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OSCILLATION CRITERIA FOR FIRST ORDER FORCED

DYNAMIC EQUATIONS

Lynn Erbe, Taher S. Hassan, Allan Peterson

We obtain some new oscillation criteria for solutions to certain first order
forced dynamic equations on a time scale T of the form

x∆(t) + r(t)Φγ (xσ (t)) + p(t)Φα (xσ (t)) + q(t)Φβ (xσ (t)) = f(t),

with Φη (u) := |u|η−1 u, η > 0. Here r(t), p (t) , q(t) and f (t) are rd-
continuous functions on T and the forcing term f(t) is not required to be the
derivative of an oscillatory function. Our results in the special cases when
T = R and T = N involve and improve some previous oscillation results for
first-order differential and difference equations. An example illustrating the
importance of our results is also included.

1. INTRODUCTION

Following Hilger’s landmark paper [26], a rapidly expanding body of lit-
erature has sought to unify, extend, and generalize ideas from discrete calculus,
quantum calculus, and continuous calculus to arbitrary time scale calculus, where
a time scale T is any nonempty closed subset of the reals, and the cases when
this time scale is equal to the reals or to the integers represent the classical theo-
ries of differential and of difference equations. Many other interesting time scales
exist, and they give rise to many applications (see [7]). Not only does the new
theory of the so-called “dynamic equations” unify the theories of differential equa-
tions and difference equations, but it also extends these classical cases to cases “in
between”, e.g., to the so-called q−difference equations when T =qN0 (which has im-
portant applications in quantum theory [27]) and can be applied on different types
of time scales like T =hZ, T = N2

0 and T = Tn the space of the harmonic numbers.
Throughout this work a knowledge and understanding of time scales and time scale
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notation is assumed; for an excellent introduction to the calculus on time scales,
see [7, 8, 26]. In the last few years, there has been increasing interest in obtaining
sufficient conditions for the oscillation/nonoscillation of solutions of different classes
of dynamic equations on time scales, we refer the reader to [1, 4, 9–19, 21–25],
and the references cited therein. To the best of our knowledge, there is very little
known about the oscillatory behavior of first order dynamic equations. Agarwal
and Bohner [2] (see also [3]) considered the first order dynamic equations

x∆(t)− q(t)xσ(t) + q1(t) (xσ(t))α1 = f(t),

x∆(t) = q2(t) (xσ(t))β1 + f(t)

and
x∆(t) + q1(t) (xσ(t))α1 = q2(t) (xσ(t))β1 + f(t)

where α1 and β1 are ratios of odd positive integers with 0 < α1 < 1 and β1 > 1
and f, q, q1 and q2 are rd-continuous functions such that q1 and q2 are positive
on T. Recently, Bohner and Hassan [6] improved the above results for the first
order dynamic equations

x∆(t) + p(t)xγ(h(t)) + q3(t)xα(h(t)) = f(t)

and
x∆(t) + p(t)xγ(h(t)) + q3(t)xα(h(t)) + q4(t)xβ(h(t)) = f(t),

where γ, α and β are ratios of odd positive integers with α > γ > 0 and β > γ > 0,
p is an rd-continuous function on T, and f, q3 and q4 are positive rd-continuous
functions on T and the function h : T → T satisfies limt→∞ h(t) = ∞. Agarwal
and Zafer [5] and Erbe et al [12] consider oscillation criteria for the related
second order forced dynamic equation

(r(t)Φα(x∆))∆ + a(t)Φ(xσ(t)) +
n∑
i=1

qi(t)Φβi(x
σ(t)) = f(t), t ∈ [t0,∞)T.

We are concerned with the oscillatory behavior of the following forced first
order dynamic equation with mixed arguments

(1.1) x∆(t) + r(t)Φγ (xσ (t)) + p(t)Φα (xσ (t)) + q(t)Φβ (xσ (t)) = f(t),

with Φη (u) := |u|η−1
u, η > 0, on an arbitrary time scale T, where r(t), p (t) , q(t)

and f (t) are rd-continuous functions on T. Since we are interested in the oscilla-
tory and asymptotic behavior of solutions near infinity, we assume that sup T =∞
(unbounded above), and define the time scale interval [t0,∞)T by [t0,∞)T :=
[t0,∞) ∩ T. By a solution of (1.1) we mean a nontrivial real–valued function
x ∈ C1

rd[Tx,∞), Tx ≥ t0 which satisfies equation (1.1) on [Tx,∞), where Crd is
the space of rd−continuous functions. The solutions vanishing in some neighbor-
hood of infinity will be excluded from our consideration. A solution x of (1.1) is
said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is nonoscillatory.
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2. MAIN RESULTS

Before stating our main results, we begin with the following lemma which
will play an important role in the proof of our main results.

Lema 2.1 Let a, b ∈ R with a > 0 and b ≥ 0. Then

(i) aα−γ − baβ−γ ≥ −δ1b(α−γ)/(α−β) for all α > β > γ > 0;

(ii) aα−γ + baβ−γ ≥ δ2b(α−γ)/(α−β) for all α > γ > β > 0,

where
δ1 := (α− β)(α− γ)(γ−α)/(α−β)(β − γ)(β−γ)/(α−β)

and
δ2 := (α− β)(α− γ)(γ−α)/(α−β)(γ − β)(β−γ)/(α−β).

Proof. We let
f (u) := uα−γ − buβ−γ for u > 0,

where α > β > γ > 0. It is easy to see that f obtains its minimum at u =
(α− γ)1/(β−α)(β − γ)1/(α−β)b1/(α−β) and

fmin = (β − α)(α− γ)(γ−α)/(α−β)(β − γ)(β−γ)/(α−β)b(α−γ)/(α−β).

Also, we let
g (u) := uα−γ + buβ−γ for b, u > 0,

where α > γ > β > 0 and we find that g obtains its minimum at u = (α− γ)1/(β−α)

(γ − β)1/(α−β)b1/(α−β) and

gmin = (α− β)(α− γ)(γ−α)/(α−β)(γ − β)(β−γ)/(α−β)b(α−γ)/(α−β). �

In the following, let D ≡ {(t, s) : t ≥ s ≥ t0} and consider the functions
H,h ∈ Crd (D,R) such that

(2.1) H (t, t) = 0, t ≥ t0, H (t, s) > 0, t > s ≥ t0,

and where H has a nonpositive continuous ∆- partial derivative H∆s (t, s) with
respect to the second variable and satisfies

(2.2) H∆s (t, s) = −h (t, s)H1/γ (t, s) .

Throughout this paper, we let

d+ := max{0, d}, d− := max{0,−d},

and define

(2.3) gk(t, s) := (γ − 1)γγ/(1−γ) |lk (s)|1/(1−γ)
hγ/(γ−1) (t, s) , k = 1, 2, 3, 4,
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where

l1 (t) := r− (t)− δ1 (p(t))(γ−β)/(α−β) (q−(t))(α−γ)/(α−β)
,

l2 (t) := r− (t)− δ2 (p(t))(γ−β)/(α−β) (q(t))(α−γ)/(α−β)
,

l3 (t) := r(t) + δ1(−p (t))(γ−β)/(α−β) (q+ (t))(α−γ)/(α−β)
,

l4 (t) := r(t)− δ2 (−p (t))(γ−β)/(α−β) (−q (t))(α−γ)/(α−β)
,

and

δ1 := (α− β)(α− γ)(γ−α)/(α−β)(β − γ)(β−γ)/(α−β),

δ2 := (α− β)(α− γ)(γ−α)/(α−β)(γ − β)(β−γ)/(α−β).

Theorem 2.1. Assume that 0 < γ < 1, α > β > γ and p (t) > 0 for t ∈ [t0,∞)T.
If g1(t, s) is given by (2.3),

(2.4) lim sup
t→∞

1
H (t, t0)

∫ t

t0

(H (t, s) f(s) + g1(t, s)) ∆s =∞

and

(2.5) lim inf
t→∞

1
H (t, t0)

∫ t

t0

(H (t, s) f(s)− g1(t, s)) ∆s = −∞,

then every solution of equation (1.1) is oscillatory.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without
loss of generality, there is a T ∈ [t0,∞)T, sufficiently large, such that x(t) > 0
on [T,∞)T. Multiplying both sides of (1.1), with t replaced by s, by H(t, s), for
t ≥ s ≥ T and integrating with respect to s from T to t, we have∫ t

T

H(t, s)f(s)∆s =
∫ t

T

H(t, s)x∆(s)∆s+
∫ t

T

H(t, s)r(s)xσγ(s)∆s

+
∫ t

T

H(t, s)
(
p(s)xσα(s) + q(s)xσβ(s)

)
∆s.

Integrating by parts and using (2.1) and (2.2), we obtain∫ t

T

H(t, s)f(s)∆s = −H(t, T )x(T ) +
∫ t

T

h (t, s)H1/γ (t, s)xσ(s)∆s

+
∫ t

T

H(t, s)r(s)xσγ(s)∆s

+
∫ t

T

H(t, s)
(
p(s)xσα(s) + q(s)xσβ(s)

)
∆s
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≥ −H(t, T )x(T ) +
∫ t

T

h (t, s)H1/γ (t, s)xσ(s)∆s

−
∫ t

T

H(t, s)r−(s)xσγ(s)∆s

+
∫ t

T

H(t, s)
(
p(s)xσα(s)− q−(s)xσβ(s)

)
∆s.

Define
a := p1/(α−γ)xσ and b := p(γ−β)/(α−γ)q−

and using Lemma 2.1 (i), we have

p (xσ)α−γ − q− (xσ)β−γ ≥ −δ1p(γ−β)/(α−β)q
(α−γ)/(α−β)
− ,

where δ1 = (α− β)(α− γ)(γ−α)/(α−β)(β − γ)(β−γ)/(α−β). It follows that∫ t

T

H(t, s)f(s)∆s ≥ −H(t, T )x(T )

+
∫ t

T

[
h (t, s)H1/γ (t, s)xσ(s)−H(t, s) |l1(s)|xσγ(s)

]
∆s.

Define X ≥ 0 and Y ≥ 0 by

Xγ := H |l1|xσγ , Y γ−1 := hγ−1 |l1|−1/γ
.

Then, using the inequality (see [20])

γXY γ−1 −Xγ ≥ (γ − 1)Y γ , 0 < γ < 1,

we get that

h (t, s)H1/γ (t, s)xσ(s)−H(t, s) |l1(s)|xσγ(s) ≥ g1(t, s).

Then
1

H(t, T )

∫ t

T

(H(t, s)f(s)− g1(t, s)) ∆s ≥ −x(T ),

which leads to a contradiction to (2.5). Next, we assume that x satisfies (1.1) and
is eventually negative. If we put y = −x, then y is an eventually positive solution
of (1.1), where f is replaced by −f . This case therefore leads to a contradiction as
in the first case, provided

lim inf
t→∞

1
H (t, t0)

∫ t

t0

(−H(t, s)f(s)− g1(t, s)) ∆s = −∞,

which indeed holds due to the condition (2.4). �
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Theorem 2.2. Assume that 0 < γ < 1, α > γ > β > 0, p (t) > 0 and
q (t) , l2 (t) ≥ 0, for t ∈ [t0,∞)T. If g2(t, s) is given by (2.3),

(2.6) lim sup
t→∞

1
H(t, t0)

∫ t

t0

(H (t, s) f(s) + g2(t, s)) ∆s =∞

and

(2.7) lim inf
t→∞

1
H(t, t0)

∫ t

t0

(H (t, s) f(s)− g2(t, s)) ∆s = −∞,

then every solution of equation (1.1) is oscillatory.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without
loss of generality, there is a solution x of (1.0) and a T ∈ [t0,∞)T such that x(t) > 0
on [T,∞)T. As in the proof of Theorem 2.1, we get∫ t

T

H(t, s)f(s)∆s = −H(t, T )x(T ) +
∫ t

T

h (t, s)H1/γ (t, s)xσ(s)∆s

+
∫ t

T

H(t, s)r(s)xσγ(s)∆s+
∫ t

T

H(t, s)
(
p(s)xσα(s) + q(s)xσβ(s)

)
∆s

≥ −H(t, T )x(T ) +
∫ t

T

h (t, s)H1/γ (t, s)xσ(s)∆s

−
∫ t

T

H(t, s)r−(s)xσγ(s)∆s+
∫ t

T

H(t, s)
(
p(s)xσα(s) + q(s)xσβ(s)

)
∆s.

By using Lemma 2.1 (ii), we have

p (xσ)α−γ + q (xσ)β−γ ≥ δ2p(γ−β)/(α−β)q(α−γ)/(α−β),

where δ2 = (α − β)(α − γ)(γ−α)/(α−β)(γ − β)(β−γ)/(α−β). The rest of the proof is
the same as the proof of Theorem 2.1 with l1 replaced by l2. �

Theorem 2.3. Assume that α > β > γ > 1 and p (t) , l3 (t) < 0, for t ∈ [t0,∞)T.
If g3(t, s) is given by (2.3),

(2.8) lim sup
t→∞

1
H(t, t0)

∫ t

t0

(H(t, s)f(s)− g3(t, s)) ∆s =∞

and

(2.9) lim inf
t→∞

1
H(t, t0)

∫ t

t0

(H(t, s)f(s) + g3(t, s)) ∆s = −∞,

then every solution of equation (1.1) is oscillatory.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without
loss of generality, there is a T ∈ [t0,∞)T, sufficiently large, such that x(t) > 0 on
[T,∞)T. As in the proof of Theorem 2.1, we get



Oscillation criteria 259

(2.10)
∫ t

T

H(t, s)f(s)∆s = −H(t, T )x(T ) +
∫ t

T

h (t, s)H1/γ (t, s)xσ(s)∆s

+
∫ t

T

H(t, s)r(s)xσγ(s)∆s+
∫ t

T

H(t, s)
(
p(s)xσα(s) + q(s)xσβ(s)

)
∆s

≤ −H(t, T )x(T ) +
∫ t

T

h (t, s)H1/γ (t, s)xσ(s)∆s+
∫ t

T

H(t, s)r(s)xσγ(s)∆s

+
∫ t

T

H(t, s)
(
p(s)xσα(s) + q+(s)xσβ(s)

)
∆s.

Again, by using Lemma 2.1 (i), we have

(2.11) −p (xσ)α−γ − q+ (xσ)β−γ ≥ −δ1(−p)(γ−β)/(α−β) (q+)(α−γ)/(α−β)
.

Using (2.11) in (2.10), we get

(2.12)
∫ t

T

H(t, s)f(s)∆s ≤ −H(t, T )x(T ) +
∫ t

T

h (t, s)H1/γ (t, s)xσ(s)∆s

+
∫ t

T

H(t, s)
[
r(s) + δ1(−p (s))(γ−β)/(α−β) (q+ (s))(α−γ)/(α−β)

]
xσγ(s)∆s

= −H(t, T )x(T ) +
∫ t

T

[
h (t, s)H1/γ (t, s)xσ(s)−H(t, s) |l3 (s)|xσγ(s)

]
∆s.

Define X ≥ 0 and Y ≥ 0 by

Xγ := H |l3|xσγ , Y γ−1 := hγ−1 |l3|−1/γ
.

Then, using the inequality (see [20])

γXY γ−1 −Xγ ≤ (γ − 1)Y γ , γ > 1,

we get that

h(t, s)H1/γ(t, s)xσ(s)−H(t, s)a1 (s)xσγ(s)

≤ (γ − 1)γγ/(1−γ) |l3 (s)|1/(1−γ)
hγ/(γ−1) (t, s)

= g3(t, s).

From this last inequality and (2.12) we get

1
H(t, T )

∫ t

T

[H(t, s)f(s)− g3(t, s)] ∆s ≤ −x(T ),

which leads to a contradiction to (2.8). �

Theorem 2.4. Assume that γ > 1, α > γ > β > 0, p (t) , l4 (t) < 0 and q (t) ≤ 0,
for t ∈ [t0,∞)T. If g4(t, s) is given by (2.3),

(2.13) lim sup
t→∞

1
H(t, t0)

∫ t

t0

(H(t, s)f(s)− g4(t, s)) ∆s =∞
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and

(2.14) lim inf
t→∞

1
H(t, t0)

∫ t

t0

(H(t, s)f(s) + g4(t, s)) ∆s = −∞,

then every solution of equation (1.1) is oscillatory.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Then, without
loss of generality, there is a T ∈ [t0,∞)T, sufficiently large, such that x(t) > 0 on
[T,∞)T. As in the proof of Theorem 2.1, we get∫ t

T

H(t, s)f(s)∆s = −H(t, T )x(T ) +
∫ t

T

h (t, s)H1/γ (t, s)xσ(s)∆s

+
∫ t

T

H(t, s)r(s)xσγ(s)∆s

+
∫ t

T

H(t, s)
(
p(s)xσα(s) + q(s)xσβ(s)

)
∆s.

Also, by Lemma 2.1 (ii), we have

(−p) (xσ)α−γ + (−q) (xσ)β−γ ≥ δ2 (−p)(γ−β)/(α−β) (−q)(α−γ)/(α−β)
,

and the rest of the proof is line by line the same as the proof of Theorem 2.3 with
l3 replaced by l4. �

Theorem. Assume γ = 1 holds and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)f(s)ds =∞

and

lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)f(s)ds = −∞.

Furthermore, assume one of the following conditions is satisfied, for t ≥ s ≥ t0
(i) α > β > 1 > 0, p (s) > 0, h (t, s)H1/γ (t, s)−H(t, s)l1(s) ≥ 0;
(ii) α > 1 > β > 0, p (s) > 0, q (s) ≥ 0, h (t, s)H1/γ (t, s)−H(t, s)l2(s) ≥ 0;
(iii) α > β > 1 > 0, p (s) < 0, h (t, s)H1/γ (t, s) +H(t, s)l3(s) ≤ 0;
(iv) α > 1 > β > 0, p (s) < 0, q (s) ≤ 0, h (t, s)H1/γ (t, s) +H(t, s)l4(s) ≤ 0.
Then every solution of equation (1.1) is oscillatory.

Theorem 2.6. Assume that r(t), p(t) and q(t) are nonnegative functions on t ∈
[t0,∞)T. If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)f(s)ds =∞

and

lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)f(s)ds = −∞,



Oscillation criteria 261

then every solution of equation (1.1) is oscillatory.

Remark 2.1. The results are in a form with a high degree of generality. Thus with an
appropriate choice of H (t, s) in Theorems 2.3–2.6, we can get several sufficient conditions
for oscillation of equation (1.1). For instance, suppose we choose H (t, s) = (t− s)n, for
n ∈ N and t ≥ s ≥ t0. Then, by using [7, Theorem 1.24], we get

h(t, s) =
(−1)n+1

(t− s)α/γ
n−1∑
υ=0

(σ (s)− t)υ (s− t)n−υ−1 , t ≥ s ≥ t0.

Remark 2.2. The idea behind the proofs of Theorems 2.1–2.6 in this paper is to use an
appropriate inequality in Lemma 2.1 to combine the terms p(s)xσα(s) and q(s)xσβ(s)
to get a term involving xσ(s) and then to combine the term involving xσγ(s) with

h(t, s)H
1
γ (t, s)xσ(s) by one of the inequalities

γXY γ−1 −Xγ ≥ (γ − 1)Y γ , 1 < γ < 1,

and
γXY γ−1 −Xγ ≤ (γ − 1)Y γ , γ > 1.

By repeated applications of this process one can get results for the more general equation

x∆(t) + r(t)Φγ(xσ(t)) +

n∑
i=1

[pi(t)Φαi(x
σ(t)) + qi(t)Φβi(x

σ(t))] = f(t).

We leave these details to the interested reader.

Example 2.1. Let T be a time scale satisfying µ(t) > 0 for all t ∈ [t0,∞)T, t0 > 0,
and consider on [t0,∞)T the equation

(2.15) x∆(t)+r(t)Φγ (xσ (t))+p(t)Φα (xσ (t))+q(t)Φβ (xσ (t)) =
t+ σ(t)

µ(t)
e−2/µ (σ(t), t0) ,

for any 0 < γ < 1, α > β > γ and for any positive function p (t) on [t0,∞)T and for
functions r (t) and q (t) on [t0,∞)T. As in [2, 6, Example 2.1], we get

F∆ (t) =
t+ σ (t)

µ (t)
e−2/µ (σ(t), t0) =: f (t)

for F (t) := te−2/µ (t, t0) and e−2/µ (σ (t) , t0) = −e−2/µ (t, t0) ,let us take H(t, s) = 1, for
t > s ≥ t0 and H(t, t) = 0, then

lim sup
t→∞

∫ t

t0

f(τ)∆τ = lim sup
t→∞

(
te−2/µ (t, t0)− t0

)
=∞

and

lim inf
t→∞

∫ t

t0

f(τ)∆τ = lim inf
t→∞

(
te−2/µ (t, t0)− t0

)
= −∞.

Then by Theorem 2.1, every solution of (2.15) is oscillatory.

The important point to note here is that the recent results due to Agarwal
and Bohner [2] and Agarwal, Bohner and Grace [3] and Bohner and Hassan
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[6] do not apply to equation (2.15), since no sign conditions are imposed on r and
q.

Additional examples may be readily given. We leave this to the interested
reader.
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