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STABILITY OF HOMOMORPHISMS AND
(6, ¢)-DERIVATIONS

Abbas Najati, Themistocles M. Rassias

In this paper, we prove the generalized Hyers—Ulam stability of homomor-
phisms and (6, ¢)-derivations on a ring R into a Banach R-bimodule M.

1. INTRODUCTION

The stability problem of functional equations originated from a question of
ULAM [37] concerning the stability of group homomorphisms: Let (G1,x*) be a
group and let (G2,0,d) be a metric group with the metric d(-,-). Given € > 0, does
there exist 6(€) > 0 such that if a mapping h : G1 — G2 satisfies the inequality

d(h(z *y), h(z) o h(y)) <
for all x,y € Gy, then there is a homomorphism H : Gy — G2 with
d(h(z),H(z)) <e

for all x € G17

In other words, we are looking for situations where homomorphisms are sta-
ble, i.e., if a mapping is almost a homomorphism, then there exists a homomor-
phism near it. HYERS [12] gave a first affirmative answer to the question of Ulam
for Banach spaces. Let X and Y be Banach spaces: Assume that f : X — Y
satisfies

1f(@+y)—flz) - fl <e

for some € > 0 and all x,y € X. Then there exists a unique additive mapping
T:X —Y such that

[f(z) =T ()| <e
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foralz e X.

AOKI [2] and RAss1AS [31] provided a generalization of the Hyers’ theorem
for additive and linear mappings, respectively, by allowing the Cauchy difference
to be unbounded.

Theorem 1.1. (TH. M. RassIAs). Let f : E — E’ be a mapping from a normed
vector space E into a Banach space E’ subject to the inequality

(1.1) 1f (2 +y) = f) = FWl < e(llzl” + [ly]1*)

for all x,y € E, where € and p are constants with € > 0 and p < 1. Then the limit

L(z) = lim f(2")

n—oo 2N

exists for allz € E and L : E — E' is the unique additive mapping which satisfies

2¢e

(1.2) 1f(z) = L@ = 5—

l]?

for allz € E. If p <0 then inequality (1.1) holds for x,y # 0 and (1.2) for = # 0.
Also, if for each x € E the mapping t — f(tx) is continuous in t € R, then L is
linear.

The inequality (1.1) has provided a lot of influence in the development of
what is now known as a generalized Hyers—Ulam stability of functional equations.
In 1994, a generalization of the Th. M. Rassias’ theorem was obtained by GAVRUTA
(8], who replaced the bound e(||x[[” + ||y||”) by a general control function ¢(x,y).
Since then the stability problems of various functional equations and mappings
and their Pexiderized versions with more general domains and ranges have been
investigated by a number of authors (see [21]-[29]). We also refer the readers to
the books [7], [13], [16] and [32].

Let A be a real or complex algebra. A mapping D : A — A is said to be a
(ring) derivation if

D(a+b) = D(a) + D(b), D(ab) = D(a)b+ aD(b)

for all a,b € A. If, in addition, D(Aa) = AD(a) for all @ € A and all A\ € F, then
D is called a linear derivation, where F denotes the scalar field of A. SINGER and
WERMER [35] proved that if A is a commutative Banach algebra and D : A — A
is a continuous linear derivation, then D(A) C rad(A). They also conjectured that
the same result holds even D is a discontinuous linear derivation. THOMAS [36]
proved the conjecture. As a direct consequence, we see that there are no non-zero
linear derivations on a semi-simple commutative Banach algebra, which had been
proved by JOHNSON [15]. On the other hand, it is not the case for ring derivations.
HATORI and WADA [9] determined a representation of ring derivations on a semi-
simple commutative Banach algebra (see also [33]) and they proved that only the
zero operator is a ring derivation on a semi-simple commutative Banach algebra



266 Abbas Najati, Themistocles M. Rassias

with the maximal ideal space without isolated points. The stability of derivations
between operator algebras was first obtained by SEMRL [34]. BADORA [3] and
MIURA et al. [22] proved the generalized Hyers—Ulam stability of ring derivations
on Banach algebras.

Let R be an associative ring, A’ be a R-bimodule and let 6, ¢ be auto-
morphisms of R. An additive mapping D : R — N is called a derivation if
D(ab) = D(a)b + aD(b) holds for all pairs a,b € R and is called a Jordan deriva-
tion in case D(a?) = D(a)a + aD(a) is fulfilled for all a € R. Every derivation is a
Jordan derivation. The converse is in general not true (see [6, 10]). The concept of
generalized derivation has been introduced by BRESAR [4]. HvALA [11] and LEE
[18] introduced a concept of (0, ¢)-derivation (see also [19]). An additive map-
ping F : R — N is called a (0, ¢)-derivation in case F(ab) = F(a)0(b) + ¢(a)F(b)
holds for all pairs a,b € R. An additive mapping F' : R — N is called a (6, ¢)-
Jordan derivation in case F(a?) = F(a)f8(a) + ¢(a)F(a) holds for all a € R. An
additive mapping F : R — N is called a generalized (0, $)-derivation in case
F(ab) = F(a)8(b) + ¢(a)D(b) holds for all pairs a,b € R, where D : R — N
is a (6, ¢)-derivation. An additive mapping F' : R — N is called a generalized
(0, ¢)-Jordan derivation in case F(a?) = F(a)0(a) + ¢(a)D(a) holds for all a € R,
where D : R — N is a (6, ¢)-Jordan derivation. It is clear that every generalized
(0, ¢)-derivation is a generalized (6, ¢)-Jordan derivation.

The aim of the present paper is to establish the stability problem of homo-
morphisms and generalized (6, ¢)-derivations by using the fixed point method (see
1,5, 17, 21)).

Let E be a set. A function d: E x E — [0,00] is called a generalized metric
on F if d satisfies

(i) d(z,y) =0 if and only if x = y;
(i) d(z,y) = d(y,z) for all x,y € E;
(iil) d(zx, z) < d(z,y) + d(y, 2) for all z,y,z € E.
We recall the following theorem by Margolis and Diaz.

Theorem 1.2. [20] Let (E,d) be a complete generalized metric space and let
J : E — E be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element x € F, either

d(J"z, J" " r) = 0o

for all non-negative integers n or there exists a non-negative integer ng such that

y
. 1
d(y,y*) < 7= dly, Jy) for ally € Y.
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2. STABILITY OF HOMOMORPHISMS

In this section, we assume that R is an associative ring, X is a normed algebra,
Y is a Banach algebra, and n > 3 is a fixed integer.

Lemma 2.1. Let X andY be linear spaces. A mapping f: X —Y (with f(0) =0
if n = 3) satisfies

(2.1)

(-t B n) = -2 )

J

forall x1,...,x, € X, if and only if f is additive.

Proof. Let f satisfy (2.1). Letting 1 = --- =z, = 0 in (2.1), we get f(0) = 0.
Letting o = -+ - = x, = 0 in (2.1), we infer that f is odd. So by letting 3 =--- =
Zp = 0 in (2.1) and using the oddness of f, we get that the mapping f is additive.
The converse is obvious. O

Theorem 2.2. Let f : R — Y be a mapping for which there exist functions
©:R"™ — [0,00) and ¢ : R* — [0,00) such that

1 k k
(2.2) kgrrgor—kgo(r ai,...,r"a,) =0,
(2.3) lim izb(rka b) = lim iw(a rFb) = lim lw(rka rkb) =0
' k—oo 7K ’ k—oo 7K ’ k—oo T ’ ’

< Qﬁ(al,. "aan)a

(2.4) Hif(aﬁ > ai)<n2>if<ai>

1<i<n
i
(2.5) 1f(ab) = f(a) f(b)]| < (a,b)
for all a,b,aq,...,a, € R, where r = n — 2 > 1. If there exists a constant L < 1
such that

o(ra,...,ra) <rLe(a,...,a)

for all a € R, then there exists a unique homomorphism H : R — Y satisfying

(26) I£(0) = H@)| € oy a0
(2.7) H(a)[H(b) — f(b)] = [H(a) = f(a)|H(b) = 0
for all a,b e R.

Proof. Letting a; =--- =a, = a in (2.4), we get

(28) I7ra) = rf(@)] < = pla. . a)
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for alla € R. Let E:={g: R — Y }. We introduce a generalized metric on E as
follows:

dy(g,h) :==inf{ C € [0,00] : ||g(a) — h(a)|| < Cp(a,...,a) foralla e R}.

It is easy to show that (FE,d,) is a generalized complete metric space [5].
Now we consider the mapping A : E — E defined by

(Ag)(a) = 1g(ra), forall g € F and a € R.
r

Let g,h € E and let C € [0, 00] be an arbitrary constant with d,(g,h) < C. From
the definition of d,,, we have

l9(a) = h(a)]| < Ce(a, ..., a)
for all a € R. By the assumption and last inequality, we have
(A9)(@) — (AR)@)] =+ llg(ra) — (ra)l| < < plra, ... ra) < OLp(a, ... a)
foralla € R. Sod,(Ag, Ah) < Ld, (g, h) for any g, h € E. It follows from (2.8) that

d«p(Af;f) < m

converges to a fixed point H of A, i.e.,

. Therefore according to Theorem 1.2, the sequence {AFf}

1
H:R—Y, Ha)= lim (AR f)(a) = Jim — f(r¥a)
—00 —oo T
and H(ra) =rH(a) for all a € R. Also H is the unique fixed point of A in the set
Bo={9 € B:dy(f.g) < oo} and

do(H,f) < —— d,(Af,f) <

1
1-L nn—2)(1-1L)’

i.e., inequality (2.6) holds true for all @ € R. It follows from the definition of H,
(2.2) and (2.4) that

iH(—aj+1<Zi:<nai> = (n—2)§:H(ai)

for all a,...,a, € R. Since H(0) = 0, by Lemma 2.1 the mapping H is additive.
So it follows from the definition of H, (2.3) and (2.5) that

| H(ab) — H@HO)]| = lim — | 7(0*ab) — F(r*a) (D)
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for all a,b € R. So H is homomorphism. Similarly, we have from (2.3) and (2.5)
that

(2.9) H(ab) = H(a)f(b),  H(ab) = f(a)H(D)

for all a,b € R. Since H is homomorphism, we get (2.7) from (2.9).
Finally it remains to prove the uniqueness of H. Let H; : R — ) be another

homomorphism satisfying (2.6). Since d,(f, H1) < and H; is addi-

n(n—2)(1-L)

tive, we get H; € E, and (AH;)(a) = %Hl(ra) = Hi(a) for alla € R, i.e., H is a

fixed point of A. Since H is the unique fixed point of A in E,, we get H; = H. O
We need the following lemma in the proof of the next theorem.

Lemma 2.3 [30] Let X and Y be linear spaces and f : X — Y be an additive

mapping such that f(uz) = pf(z) for allz € X and all p € TV .= {p e C: |u| =
1}. Then the mapping f is C-linear.

Lemma 2.4. Let X and Y be linear spaces. A mapping f: X — Y satisfies

(2.10) 2 f( — pxj + 1%%#”0 =(n-2)u ; f(xi)

forall zy,...,x, € X and all p € T, if and only if f is C-linear.

Proof. Let f satisfy (2.10). Letting 1 = --- = z,, = 0 in (2.10), we get f(0) = 0.
By Lemma 2.1, the mapping f is additive. Letting x5 = -+ = 2, = 0 in (2.10) and
using the oddness of f, we get that f(uz1) = uf(x1) for all 21 € X and all p € T*.
So by Lemma 2.3, the mapping f is C-linear. The converse is obvious. (I

The following theorem is an alternative result of Theorem 2.2.

Theorem 2.5. Let f : X — Y be a mapping for which there exist functions
©: X" —[0,00) and ¢ : X? — [0,00) such that

. 1 1
lim rk<p<r—k ai, ..., e an) =0,

k—oo
1 1 1 1
: k I 1 k R T 2k _
Jim b (a,b) = tim (e Zp0) = lm (e b) =0,
n n
|21 (= 1+ Sicicamar) = (0 =2y f(@)| < la -, an),
j=1 i#J i=1

[1f(ab) — f(a)f(B)]| < ¢(a,b)

for all a,b,a1,...,a, € X and all p € T', where r = n — 2 > 1. If there exists a
constant L < 1 such that
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for all a € X, then there exists a unique homomorphism H : X — Y satisfying
L
| f(a) = H(a)|| < w2 (1=L) p(a,...,a),
H(a)[H(b) — f(b)] = [H(a) — f(a)]|H(b) =0
for all a,b e X.

Proof. It follows from the assumptions that ¢(0,...,0) = 0, and so f(0) = 0.
Letting ;1 = 1 and using the same method as in the proof of Theorem 2.2, we have

(211) I 7ra) ~ rf (@)l < = gla,..a)

foralla € R. Let E:={g: X — Y| g(0) =0}. We introduce the same definition
dy as in the proof of Theorem 2.2 such that (¥, d,) becomes a generalized complete
metric space. Let A : E — E be the mapping defined by

1
(Ag)(a) = rg(; a), forallg € F and a € X.
One can show that
d,(Ag, AR) < Ld, (9. h)
for any g,h € E. It follows from the assumption and (2.11) that d,(Af, f) <
. Due to Theorem 1.2, the sequence {A¥f} converges to a fixed point H

n(n — 2)
of A,ie, H: X =),

H(a) = lim (\*/)(a) = lim r* f(rik a), H(ra) = rHa)
for all a € X. Also
A1) € T A0 ) < oy
i.e., the inequality
1f(a) ~ H(a)]| < m ola.....a)

holds true for all a € X.

The rest of the proof is similar to the proof of Theorem 3.1 and we omit the
details. 0

Corollary 2.6. Let p,q,d,e be non-negative real numbers with 0 < p,q < 1.
Suppose that f : X — Y is a mapping such that

DOCR

X pa) = (=20 flw)

n
<ote llail”,
i=1

1f(ab) = f(a) ()| < &+ e(llal|? + [[b[|7)
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for all a,b,a,...,a, € X and all p € T'. Then there exists a unique homomor-
phism H : X — Y satisfying

)
19(@) = @)l < o577

H(a)[H(b) — f(b)] = [H(a) = f(a)|H(b) =0

forall a,b € X, wherer =n—2 > 1.

3
p
+ = Jal,

Proof. The proof follows from Theorem 2.2 by taking
n
plar, . an) =0+ Y llagllP,  (a,b) =6 +e(llaf? +|[b]|)
i=1

for all a,b,ay,...,a, € X. Then we can choose L = r?~! and we get the desired
results. O

Corollary 2.7. Let p,q,e be non-negative real numbers with p > 1 and q > 2.
Suppose that f : X — Y is a mapping such that

n
<e llail”,
i=1

<e(llall? +[l6ll*)

1<i<n
i#]

Hif(_,uaj + > uai) - (n—?)uif(ai)

[1f(ab) — f(a)f(b)]

for all a,b,a1,...,a, € X and all ;1 € T'. Then there exists a unique homomor-
phism H : X — Y satisfying
g < P
/(@) ~ H(@)l| < = [al

foralla € X, where r =n—2 > 1.
Proof. The proof follows from Theorem 2.5 by taking

plars. . an) =Y faillP, $(a,b) = e(lal|” +[|b])
i=1

for all a,b,ay,...,a, € X. Then we can choose L = r'~P and we get the desired
results. O

3. STABILITY OF GENERALIZED (0, ¢)-DERIVATIONS

In this section, we assume that R is a 2-divisible associative ring, M is a
Banach R-bimodule, and 6, ¢ are automorphisms of R. For convenience, we use
the following abbreviation for given mappings f,g: R — M,

D%%(a,b,¢,d) := f(ab+c+d) — f(a)8(b) — d(a)g(b) — f(c) — f(d)
T0¢(a,b,¢) = f(a® + b+ ) — f(a)8(a) — d(a)g(a) — F(b) — f(c)
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for all a,b,c,d € R. Now we prove the generalized Hyers—Ulam stability of gen-
eralized (0, ¢)-derivations and generalized (6, ¢)-Jordan derivations in Banach R-
bimodules.

Theorem 3.1. Let f,g : R — M be mappings for which there exist functions
0, : R® — [0,00) such that

. n (@ . n b ¢
(3.1) nhﬂn;oél <p<2—n ,0,0) = nlgr;OQ 50(0, TR Q—n) =0,
(3.2) 1775 (a,b, o)l < @la,b,c),

. n, [0 o n b ¢\
3:3) Jim 47 (5,0,0) = lim 270(0, 52, 5 ) =0,
(3-4) 1575 (a, b, ¢)|| < 9(a,b,c)

for all a,b,c € R. If there exist constants L, K < 1 such
2¢(0,a,a) < Ly(0, 2a, 2a), 2¢(0,a,a) < K(0, 2a, 2a)

for all a € R, then there exist a unique (0, )-Jordan derivation G : R — M and a
unique generalized (0, ¢)-Jordan derivation F: R — M satisfying

(35) ||f(a) - F(a‘)” < 2_9], 90(0; a, a’)a
(36) lo(a) ~ G(@)] < 5 w(0,0,a)
foralla e R.

Proof. It follows from (3.1) and (3.3) that ¢©(0,0,0) =0 = (0,0,0) and so we get
from (3.2) and (3.4) that f(0) = g(0) = 0. Letting @ = 0 and b = ¢ in (3.2), we get

3.7) 1£(2¢) = 2f(c)l| < (0, ¢,¢)

for all c € R. Let E := {h: R — M | h(0) = 0}. We introduce a generalized
metric on E as follows:

dy(h, k) :==inf{ C € [0,00] : ||h(a) — k(a)|| < Cp(0,a,a) foralla e R},

It is easy to show that (E,d,) is a generalized complete metric space [5].
Now we consider the mapping A : E — E defined by

(Ah)(a) = 2h(g>, for all h € E and a € R.

Let h,k € E and let C € [0, 00] be an arbitrary constant with d,(h, k) < C. From
the definition of d,, we have

[h(a) = k(a)]| < Cp(0,a,a)
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for all a € R. By the assumption and last inequality, we have

a a a a
— = —) = — < - = <
l(AR)(@) - k)@ =2[a(5) = (5)] = 200(0.5 . 5) < CLe(0.0,0)
for all @ € R. So d,(Ah,Ak) < Ldy(h,k) for any h,k € E. It follows from the
assumption and (3.7) that d,(Af, f) < L/2. Therefore according to Theorem 1.2,

the sequence {A"f} converges to a fixed point F of A, i.e.,

F:R—M, F(a)= lim (Anf)(a):n1ln;ognf(£in>

n—oo

and F'(2a) = 2F (a) for all @ € R. Also F is the unique fixed point of A in the set
E,={heE:d,(f,h) <oo} and

1
dcp(Faf)Sﬁdiﬂ(Afmf)Sma

i.e., inequality (3.5) holds true for all @ € R. Similarly, we obtain that
dy(Ah, Ak) < Kdy(h k), dy(Ag,g) < K/2.
for any h,k € E, where
dy(h, k) :==1inf{ C € [0,00] : ||h(a) — k(a)|| < C¥(0,a,a) foralla e R}.

So according to Theorem 1.2, the sequence {A"g} converges to a fixed point G of
A e,
G:R—M, G(a)= lim (A"g)(a) = lim Q”g(i)
n—oo n—oo n
and G(2a) = 2G(a) for all a € R. Also G is the unique fixed point of A in the set
Ey={he€ E:dy(g,h) < oo} and

dy(G,g) <

<
< T (Mg, 9)

- 2-2K’

i.e., inequality (3.6) holds true for all @ € R. It follows from the definitions of F, G,
(3.1) and (3.2) that

178:4,(a,0,0)]| = lim 4"

0,0 @ . n a _
g0 (2—n,0,0)H < lim 4 <p<2—n ,0,0) —0,

n—oo

b ¢ b ¢
0,0 T 0,0 : —
||JF,G(0ﬂ b7 C)H - nh_l:n 2n ‘]f,g (Oa 271’ 2n>‘ S n11—1>n 27150(07 on ’ 2.,1) - 0

for all a,b,c € R. Hence
(3.8) F(a®) = F(a)0(a) + ¢(a)G(a), F(b+c)=F(b)+F(c)
for all a, b, c € R. Similarly, it follows from the definition of G, (3.3) and (3.4) that

(3.9) G(a?) = G(a)0(a) + ¢(a)G(a), G(b+c) = G(b) + G(c)



274 Abbas Najati, Themistocles M. Rassias

for all a,b,c € R. Hence G is a (0, ¢)-Jordan derivation. So we infer from (3.8) and
(3.9) that F' is a generalized (6, ¢)-Jordan derivation.
Finally it remains to prove the uniqueness of F and G. Let F},G; : R —

M be another additive mappings satisfying (3.5) and (3.6), respectively. Since
dy(f, F1) < ﬁ, dy(g,G1) < Iy and Fi,G1 are additive, we get F} €
E,, G1 € Ey and (AF1)(a) = 2Fi(a/2) = Fi(a), (AG1)(a) = 2G1(a/2) = Gi(a)
for all @ € R, i.e., F}, G are fixed points of A. Since F' and G are the unique fixed
points of A in E, and Ey, respectively, we get 'y = ' and G; = G. O

Theorem 3.2 Let f,g: R — M be mappings with f(0) = g(0) = 0 for which there
exist functions ®, ¥ : R — [0,00) such that

1 1
(3.10) lim —®(2"a,0,0) = lim — ®(0,2"b,2"¢) = 0,
n—oo 4N n—oo 27
(3.11) 1732 (a,b,c)|| < ®(a,b, c),
. 1 . 1
(3.12) lim — ¥(2"q,0,0) = lim — ¥(0,2"b,2"¢c) =0,
n—oo 4M n—oo 2M
(3.13) HJgj(a,b, o)l < ¥(a,b,c)

for all a,b,c € R. If there exist constants L, K < 1 such
®(0,2a,2a) < 2LP(0,a,a), V(0,2a,2a) <2KTV(0,a,a)

for all a € R, then there exist a unique (0, ¢)-Jordan derivation G : R — M and a
unique generalized (0, ¢)-Jordan derivation F : R — M satisfying

(3.14) 1£(a) = Fla)]| < 5= 2(0,0,0)
(3.15) lg(a) = G(@)] < 5= ¥(0,a,0)
foralla e R.

Proof. Using the same method as in the proof of Theorem 3.1, we have

(316) [ 500 - f@)] < g20.c0, ||5900 - g < 5 ¥0.c0

for all ¢ € R. We introduce the same definitions for E, de and dyg as in the proof
of Theorem 3.1 such that (F,dg) and (F, dy) become generalized complete metric
spaces. Let A : E — E be the mapping defined by

1
(Ah)(a) = 5 h(2a), forallh € FE and a € R.

One can show that

de(Ah, Ak) < Ldg(h, k), dg(Ah,Ak) < Kdy(h, k)
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for any h,k € E. It follows from (3.16) that ds(Af, f) < % and dg(Ag,g) < %

Due to Theorem 1.2, the sequences {A™f} and {A"g} converge to fixed points F
and G of A, ie., F;G: R — M,

Fla) = lim (A"f)(a) = lim oo [(2"a), G(a) = lim (\"g)(a) = lim __g(2"a),

n—00 n—oo

F(2a) = 2F(a) and G(2a) = 2G(a) for all @ € R. Also

1 1

d‘b(Fuf) S

dy(G,g) <

1
A <

1-K
i.e., the inequalities (3.14) and (3.15) hold true for all a € R.

The rest of the proof is similar to the proof of Theorem 3.1 and we omit the
details. O

Corollary 3.3. Let ¢,d,p,q be non-negative real numbers with 0 < p,q < 1 or
p,q > 2. If R is a normed ring and f,g : R — M are mappings satisfy the
inequalities

6’ )
1775 @, b, )| < e(llall? + 1617 + llel?),  [1T5:g (@ by )l < 8(llal|* + [1B]| + [|¢]*)

= R =

for all a,b,c € R, then there exist a unique (0, p)-Jordan derivation G : R — M
and a unique generalized (0, ¢)-Jordan derivation F : R — M satisfying

2¢e 20
_ p _ q
1£(0) = F@ < =g lalP. la(e) - G(@)l < =5l
foralla e R.
Proof. Let
p—1 . qg—1 .
I 2177 0<p<ly Ko 2177 O0<g< 1y
2P p> 2. 2171 g > 2.
So the result follows from Theorems 3.1 and 3.2. O

Corollary 3.4. Let € and § be non-negative real numbers and let f,g: R — M be
mappings satisfying f(0) = g(0) = 0 and the inequalities

6’ I
1790 (ab,0)| < e, |02 (ab,o)] < 6

for all a,b,c € R. Then there exist a unique (8, ¢)-Jordan derivation G : R — M
and a unique generalized (0, ¢)-Jordan derivation F : R — M satisfying

[f(a) = F(a)| <&, [lg(a) = G(a)]| <6
for all a € R.
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Proof. The proof follows from Theorem 3.2 by taking
®(a,b,c):=¢, Y(a,b,c):=9§

for all a,b,c € R. Then we can choose L = K = 1/2 and we get the desired
results. O

Theorem 3.5. Let f,g : R — M be mappings with f(0) = g(0) = 0 for which
there exists a function ® : R* — [0,00) satisfying

1 1
(3.17) lim o ®(2"%a,2™b,2"¢,2"d) = lim on ®(2"a,b,0,0)

n—oo n—00

1
= lim 7 ®(a.2"5,0,0) =0,

n—oo
(3.18) ID%%(a,b,c,d)|| < ®(a,b,c,d)

for all a,b,c,d € R. If R has the identity e, M is unit linked and there exists a
constant L < 1 such

®(0,0,2a,2a) < 2LP(0,0,a,a)

for alla € R, then g is a (0, ¢)-derivation and f is a generalized (0, ¢)-derivation.

Moreover, f = af + g, where a = lim o f(2me).

Proof. Letting a =b=0 and ¢ = d in (3.18), we get
[1£(2¢) = 2f(c)|| < 2(0,0,¢,¢)

for all ¢ € R. Using the same method as in the proof of Theorem 3.2, we infer that
the limit

(3.19) Fla) == lim 2i F(2"a)

n—oo 2™

exists for all @ € R and the mapping F' : R — M is additive. Letting c =d =0
and replacing a and b by 2"e and 2"b, respectively, in (3.18), we get

[£(470) — f(2"€)0(2"D) — $(2"e)g(2"D)|| < B(2"e,2"D,0,0)
for all b € R and all n € N. Since ¢(e) = e, we have

L pamy) - 2% F(2"e)0() — — g(2")| < 4% (2", 2"b,0,0)

3200 || o

for all b € R and all n € N. It follows from (3.17), (3.19) and (3.20) that the limit

G(b) := lim ing(2"b)

n—oo
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exists and G(b) = F(b) — F(e)d(b) for all b € R. Hence G is additive. It follows
from the definitions of F, G, (3.17) and (3.18) that

[1F(ab) — F(a)0(b) — d(a)GO)|

lim o [F(4"ab) — F(2"@)0(2"D) — 6(2"a)g(2")]

n—oo

1
< lim = @(2"a,2",0,0) =0

n—00

for all a,b € R. Therefore
(3.21) F(ab) = F(a)0(b) + ¢(a)G(b)
for all a,b € R. Further, by (3.21) we have

G(ab) = F(ab) — F(e)f(ab) = F(a)d(b) + ¢(a)G(b) — F(e)0(a)d(b)
= [F(a) = F(e)0(a)]0(b) + ¢(a)G(b) = G(a)f(b) + ¢(a)G(b)

forall a,b € R. Thus G is a (0, ¢)-derivation and (3.21) shows that F is a generalized
(0, ¢)-derivation.

By (3.17), (3.18) and the definitions of F, G, we have
(3.22) F(ab) — F(a)0(b) = ¢(a)g(b),
(3.23) F(ab) — ¢(a)G(b) = f(a)0(b)

for all a,b € R. Since G(e) = 0 and 6(e) = ¢(e) = e, letting a = e in (3.22) and
b= ein (3.23), we get g(b) = F(b)—F(e)0(b) = G(b) and F(a) = f(a), respectively,
for all a,b € R. So g is a (0, ¢)-derivation and f is a generalized (6, ¢)-derivation.
Moreover, f = F(e)f + g. O

Corollary 3.6. Let ,d,p be non-negative real numbers with 0 < p < 1. If R is a
normed ring with the identity e, M is unit linked and f,g: R — M are mappings
with f(0) = g(0) = 0 and satisfy the inequality

0,
1D%5 (. b, e, )l < &+ e(lall? + [1b]]” + llell” + lld]|),

for all a,b,c,d € R, then g is a (0, ¢)-derivation and f is a generalized (0, ¢)-

derivation. Moreover, f = af + g, where a = lim o f(2me).
n—oo

Theorem 3.7. Let f,g : R — M be mappings for which there exist functions
0,7 : R?* — [0,00) such that

1 1

(3.24) lim — p(na,b) = lim — p(a,nb) =0,
n—oo N n—oo n
1 1

(3.25) lim —(na,b) = lim —(a,nb) =0,

n—oo n n—oo n
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(3.26) [[f(ab) — f(a)0(b) — ¢(a)g (D)l < ¢(a,b),

(3.27) lg(ab) — g(a)0(b) — ¢(a)g(b)[| < ¢(a,b)
for all a,b € R. If R is normed with the identity e and M is unit linked, then

(3.28) g(ab) = g(a)0(b) + ¢(a)g(b),  f(ab) = f(a)0(b) + ¢(a)g(b)
for all a,b € R.
Proof. By (3.24) and (3.27), we get

lim_ = [g(nab) — g(na)6(b)] = $(a)g(b),
(3.29) n

lim = [g(nab) — ¢(a)g(nb)] = g(a)O(b)

n—oo n

for all a,b € R. Using the Badora’s method [3] on the inequality (3.27), we have
lg(ab) — g(a)d(b) — d(a)g(b)]|
1 1
< |j9(ab) — - glnabe) + — o(ab)g(ne)

4] gnab) — = s(a)g(nb) — g()o)|
+ % g(nab) — %g(na)@(b) ~ 6la)g(0)|
+ 2 [0la)g(nb) — d(ab)g(ne) + g(na)6(8) — g(nab)|
< |lgtar) - %g(nabe) + %dﬁ(ab)g("e)u
4] gnab) — - s(a)g(nb) — g(a)o)|
+ % g(nab) — %g(na)@(b) ~ 6la)g(0)|
+ = 10(a)] llgtnb) — g(6)0ne) — G(b)g(ne) |
n % llg(nab) — g(na)8(b) — p(na)g(b)||
< [lotab) - L gnabe) + L s(an)gtne)|
+ [ gtnab) — = o(a)g(nb) ~ g(a)o )|
n H % g(nab) — %g(na)@(b) - ¢>(a)g(b)H
+ 2 6(@)l 6, me) + +(na, b

for all a,b € R. Applying (3.25) and (3.29), we observe that the right side of the
last inequality tends to 0 when n tends to infinity. Therefore

(3.30) g(ab) = g(a)0(b) + ¢(a)g(b)
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for all a,b € R.
Similarly, by (3.24) and (3.26), we have

i~ [7(nab) ~ f(na)6(8)] = 9(a)g(b),
(3.31)

lim ~ [f(nab) — ¢(a)g(nb)] = F(a)0(5)

n—oco N

for all a,b € R. Let a,b € R and n € N be fixed. Since g satisfies (3.30), we have
g(nb) = g(bne) = ng(b) + ¢(b)g(ne). Using (3.26), we have

|| f(ab) — £(a)8(b) — p(a)g(b)]
< Hf(ab) _ %f(nabe) + % ¢(ab)9(n6)H
+ [ f(nat) — = o(a)g(nb) — (@)oo
v H% f(nab) — %f(na)@(b) - ¢(a)9(b)H
+ = [6(a)g(n) — olablg(ne) + F(na)0(b) — f (nab)|
_ Hf(ab) - % f(nabe) + % ¢>(ab)9(ne)H
4] fnab) — ~ (@gnt) — £(a)6 (o)
v H% f(nab) — %f(na)@(b) - ¢(a)9(b)H
" % Ing(a)g(b) + f (na)f(b) — f(nab)l|
< Hf(ab) _ %f(nabe) + % ¢(ab)9(n6)H
4] fnab) — ~ o(@gnt) ~ f(a)6 (o)
+]| 5 snab) = = £(na)00) = @)g )] + 1 plna. ),

Applying (3.24) and (3.31), we observe that the right side of the last inequality
tends to 0 when n tends to infinity. Therefore

f(ab) = f(a)f(b) + ¢(a)g(D). U

Corollary 3.8. Let ,0,p,q be non-negative real numbers with 0 < p,q < 1. If
R is a normed ring with the identity e, M is unit linked and f,g : R — M are
mappings satisfy the inequalities

[1f(ab) = f(a)f(b) — ¢(a)g(b)|| <0+ e(llall” + [1b]),

lg(ab) — g(a)0(b) — $(a)g(®)| < &+ <(llall” + [1b]*)

for all a,b € R, then f and g satisfy (3.28) for all a,b € R.

Q
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