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OSCILLATION AND BOUNDEDNESS OF SOLUTIONS

TO FIRST AND SECOND ORDER FORCED

FUNCTIONAL DYNAMIC EQUATIONS

WITH MIXED NONLINEARITIES

Martin Bohner and Taher S. Hassan

We investigate the oscillation and boundedness of first and second order dy-
namic equations with mixed nonlinearities. Our results extend and improve
known results for oscillation of first and second order dynamic equations that
have been established by Agarwal and Bohner. Some examples are given
to illustrate the main results.

1. INTRODUCTION

Not only does the new theory of so-called “dynamic equations” unify the
theories of differential equations and difference equations, but also extends these
classical cases to cases “in between”, e.g., to so-called q-difference equations when
T = qN0 (which has important applications in quantum theory [25]) and can be
applied to different types of time scales like T = hZ, T = N

2
0, and the space of

harmonic numbers T = {Hn}. In this work, a knowledge and understanding of
time scales and time scale notation is assumed; for an introduction to the calculus
on time scales, see [8, 9, 24]. In the last few years, there has been increasing
interest in obtaining sufficient conditions for the oscillation/nonoscillation of solu-
tions of different classes of dynamic equations. We refer the reader to [1, 2, 4–23]
and the references cited therein. To the best of our knowledge, there is very lit-
tle known about the oscillatory behavior and boundedness of first order dynamic
equations. Recently, Agarwal and Bohner [2] (see also [3]) considered the first
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order dynamic equations

x∆(t) − q(t)xσ(t) + q1(t) (xσ(t))
α1 = f(t),

x∆(t) + q(t)xσ(t) + q2(t) (xσ(t))
β1 = f(t),

x∆(t) + q(t)xσ(t) + q1(t) (xσ(t))α1 + q2(t) (xσ(t))β1 = f(t),

x∆(t) + q1(t) (xσ(t))α1 − q2(t) (xσ(t))β1 = f(t),

and the second order dynamic equations

(r(x∆)λ)∆(t) − q(t)xσ(t) + q1(t) (xσ(t))
α1 = f(t),

(r(x∆)λ)∆(t) + q(t)xσ(t) + q2(t) (xσ(t))
β1 = f(t),

(r(x∆)λ)∆(t) + q(t)xσ(t) + q1(t) (xσ(t))
α1 + q2(t) (xσ(t))

β1 = f(t),

(r(x∆)λ)∆(t) + q1(t) (xσ(t))
α1 − q2(t) (xσ(t))

β1 = f(t),

where λ, α1 and β1 are ratios of odd positive integers with α1 > 1 and 0 < β1 < 1
and q, q1 and q2 are positive rd-continuous functions on T.

The purpose of this paper is to extend the oscillation and boundedness criteria
to first order dynamic equations of the form

(1.1) x∆(t) + p(t)xγ(h(t)) + q1(t)x
α(h(t)) = f(t)

and

(1.2) x∆(t) + p(t)xγ(h(t)) + q1(t)x
α(h(t)) + q2(t)x

β(h(t)) = f(t),

and we also examine second order dynamic equations of the form

(1.3) (r(x∆)λ)∆(t) + p(t)xγ(h(t)) + q1(t)x
α(h(t)) = f(t)

and

(1.4) (r(x∆)λ)∆(t) + p(t)xγ(h(t)) + q1(t)x
α(h(t)) + q2(t)x

β(h(t)) = f(t),

where λ, γ, α and β are ratios of odd positive integers with α > γ > 0 and
β > γ > 0, p is an rd-continuous function on T, and r, q1 and q2 are positive
rd-continuous functions on T. We assume that the function h : T → T satisfies
lim

t→∞

h(t) = ∞, and hence our results will improve and extend results in [2].

Throughout this paper, we let

d+ := max{0, d}, d− := max{0,−d},

g1 := (α − γ)αα/(γ−α)γγ/(α−γ)p
α/(α−γ)
−

q
γ/(γ−α)
1

and, with δ > 0,

g2 := (α − γ)αα/(γ−α)γγ/(α−γ)δα/(α−γ)p
α/(α−γ)
+ q

γ/(γ−α)
1

+(β − γ)ββ/(γ−β)γγ/(β−γ)(1 + δ)β/(β−γ)p
β/(β−γ)
−

q
γ/(γ−β)
2 .
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Before stating our main results, we begin with the following lemma which will play
an important rôle in the proof of our main results.

Lemma 1.1 If a and b are nonnegative, then

γaα − αaγbα−γ + (α − γ)bα ≥ 0 for all α ≥ γ > 0.

Proof. If α > γ > 0, we let f(u) = γuα−αbα−γuγ . It is easy to see that f obtains
its minimum at b and that f(b) = −(α − γ)bα. �

2. FIRST ORDER DYNAMIC EQUATIONS

In this section, we give oscillation criteria for solutions to first order dynamic
equations of the form (1.1) and (1.2).

Theorem 2.1. If

(2.1) lim inf
t→∞

∫ t

t0

(f(τ) + g1(τ)) ∆τ = −∞ and lim sup
t→∞

∫ t

t0

(f(τ) − g1(τ)) ∆τ = ∞,

then every solution of equation (1.1) is oscillatory.

Proof. Assume (2.1). By way of contradiction, assume that (1.1) is not oscillatory
so that it has at least one eventually positive solution or at least one eventually
negative solution. First we assume that x satisfies (1.1) and is eventually positive.
Hence there exists t1 ∈ T, t1 ≥ t0, such that x(t) > 0 and x

(

h(t)
)

> 0 for t1 ≥ t0.
From (1.1), we obtain for t ≥ t1

(2.2) x∆(t) = f(t) − p(t)xγ(h(t)) − q1(t)x
α(h(t))

≤ f(t) + p−(t)xγ(h(t)) − q1(t)x
α(h(t)).

Define nonnegative functions a and b by

a(t) := γ−1/αq
1/α
1 (t)x(h(t)), b(t) := α1/(γ−α)γγ/(α(α−γ))p

1/(α−γ)
−

(t)q
γ/(α(γ−α))
1 (t).

The last two terms in (2.2) can be written as

α
(

γ−γ/αq
γ/α
1 (t)xγ(h(t))

)(

α−1γγ/αp−(t)q
−γ/α
1 (t)

)

− γ
(

γ−1q1(t)x
α(h(t))

)

,

which is equal to

αaγ(t)bα−γ(t) − γaα(t) ≤ (α − γ)bα(t) = g1(t)

for t ≥ t1, where we have used Lemma 1.1. From this last inequality and (2.2), we
get

x∆(t) ≤ f(t) + g1(t),
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and thus

x(t) = x(t1) +

∫ t

t1

x∆(τ)∆τ ≤ x(t1) +

∫ t

t1

(f(τ) + g1(τ)) ∆τ

= c +

∫ t

t0

(f(τ) + g1(τ)) ∆τ,

where

c := x(t1) −

∫ t1

t0

(f(τ) + g1(τ)) ∆τ.

Employing the first condition in (2.1), we find

0 ≤ lim inf
t→∞

x(t) ≤ −∞,

which is a contradiction. Next, we assume that x satisfies (1.1) and is eventually
negative. If we put y = −x, then y is an eventually positive solution of (1.1), where
f is replaced by −f . This case therefore leads to a contradiction as in the first
case, provided

lim inf
t→∞

∫ t

t0

(−f(τ) + g1(τ)) ∆τ = −∞,

which indeed holds due to the second condition in (2.1). �

Corollary 2.1. If

(2.3) lim inf
t→∞

∫ t

t0

f(τ)∆τ = −∞ and lim sup
t→∞

∫ t

t0

f(τ)∆τ = ∞

and

(2.4)

∫

∞

t0

p
α/(α−γ)
−

(τ)q
γ/(γ−α)
1 (τ)∆τ < ∞,

then every solution of equation (1.1) is oscillatory.

Proof. As (2.3) and (2.4) imply (2.1), the claim follows from Theorem 2.1. �

Example 2.1. Let T be a time scale satisfying

(2.5) µ(t) := σ(t) − t 6= 0 for all t ∈ T, t0 ∈ T, t0 > 0,

and consider on [t0,∞)
T

the equation

(2.6) x∆(t) + p(t)x1/3 (h(t)) +
1

t (σ(t))6
x5/3 (h(t)) =

t + σ(t)

µ(t)
e
−2/µ (σ(t), t0) ,

where, for any positive rd-continuous function φ on T,

p(t) :=







−1

t (σ(t))2
for t ∈ [2n, 2n + 1)T

φ(t) for t ∈ [2n + 1, 2n + 2)T
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with n ∈ N. As in [2, Example 2.1], we get

F∆(t) =
t + σ(t)

µ(t)
e
−2/µ(σ(t), t0) =: f(t) for F (t) := te

−2/µ(t, t0)

and
e
−2/µ(σ(t), t0) = −e

−2/µ(t, t0),

which implies

lim inf
t→∞

∫ t

t0

f(τ )∆τ = lim inf
t→∞

(

te
−2/µ(t, t0) − t0

)

= −∞

and

lim sup
t→∞

∫ t

t0

f(τ )∆τ = lim sup
t→∞

(

te
−2/µ(t, t0) − t0

)

= ∞.

Moreover,

g1(t) =
4

5 4
√

5

(

1

t(σ(t))2

)5/4 (

1

t(σ(t))6

)

−1/4

=
4

5 4
√

5

1

tσ(t)
for t ∈ [2n, 2n + 1)T

and
g1(t) = 0 for t ∈ [2n + 1, 2n + 2)T,

which yields

∫ t

2

g1(τ )∆τ =
n
∑

k=1

4

5 4
√

5

∫ 2k+1

2k

∆τ

τσ(τ )
=

n
∑

k=1

4

5 4
√

5

1

2k(2k + 1)
< ∞ as n → ∞.

Then by Corollary 2.1, each solution of (2.6) is oscillatory.

Theorem 2.2. If

(2.7) lim inf
t→∞

∫ t

t0

(f(τ) + g2(τ)) ∆τ = −∞ and lim sup
t→∞

∫ t

t0

(f(τ) − g2(τ)) ∆τ = ∞,

then every solution of equation (1.2) is oscillatory.

Proof. We proceed exactly as in the proof of Theorem 2.1. Let δ > 0. From (1.2),
we obtain, for t ≥ t1

x∆(t) = f(t) − p(t)xγ(h(t)) − q1(t)x
α(h(t)) − q2(t)x

β(h(t))

= f(t) + δp(t)xγ(h(t)) − q1(t)x
α(h(t))

− (1 + δ)p(t)xγ(h(t)) − q2(t)x
β(h(t))

≤ f(t) + δp+(t)xγ(h(t)) − q1(t)x
α(h(t))

+ (1 + δ)p−(t)xγ(h(t)) − q2(t)x
β(h(t)).

Define a1, a2 ≥ 0 and b1, b2 ≥ 0 by

a1(t) := γ−1/αq
1/α
1 (t)x(h(t)),

b1(t) := α1/(γ−α)γγ/(α(α−γ))δ1/(α−γ)p
1/(α−γ)
+ (t)q

γ/(α(γ−α))
1 (t)
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and

a2(t) := γ−1/βq
1/β
2 (t)x(h(t)),

b2(t) := α1/(γ−β)γγ/(β(β−γ))(1 + δ)1/(β−γ)p
1/(β−γ)
−

(t)q
γ/(β(γ−β))
2 (t),

which implies by Lemma 1.1 that

δp+(t)xγ(h(t)) − q1(t)x
α(h(t)) = α

(

γ−1/αq
1/α
1 (t)x(h(t))

)γ

×

×
(

α1/(γ−α)γγ/(α(α−γ))δ1/(α−γ)p
1/(α−γ)
+ (t)q

γ/(α(γ−α))
1 (t)

)α−γ

− γ
(

γ−1/αq
1/α
1 (t)x(h(t))

)α

= γaα
1 (t) − αa

γ
1 (t)bα−γ

1 (t) ≤ (α − γ)bα
1 (t)

and

(1 + δ)p−(t)xγ(h(t)) − q2(t)x
β(h(t)) = β

(

γ−1/βq
1/β
2 (t)x(h(t))

)γ

×

×
(

β1/(γ−β)γγ/(β(β−γ))(1 + δ)1/(β−γ)p
1/(β−γ)
−

(t)q
γ/(β(γ−β))
2 (t)

)β−γ

− γ
(

γ−1/βq
1/β
2 (t)x(h(t))

)β

= γa
β
2 (t) − βa

γ
2(t)bβ−γ

2 (t) ≤ (β − γ)bβ
2 .

It follows that

x∆(t) ≤ f(t) + g2(t),

and the rest of the proof is line by line the same as the proof of Theorem 2.1 with
g1 replaced by g2. �

Corollary 2.2. If (2.3) holds and

(2.8)

∫

∞

t0

p
α/(α−γ)
+ (τ)q

γ/(γ−α)
1 (τ)∆τ <∞ and

∫

∞

t0

p
β/(β−γ)
−

(τ)q
γ/(γ−β)
2 (τ)∆τ <∞,

then every solution of equation (1.2) is oscillatory.

Proof. As (2.3) and (2.8) imply (2.7), the claim follows from Theorem 2.2. �

Remark 2.1.

(a) Let γ = 1, α > 1, h(t) = t, and p be a negative rd-continuous function on T. Then
Theorem 2.1 and Corollary 2.1 reduce to [2, Theorem 2.1 and Corollary 2.2].

(b) Let 0 < γ < 1, α = 1, h(t) = t, and p be a negative rd-continuous function on T.
Then Theorem 2.1 and Corollary 2.1 reduce to [2, Theorem 2.3 and Corollary 2.4].

(c) Let 0 < γ < 1, α > 1, h(t) = t, and p be a negative rd-continuous function on T.
Then Theorem 2.1 and Corollary 2.1 reduce to [2, Theorem 2.7 and Corollary 2.8].
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(d) Let 0 < γ < 1, α > 1, β = 1, h(t) = t, and p be a negative rd-continuous function
on T. Then Theorem 2.2 and Corollary 2.2 reduce to [2, Theorem 2.7 and Corollary
2.8].

(e) If h(t) 6= t or p is not negative, then the results presented above are new.

Example 2.2. Let T be a time scale satisfying (2.5) and consider on [t0,∞)T the equation

(2.9) x∆(t)+p(t)x1/3(h(t))+
1

t(σ(t))9
x7/5(h(t))+

1

tσ(t)
x(h(t)) =

t + σ(t)

µ(t)
e
−2/µ(σ(t), t0),

where

p(t) :=











−1

tσ(t)
for t ∈ [2n, 2n + 1)T

1

t(σ(t))2
for t ∈ [2n + 1, 2n + 2)T

with n ∈ N. As in Example 2.1, (2.3) is satisfied and with δ = 1/2,

g2(t) =
6

5
4

√

3

10

1

tσ(t)
for t ∈ [2n, 2n + 1)T

and

g2(t) =
3

7 6
√

14

1

tσ(t)
for t ∈ [2n + 1, 2n + 2)T

implies as in Example 2.1 that (2.8) is satisfied. By Corollary 2.2, each solution of (2.9)

is oscillatory.

We conclude this section by mentioning that the same arguments as above
may be used to establish criteria that guarantee that all nonoscillatory solutions of
any of the equations (1.1) and (1.2) are bounded. This is summarized as follows.

Teorem 2.3. If (2.4) holds and

(2.10)

∫

∞

t0

|f(τ)|∆τ < ∞,

then every nonoscillatory solution of equation (1.1) is bounded.

Theorem 2.4. If (2.8) and (2.10) hold, then every nonoscillatory solution of

equation (1.2) is bounded.

3. SECOND ORDER DYNAMIC EQUATIONS

In this section, we give oscillation criteria for solutions to second order dy-
namic equations of the form (1.3) and (1.4).

Theorem 3.1. If

(3.1) lim inf
t→∞

∫ t

t0

(

c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ)) ∆τ

)1/λ

∆s = −∞
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and

(3.2) lim sup
t→∞

∫ t

t0

(

c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) − g1(τ)) ∆τ

)1/λ

= ∞

for all c ∈ R, then every solution of equation (1.3) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1, we assume that x is an eventu-
ally positive solution of (1.3). Hence there exists t1 ∈ T, t1 ≥ t0, such that x(t) > 0
and x

(

h(t)
)

> 0 for t1 ≥ t0. As in the proof of Theorem 2.1, by Lemma 1.1, we get
for t ≥ t1

(r(x∆)λ)∆(t) = f(t) − p(t)xγ(h(t)) − q1(t)x
α(h(t)) ≤ f(t) + g1(t).

Through integration, we obtain for t ≥ t1

r(t)(x∆(t))λ ≤ r(t1)(x
∆(t1))

λ +

∫ t

t1

(f(τ) + g1(τ)) ∆τ = c +

∫ t

t0

(f(τ) + g1(τ)) ∆τ,

where

c := r(t1)(x
∆(t1))

λ −

∫ t1

t0

(f(τ) + g1(τ)) ∆τ.

Therefore, for t ≥ t1

x(t) ≤ x(t1) +

∫ t

t1

(

c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ)) ∆τ

)1/λ

∆s

= c∗ +

∫ t

t0

(

c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ)) ∆τ

)1/λ

∆s,

where

c∗ := x(t1) −

∫ t1

t0

(

c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ)) ∆τ

)1/λ

∆s.

Employing condition (3.1), we find

0 ≤ lim inf
t→∞

x(t) ≤ −∞,

which is a contradiction. The case of an eventually negative solution of (1.3) can
be dealt with as in the proof of Theorem 2.1, this time employing (3.2). �

Corollary 3.1. If (2.3) and (2.4) hold and

(3.3) lim inf
t→∞

∫ t

t0

(

1

r(s)

∫ s

t0

f(τ)∆τ

)1/λ

∆s = −∞

and

(3.4) lim sup
t→∞

∫ t

t0

(

1

r(s)

∫ s

t0

f(τ)∆τ

)1/λ

∆s = ∞,
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then every solution of equation (1.3) is oscillatory.

Proof. We show that (2.3), (2.4), (3.3) and (3.4) imply (3.1) and (3.2) so that the
claim follows from Theorem 3.1. By (2.3) and (2.4), there exists T ≥ t0 such that

∫ T

t0

f(τ)∆τ ≤ −c −

∫

∞

t0

g1(τ)∆τ for all c ∈ R.

Then

∫ t

t0

(

c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ)) ∆τ

)1/λ

∆s

≤

∫ t

t0

(

1

r(s)

[

c +

∫

∞

t0

g1(τ)∆τ +

∫ T

t0

f(τ)∆τ

]

+
1

r(s)

∫ s

T

f(τ)∆τ

)1/λ

∆s

≤

∫ t

t0

(

1

r(s)

∫ s

T

f(τ)∆τ

)1/λ

∆s = č +

∫ t

T

(

1

r(s)

∫ s

T

f(τ)∆τ

)1/λ

∆s,

where

č :=

∫ T

t0

(

1

r(s)

∫ s

T

f(τ)∆τ

)1/λ

∆s,

so that condition (3.1) follows. By a similar argument, condition (3.2) holds as
well. �

Remark 3.1. Let γ = 1, α > 1, h(t) = t, and p be a negative rd-continuous function on

T. Then Theorem 3.1 and Corollary 3.2 reduce to [2, Corollaries 3.2 and 3.3].

As in Theorems 2.2 and 3.1 and Corollary 3.1, we get the following oscillation
criteria for equation (1.4).

Corollary 3.2. If

lim inf
t→∞

∫ t

t0

(

c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g2(τ)) ∆τ

)1/λ

∆s = −∞

and

lim sup
t→∞

∫ t

t0

(

c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) − g2(τ)) ∆τ

)1/λ

= ∞

for all c ∈ R, then every solution of equation (1.4) is oscillatory.

Corollary 3.3. If (2.3), (2.8), (3.3) and (3.4) hold, then every solution of equation

(1.4) is oscillatory.

Example 3.1. Let T be a time scale satisfying (2.5) and consider on [t0,∞)T the equation

(3.5)

(

t2(σ(t))2

t + σ(t)
x∆

)

∆ + p(t)x1/3(h(t)) +
1

t(σ(t))9
x7/5(h(t)) +

1

tσ(t)
x(h(t)) = G∆(t),
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where

G(t) =
t2(σ(t))2

µ(t)
e
−2/µ(σ(t), t0)

and p is as in Example 2.2. As in [2, Example 3.1], (3.3) and (3.4) are satisfied and also,

as in Example 2.2, (2.8) is satisfied. By Corollary 3.3, each solution (3.5) is oscillatory.

Remark 3.2. The recent results due to Agarwal and Bohner [2] do not apply to

equations (2.6), (2.9) and (3.5).

Also, as in Theorems 2.3 and 2.4, we can obtain results about the boundedness
of nonoscillatory solutions of equations (1.3) and (1.4).

Corollary 3.4. If (2.4) holds and

(3.6)

∫

∞

t0

(

1

r(s)
+

1

r(s)

∫ s

t0

(|f(τ)| + g1(τ)) ∆τ

)1/λ

∆s < ∞,

then every nonoscillatory solution of equation (1.3) is bounded.

Corollary 3.5. If (2.8) and (3.6) hold, then every nonoscillatory solution of

equation (1.4) is bounded.
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