary value problem (15) is regular if the corresponding
homogenous boundary value problem Lq(u) = 0 on F̂ and B(u) = 0 has the null
function as its unique solution. Newly (15) is regular iff for any data f ∈ C(V ) and
g ∈ C it has a unique solution.

When the problem (15) is regular we define the Green’s function for the one–
side boundary value problem (15) as the function Gq ∈ C(V × F̂ ) characterized
by

(16) Lq(Gq(·, s)) = εs on F̂ , B(Gq(·, s)) = 0, for any s ∈ F̂ .

The analysis of one–side boundary value problems can be easily derived from
the study of two–side boundary value problems by observing that (15) can be re–
written as the following two–side Sturm–Liouville problem

(17) Lq(u) = f, on F, (2q − 1)u(0)− u(1) = f(0) and B(u) = g.

Therefore, we can reduce the analysis of one–side boundary value problems to the
analysis of semi–homogeneous Sturm-Liouville problems.

Lemma 4.1. Given g ∈ C, then for any f ∈ C(V ) the function u ∈ C(V ) satisfies
that Lq(u) = f on F̂ and B(u) = g iff the function

v = u− ε0 −
(
2q − 1− f(0)

)
ε1 −

g(āεn + b̄εn+1)
|a|2 + |b|2

satisfies that

Lq(v) = f + ε1 +
(
2q − 1− f(0)

)
(ε2 − 2qε1) +

g(āεn−1 + (b̄− 2qā)εn)
|a|2 + |b|2

on F and (2q − 1)v(0)− v(1) = B(v) = 0.

Observe that the boundary polynomial determined for the above Sturm-
Liouville problem is given by

P (z) = b(2q − 1)Un(z) + (a(2q − 1)− b)Un−1(z)− aUn−2(z)

= b(2q − 1)Un(z) + (a(2q − 1)− b)Un−1(z) + aUn(z)− 2qaUn−1(z)

= bUn+1(z) + bUn−1(z)− bUn(z)− (a + b)Un−1(z) + aUn(z)

= bVn+1(z) + aVn(z);
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that is, the one–side boundary polynomial determined by a, b.

Proposition 4.2. The one–side boundary value problem (15) is regular iff bVn+1(q)
+aVn(q) 6= 0 and then its Green function is given by

Gq(k, s) =


Vk(q)

(
aUn−s−1(q) + bUn−s(q)

)
bVn+1(q) + aVn(q)

, 0 ≤ k ≤ s ≤ n,

Vs(q)
(
aUn−k−1(q) + bUn−k(q)

)
bVn+1(q) + aVn(q)

, 1 ≤ s < k ≤ n + 1.

Proof. The regularity condition is a straightforward consequence of the equiva-
lence between the one–side boundary value problem (15) and the Sturm–Liouville
problem (17). In addition, if Ĝq is the Green function for the Sturm–Liouville
problem, the above equivalence implies that

Gq(k, s) = Ĝq(k, s) =



Vk(q)
(
aUn−s−1(q) + bUn−s(q)

)
bVn+1(q) + aVn(q)

, k ≤ s,

Vs(q)
(
aUn−k−1(q) + bUn−k(q)

)
bVn+1(q) + aVn(q)

, s ≤ k,

for any s = 1, . . . , n and any k ∈ V , where we have taken into account that
(2q−1)Uk−1(q)−Uk−2(q) = Vk(q). Moreover, applying Lemma 4.1, we obtain that

Gq(k, 0) = ε0(k) + 2(q − 1)ε1(k) + Ĝq(k, 1) + 2(q − 1)
(
Ĝq(k, 2)− 2qĜq(k, 1)

)
.

For any k ≥ 2, we obtain that

Gq(k, 0) =
V0(q)

(
aUn−k−1(q) + bUn−k(q)

)
bVn+1(q) + aVn(q)

,

since V2(q)− 2qV1(q) = −1 = −V0(q) and V1(q)− 2(q − 1) = 1 = V0(q).
When k ≤ 1,

Ĝq(k, 1) + 2(q − 1)
(
Ĝq(k, 2)− 2qĜq(k, 1)

)
= Vk(q)

(
aUn−1(q) + bUn(q)
aVn(q) + bVn+1(q)

− 1
)

,

since aUn−3(q) + bUn−2(q) − 2q
(
aUn−2(q) + bUn−1(q)

)
= −aUn−1(q) − bUn(q).

Then, for k = 0 we obtain that

Gq(0, 0) =
V0(q)

(
aUn−1(q) + bUn(q)

)
bVn+1(q) + aVn(q)

,
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whereas for k = 1, we have

Gq(1, 0) = − 1 + (2q − 1)
(

aUn−1(q) + bUn(q)
aVn(q) + bVn+1(q)

)

=
a
[
(2q − 1)Un−1(q)− Un(q) + Un−1(q)

]
bVn+1(q) + aVn(q)

+
b
[
(2q − 1)Un(q)− Un+1(q) + Un(q)

]
bVn+1(q) + aVn(q)

=
V0(q)

(
aUn−2(q) + bUn−1(q)

)
bVn+1(q) + aVn(q)

. �

We say that q ∈ C is a regular value of the boundary value problem (15)
if bVn+1(q) + aVn(q) 6= 0 and a singular value of the boundary value problem,
otherwise. Observe that q is a singular value iff 2(1 − q) is an eigenvalue of the
following boundary eigenvalue problem

(18) L(u) = λu, on F̂ ; B(u) = 0.

Proposition 4.3. The eigenvalues of the one–side boundary eigenvalue problem

Lu = λu, on F̂ , au(n) + bu(n + 1) = 0

are simple and λ = 2(1 − q) is one of them iff bVn+1(q) + aVn(q) = 0. Moreover,
aUn−k−1(q) + bUn−k(q) is a non–null eigenfunction associated with λ.

Proof. If λ = 2(1− q) is an eigenvalue and u is an associated eigenfunction, then
Lq(u) = 0 on F . Therefore, if λ is a double eigenvalue of (15), then any solution of
the homogeneous Schrödinger equation, Lq(v) = 0 on F , verifies av(n)+bv(n+1) =
0. As v(k) = b̄Un−k−1(q)−āUn−k(q) verifies that av(n)+bv(n+1) = −(|a|2+|b|2) <
0, any eigenvalue must be simple.

On the other hand, if u is an eigenfunction there exist A,B ∈ C such that
u(k) = AUn−k−1(q) + BUn−k(q) and aB − bA = 0. Therefore, u is a multiple of
aUn−k−1(q) + bUn−k(q). Observe that Lq(u)(0) = 0, since bVn+1(q) + aVn(q) = 0.

�

5. THE POISSON EQUATION

In this section we study the Poisson equation associated with the Schrödinger
operator on the finite path Pn+2. The Poisson equation on V consists in finding
u ∈ C(V ) such that Lq(u) = f on V for any f ∈ C(V ) and it is called regular if the
corresponding homogeneous problem Lq(u) = 0 on V has the null function as its
unique solution or, in an equivalent manner, if Lq(u) = f has a unique solution for
any data f . In addition, P (z) = 2(q − 1)Un+1(z) is called the Poisson polynomial.
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When the Poisson equation is regular we define the Green’s function for the
Poisson equation as the function Gq ∈ C(V × V ) characterized by

(19) Lq(Gq(·, s)) = εs on V , for any s ∈ V .

Newly, the analysis of the Poisson equation can be easily derived from the
study of two–side boundary value problems since the Poisson equation can be seen
as the following two–side Sturm–Liouville problem

(20) Lq(u) = f, on F, B1(u) = f(0) and B2(u) = f(n + 1),

where B1(u) = (2q − 1)u(0)− u(1) and B2(u) = −u(n) + (2q − 1)u(n + 1).

Lemma 5.1. Given f ∈ C(V ) the function u ∈ C(V ) satisfies that Lq(u) = f iff
the function

v = u− ε0 −
(
2q − 1− f(0)

)
ε1 −

(
2q − 1− f(n + 1)

)
εn − εn+1

satisfies that

Lq(v) = f +ε1 +
(
2q−1−f(0)

)
(ε2−2qε1)+

(
2q−1−f(n+1)

)
(εn−1−2qεn)+εn

on F and (2q − 1)v(0)− v(1) = v(n)− (2q − 1)v(n + 1) = 0.
Observe that the boundary polynomial determined for the above Sturm-

Liouville problem is given by

P (z) = (2q − 1)2Un(z)− 2(2q − 1)Un−1(z) + Un−2(z)

= (4q2 − 4q + 1)Un(z) + (2− 4q)Un−1(z)− Un(z) + 2qUn−1(z)

= (4q2 − 4q)Un(z) + (2− 2q)Un−1(z) = 2(q − 1)Un+1(z);

that is, the Poisson polynomial.

Proposition 5.2. The Poisson equation is regular iff q 6= cos
(

kπ

n + 2

)
, for any

k = 0, . . . , n + 1 and then its Green’s function is given by

Gq(k, s) =
1

2(q − 1) Un+1(q)

{
Vk(q)Vn+1−s(q), 0 ≤ k ≤ s ≤ n + 1,

Vs(q) Vn+1−k(q), 0 ≤ s ≤ k ≤ n + 1.

Proof. If Ĝq denotes the Green’s function of the above Sturm–Liouville problem,
then from Corollary 3.11 we get that

Ĝq(k, s) =
1

2(q − 1) Un+1(q)

{
Vk(q)Vn+1−s(q), k ≤ s,

Vs(q) Vn+1−k(q), s ≤ k.

The result follows applying the same reasoning as in the above section and
Lemma 5.1.
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Proposition 5.3. If qj = cos
(

kπ

n + 2

)
, j = 0, . . . , n, then the eigenvalues of the

Poisson eigenvalue problem
Lu = λu, on V

are λj = 2− 2qj , j = 0, . . . , n + 1. Moreover, all of them are simple and Vk(qj) is
a non–null eigenfunction associated with λj .

Proof. The expression for the eigenvalues is a straightforward consequence of
Proposition 5.2. Moreover, if λ = 2(1 − q) is an eigenvalue and u is an associated
eigenfunction, then Lq(u) = 0 on F . Therefore, if λ is a double eigenvalue of
(15), then any solution of the homogeneous Schrödinger equation, Lq(v) = 0 on F ,
verifies (2q− 1)v(0)− v(1) = 0. As v(k) = Uk−1(q) verifies that (2q− 1)v(0)− v(1)
= −1, any eigenvalue must be simple.

On the other hand, if u is an eigenfunction there exist A,B ∈ C such that
u(k) = AUk−1(q) + BUk−2(q) and A = B(1 − 2q). Therefore, u is a multiple of
Vk(q). Observe that Lq(u)(n + 1) = 0, since 2(q − 1)Un+1(q) = 0. �

Notice that taking into account that Vk(1) = 1, the above proposition when
j = 0 gives the well–known result: 0 is an eigenvalue of the Poisson equation whose
corresponding eigenfunctions are constant.
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MTM2007-62551.

REFERENCES

1. R. P. Agarwal: Difference Equations and Inequalities. Marcel Dekker, 2000.
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